mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-13 21:05:16 +00:00
d0dfbe096d
"The code was doing "if (End+NumInputs > Capacity) ...". If End is close to 0xFFFFFFFF and NumInputs is large, it'll overflow, the condition will come out false, and the vector won't grow to accommodate the new elements, and the program will crash in memmove." Patch by Jeffrey Yasskin! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68277 91177308-0d34-0410-b5e6-96231b3b80d8
610 lines
17 KiB
C++
610 lines
17 KiB
C++
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the SmallVector class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SMALLVECTOR_H
|
|
#define LLVM_ADT_SMALLVECTOR_H
|
|
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <memory>
|
|
|
|
#ifdef _MSC_VER
|
|
namespace std {
|
|
#if _MSC_VER <= 1310
|
|
// Work around flawed VC++ implementation of std::uninitialized_copy. Define
|
|
// additional overloads so that elements with pointer types are recognized as
|
|
// scalars and not objects, causing bizarre type conversion errors.
|
|
template<class T1, class T2>
|
|
inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) {
|
|
_Scalar_ptr_iterator_tag _Cat;
|
|
return _Cat;
|
|
}
|
|
|
|
template<class T1, class T2>
|
|
inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) {
|
|
_Scalar_ptr_iterator_tag _Cat;
|
|
return _Cat;
|
|
}
|
|
#else
|
|
// FIXME: It is not clear if the problem is fixed in VS 2005. What is clear
|
|
// is that the above hack won't work if it wasn't fixed.
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
namespace llvm {
|
|
|
|
/// SmallVectorImpl - This class consists of common code factored out of the
|
|
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
|
/// template parameter.
|
|
template <typename T>
|
|
class SmallVectorImpl {
|
|
protected:
|
|
T *Begin, *End, *Capacity;
|
|
|
|
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
|
|
// don't want it to be automatically run, so we need to represent the space as
|
|
// something else. An array of char would work great, but might not be
|
|
// aligned sufficiently. Instead, we either use GCC extensions, or some
|
|
// number of union instances for the space, which guarantee maximal alignment.
|
|
protected:
|
|
#ifdef __GNUC__
|
|
typedef char U;
|
|
U FirstEl __attribute__((aligned));
|
|
#else
|
|
union U {
|
|
double D;
|
|
long double LD;
|
|
long long L;
|
|
void *P;
|
|
} FirstEl;
|
|
#endif
|
|
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
|
|
public:
|
|
// Default ctor - Initialize to empty.
|
|
explicit SmallVectorImpl(unsigned N)
|
|
: Begin(reinterpret_cast<T*>(&FirstEl)),
|
|
End(reinterpret_cast<T*>(&FirstEl)),
|
|
Capacity(reinterpret_cast<T*>(&FirstEl)+N) {
|
|
}
|
|
|
|
~SmallVectorImpl() {
|
|
// Destroy the constructed elements in the vector.
|
|
destroy_range(Begin, End);
|
|
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!isSmall())
|
|
operator delete(Begin);
|
|
}
|
|
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef T value_type;
|
|
typedef T* iterator;
|
|
typedef const T* const_iterator;
|
|
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
|
|
bool empty() const { return Begin == End; }
|
|
size_type size() const { return End-Begin; }
|
|
size_type max_size() const { return size_type(-1) / sizeof(T); }
|
|
|
|
// forward iterator creation methods.
|
|
iterator begin() { return Begin; }
|
|
const_iterator begin() const { return Begin; }
|
|
iterator end() { return End; }
|
|
const_iterator end() const { return End; }
|
|
|
|
// reverse iterator creation methods.
