llvm-6502/utils/TableGen/DAGISelEmitter.cpp
Chris Lattner a0401249e8 Check in a (disabled) failed attempt to improve the ordering of
patterns within the generated matcher.  This works great except
that the sort fails because the relation defined isn't 
transitive.  I have a much simpler solution coming next, but want
to archive the code.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99795 91177308-0d34-0410-b5e6-96231b3b80d8
2010-03-29 01:56:19 +00:00

314 lines
12 KiB
C++

//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//
#include "DAGISelEmitter.h"
#include "DAGISelMatcher.h"
#include "Record.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// DAGISelEmitter Helper methods
//
/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P,
CodeGenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost++;
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
if (II.usesCustomInserter)
Cost += 10;
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternCost(P->getChild(i), CGP);
return Cost;
}
/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
static unsigned getResultPatternSize(TreePatternNode *P,
CodeGenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost += Op->getValueAsInt("CodeSize");
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternSize(P->getChild(i), CGP);
return Cost;
}
//===----------------------------------------------------------------------===//
// Predicate emitter implementation.
//
void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) {
OS << "\n// Predicate functions.\n";
// Walk the pattern fragments, adding them to a map, which sorts them by
// name.
typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
PFsByNameTy PFsByName;
for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
I != E; ++I)
PFsByName.insert(std::make_pair(I->first->getName(), *I));
for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
I != E; ++I) {
Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