|
|
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
|
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
|
|
reverse_iterator rend() { return reverse_iterator(begin()); }
|
|
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
|
|
|
|
|
|
/* These asserts could be "Begin + idx < End", but there are lots of places
|
|
in llvm where we use &v[v.size()] instead of v.end(). */
|
|
reference operator[](unsigned idx) {
|
|
assert (Begin + idx <= End);
|
|
return Begin[idx];
|
|
}
|
|
const_reference operator[](unsigned idx) const {
|
|
assert (Begin + idx <= End);
|
|
return Begin[idx];
|
|
}
|
|
|
|
reference front() {
|
|
return begin()[0];
|
|
}
|
|
const_reference front() const {
|
|
return begin()[0];
|
|
}
|
|
|
|
reference back() {
|
|
return end()[-1];
|
|
}
|
|
const_reference back() const {
|
|
return end()[-1];
|
|
}
|
|
|
|
void push_back(const_reference Elt) {
|
|
if (End < Capacity) {
|
|
Retry:
|
|
new (End) T(Elt);
|
|
++End;
|
|
return;
|
|
}
|
|
grow();
|
|
goto Retry;
|
|
}
|
|
|
|
void pop_back() {
|
|
--End;
|
|
End->~T();
|
|
}
|
|
|
|
T pop_back_val() {
|
|
T Result = back();
|
|
pop_back();
|
|
return Result;
|
|
}
|
|
|
|
void clear() {
|
|
destroy_range(Begin, End);
|
|
End = Begin;
|
|
}
|
|
|
|
void resize(unsigned N) {
|
|
if (N < size()) {
|
|
destroy_range(Begin+N, End);
|
|
End = Begin+N;
|
|
} else if (N > size()) {
|
|
if (unsigned(Capacity-Begin) < N)
|
|
grow(N);
|
|
construct_range(End, Begin+N, T());
|
|
End = Begin+N;
|
|
}
|
|
}
|
|
|
|
void resize(unsigned N, const T &NV) {
|
|
if (N < size()) {
|
|
destroy_range(Begin+N, End);
|
|
End = Begin+N;
|
|
} else if (N > size()) {
|
|
if (unsigned(Capacity-Begin) < N)
|
|
grow(N);
|
|
construct_range(End, Begin+N, NV);
|
|
End = Begin+N;
|
|
}
|
|
}
|
|
|
|
void reserve(unsigned N) {
|
|
if (unsigned(Capacity-Begin) < N)
|
|
grow(N);
|
|
}
|
|
|
|
void swap(SmallVectorImpl &RHS);
|
|
|
|
/// append - Add the specified range to the end of the SmallVector.
|
|
///
|
|
template<typename in_iter>
|
|
void append(in_iter in_start, in_iter in_end) {
|
|
size_type NumInputs = std::distance(in_start, in_end);
|
|
// Grow allocated space if needed.
|
|
if (NumInputs > size_type(Capacity-End))
|
|
grow(size()+NumInputs);
|
|
|
|
// Copy the new elements over.
|
|
std::uninitialized_copy(in_start, in_end, End);
|
|
End += NumInputs;
|
|
}
|
|
|
|
/// append - Add the specified range to the end of the SmallVector.
|
|
///
|
|
void append(size_type NumInputs, const T &Elt) {
|
|
// Grow allocated space if needed.
|
|
if (NumInputs > size_type(Capacity-End))
|
|
grow(size()+NumInputs);
|
|
|
|
// Copy the new elements over.
|
|
std::uninitialized_fill_n(End, NumInputs, Elt);
|
|
End += NumInputs;
|
|
}
|
|
|
|
void assign(unsigned NumElts, const T &Elt) {
|
|
clear();
|
|
if (unsigned(Capacity-Begin) < NumElts)
|
|
grow(NumElts);
|
|
End = Begin+NumElts;
|
|
construct_range(Begin, End, Elt);
|
|
}
|
|
|
|
iterator erase(iterator I) {
|
|
iterator N = I;
|
|
// Shift all elts down one.
|
|
std::copy(I+1, End, I);
|
|
// Drop the last elt.
|
|
pop_back();
|
|
return(N);
|
|
}
|
|
|
|
iterator erase(iterator S, iterator E) {
|
|
iterator N = S;
|
|
// Shift all elts down.
|
|
iterator I = std::copy(E, End, S);
|
|
// Drop the last elts.
|
|
destroy_range(I, End);
|
|
End = I;
|
|
return(N);
|
|
}
|
|
|
|
iterator insert(iterator I, const T &Elt) {
|
|
if (I == End) { // Important special case for empty vector.
|
|
push_back(Elt);
|
|
return end()-1;
|
|
}
|
|
|
|
if (End < Capacity) {
|
|
Retry:
|
|
new (End) T(back());
|
|
++End;
|
|
// Push everything else over.
|
|
std::copy_backward(I, End-1, End);
|
|
*I = Elt;
|
|
return I;
|
|
}
|
|
size_t EltNo = I-Begin;
|
|
grow();
|
|
I = Begin+EltNo;
|
|
goto Retry;
|
|
}
|
|
|
|
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
|
|
if (I == End) { // Important special case for empty vector.
|
|
append(NumToInsert, Elt);
|
|
return end()-1;
|
|
}
|
|
|
|
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
|
size_t InsertElt = I-begin();
|
|
|
|
// Ensure there is enough space.
|
|
reserve(static_cast<unsigned>(size() + NumToInsert));
|
|
|
|
// Uninvalidate the iterator.
|
|
I = begin()+InsertElt;
|
|
|
|
// If there are more elements between the insertion point and the end of the
|
|
// range than there are being inserted, we can use a simple approach to
|
|
// insertion. Since we already reserved space, we know that this won't
|
|
// reallocate the vector.
|
|
if (size_t(end()-I) >= NumToInsert) {
|
|
T *OldEnd = End;
|
|
append(End-NumToInsert, End);
|
|
|
|
// Copy the existing elements that get replaced.
|
|
std::copy(I, OldEnd-NumToInsert, I+NumToInsert);
|
|
|
|
std::fill_n(I, NumToInsert, Elt);
|
|
return I;
|
|
}
|
|
|
|
// Otherwise, we're inserting more elements than exist already, and we're
|
|
// not inserting at the end.
|
|
|
|
// Copy over the elements that we're about to overwrite.
|
|
T *OldEnd = End;
|
|
End += NumToInsert;
|
|
size_t NumOverwritten = OldEnd-I;
|
|
std::uninitialized_copy(I, OldEnd, End-NumOverwritten);
|
|
|
|
// Replace the overwritten part.
|
|
std::fill_n(I, NumOverwritten, Elt);
|
|
|
|
// Insert the non-overwritten middle part.
|
|
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
|
|
return I;
|
|
}
|
|
|
|
template<typename ItTy>
|
|
iterator insert(iterator I, ItTy From, ItTy To) {
|
|
if (I == End) { // Important special case for empty vector.
|
|
append(From, To);
|
|
return end()-1;
|
|
}
|
|
|
|
size_t NumToInsert = std::distance(From, To);
|
|
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
|
size_t InsertElt = I-begin();
|
|
|
|
// Ensure there is enough space.
|
|
reserve(static_cast<unsigned>(size() + NumToInsert));
|
|
|
|
// Uninvalidate the iterator.
|
|
I = begin()+InsertElt;
|
|
|
|
// If there are more elements between the insertion point and the end of the
|
|
// range than there are being inserted, we can use a simple approach to
|
|
// insertion. Since we already reserved space, we know that this won't
|
|
// reallocate the vector.
|
|
if (size_t(end()-I) >= NumToInsert) {
|
|
T *OldEnd = End;
|
|
append(End-NumToInsert, End);
|
|
|
|
// Copy the existing elements that get replaced.
|
|
std::copy(I, OldEnd-NumToInsert, I+NumToInsert);
|
|
|
|
std::copy(From, To, I);
|
|
return I;
|
|
}
|
|
|
|
// Otherwise, we're inserting more elements than exist already, and we're
|
|
// not inserting at the end.
|
|
|
|
// Copy over the elements that we're about to overwrite.
|
|
T *OldEnd = End;
|
|
End += NumToInsert;
|
|
size_t NumOverwritten = OldEnd-I;
|
|
std::uninitialized_copy(I, OldEnd, End-NumOverwritten);
|
|
|
|
// Replace the overwritten part.
|
|
std::copy(From, From+NumOverwritten, I);
|
|
|
|
// Insert the non-overwritten middle part.
|
|
std::uninitialized_copy(From+NumOverwritten, To, OldEnd);
|
|
return I;
|
|
}
|
|
|
|
const SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
|
|
|
|
bool operator==(const SmallVectorImpl &RHS) const {
|
|
if (size() != RHS.size()) return false;
|
|
for (T *This = Begin, *That = RHS.Begin, *E = Begin+size();
|
|
This != E; ++This, ++That)
|
|
if (*This != *That)
|
|
return false;
|
|
return true;
|
|
}
|
|
bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); }
|
|
|
|
bool operator<(const SmallVectorImpl &RHS) const {
|
|
return std::lexicographical_compare(begin(), end(),
|
|
RHS.begin(), RHS.end());
|
|
}
|
|
|
|
private:
|
|
/// isSmall - Return true if this is a smallvector which has not had dynamic
|
|
/// memory allocated for it.
|
|
bool isSmall() const {
|
|
return static_cast<const void*>(Begin) ==
|
|
static_cast<const void*>(&FirstEl);
|
|
}
|
|
|
|
/// grow - double the size of the allocated memory, guaranteeing space for at
|
|
/// least one more element or MinSize if specified.
|
|
void grow(size_type MinSize = 0);
|
|
|
|
void construct_range(T *S, T *E, const T &Elt) {
|
|
for (; S != E; ++S)
|
|
new (S) T(Elt);
|
|
}
|
|
|
|
void destroy_range(T *S, T *E) {
|
|
while (S != E) {
|
|
--E;
|
|
E->~T();
|
|
}
|
|
}
|
|
};
|
|
|
|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
|
template <typename T>
|
|
void SmallVectorImpl<T>::grow(size_t MinSize) {
|
|
size_t CurCapacity = Capacity-Begin;
|
|
size_t CurSize = size();
|
|
size_t NewCapacity = 2*CurCapacity;
|
|
if (NewCapacity < MinSize)
|
|
NewCapacity = MinSize;
|
|
T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
|
|
|
|
// Copy the elements over.
|
|
if (is_class<T>::value)
|
|
std::uninitialized_copy(Begin, End, NewElts);
|
|
else
|
|
// Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
|
|
memcpy(NewElts, Begin, CurSize * sizeof(T));
|
|
|
|
// Destroy the original elements.
|
|
destroy_range(Begin, End);
|
|
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!isSmall())
|
|
operator delete(Begin);
|
|
|
|
Begin = NewElts;
|
|
End = NewElts+CurSize;
|
|
Capacity = Begin+NewCapacity;
|
|
}
|
|
|
|
template <typename T>
|
|
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
|
if (this == &RHS) return;
|
|
|
|
// We can only avoid copying elements if neither vector is small.
|
|
if (!isSmall() && !RHS.isSmall()) {
|
|
std::swap(Begin, RHS.Begin);
|
|
std::swap(End, RHS.End);
|
|
std::swap(Capacity, RHS.Capacity);
|
|
return;
|
|
}
|
|
if (RHS.size() > size_type(Capacity-Begin))
|
|
grow(RHS.size());
|
|
if (size() > size_type(RHS.Capacity-RHS.begin()))
|
|
RHS.grow(size());
|
|
|
|
// Swap the shared elements.
|
|
size_t NumShared = size();
|
|
if (NumShared > RHS.size()) NumShared = RHS.size();
|
|
for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
|
|
std::swap(Begin[i], RHS[i]);
|
|
|
|
// Copy over the extra elts.
|
|
if (size() > RHS.size()) {
|
|
size_t EltDiff = size() - RHS.size();
|
|
std::uninitialized_copy(Begin+NumShared, End, RHS.End);
|
|
RHS.End += EltDiff;
|
|
destroy_range(Begin+NumShared, End);
|
|
End = Begin+NumShared;
|
|
} else if (RHS.size() > size()) {
|
|
size_t EltDiff = RHS.size() - size();
|
|
std::uninitialized_copy(RHS.Begin+NumShared, RHS.End, End);
|
|
End += EltDiff;
|
|
destroy_range(RHS.Begin+NumShared, RHS.End);
|
|
RHS.End = RHS.Begin+NumShared;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
const SmallVectorImpl<T> &
|
|
SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) {
|
|
// Avoid self-assignment.
|
|
if (this == &RHS) return *this;
|
|
|
|
// If we already have sufficient space, assign the common elements, then
|
|
// destroy any excess.
|
|
unsigned RHSSize = unsigned(RHS.size());
|
|
unsigned CurSize = unsigned(size());
|
|
if (CurSize >= RHSSize) {
|
|
// Assign common elements.
|
|
iterator NewEnd;
|
|
if (RHSSize)
|
|
NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin);
|
|
else
|
|
NewEnd = Begin;
|
|
|
|
// Destroy excess elements.
|
|
destroy_range(NewEnd, End);
|
|
|
|
// Trim.
|
|
End = NewEnd;
|
|
return *this;
|
|
}
|
|
|
|
// If we have to grow to have enough elements, destroy the current elements.
|
|
// This allows us to avoid copying them during the grow.
|
|
if (unsigned(Capacity-Begin) < RHSSize) {
|
|
// Destroy current elements.
|
|
destroy_range(Begin, End);
|
|
End = Begin;
|
|
CurSize = 0;
|
|
grow(RHSSize);
|
|
} else if (CurSize) {
|
|
// Otherwise, use assignment for the already-constructed elements.
|
|
std::copy(RHS.Begin, RHS.Begin+CurSize, Begin);
|
|
}
|
|
|
|
// Copy construct the new elements in place.
|
|
std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize);
|
|
|
|
// Set end.
|
|
End = Begin+RHSSize;
|
|
return *this;
|
|
}
|
|
|
|
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
|
|
/// for the case when the array is small. It contains some number of elements
|
|
/// in-place, which allows it to avoid heap allocation when the actual number of
|
|
/// elements is below that threshold. This allows normal "small" cases to be
|
|
/// fast without losing generality for large inputs.
|
|
///
|
|
/// Note that this does not attempt to be exception safe.
|
|
///
|
|
template <typename T, unsigned N>
|
|
class SmallVector : public SmallVectorImpl<T> {
|
|
/// InlineElts - These are 'N-1' elements that are stored inline in the body
|
|
/// of the vector. The extra '1' element is stored in SmallVectorImpl.
|
|
typedef typename SmallVectorImpl<T>::U U;
|
|
enum {
|
|
// MinUs - The number of U's require to cover N T's.
|
|
MinUs = (static_cast<unsigned int>(sizeof(T))*N +
|
|
static_cast<unsigned int>(sizeof(U)) - 1) /
|
|
static_cast<unsigned int>(sizeof(U)),
|
|
|
|
// NumInlineEltsElts - The number of elements actually in this array. There
|
|
// is already one in the parent class, and we have to round up to avoid
|
|
// having a zero-element array.
|
|
NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1,
|
|
|
|
// NumTsAvailable - The number of T's we actually have space for, which may
|
|
// be more than N due to rounding.
|
|
NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/
|
|
static_cast<unsigned int>(sizeof(T))
|
|
};
|
|
U InlineElts[NumInlineEltsElts];
|
|
public:
|
|
SmallVector() : SmallVectorImpl<T>(NumTsAvailable) {
|
|
}
|
|
|
|
explicit SmallVector(unsigned Size, const T &Value = T())
|
|
: SmallVectorImpl<T>(NumTsAvailable) {
|
|
this->reserve(Size);
|
|
while (Size--)
|
|
this->push_back(Value);
|
|
}
|
|
|
|
template<typename ItTy>
|
|
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) {
|
|
this->append(S, E);
|
|
}
|
|
|
|
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) {
|
|
if (!RHS.empty())
|
|
SmallVectorImpl<T>::operator=(RHS);
|
|
}
|
|
|
|
const SmallVector &operator=(const SmallVector &RHS) {
|
|
SmallVectorImpl<T>::operator=(RHS);
|
|
return *this;
|
|
}
|
|
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
namespace std {
|
|
/// Implement std::swap in terms of SmallVector swap.
|
|
template<typename T>
|
|
inline void
|
|
swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
/// Implement std::swap in terms of SmallVector swap.
|
|
template<typename T, unsigned N>
|
|
inline void
|
|
swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
}
|
|
|
|
#endif
|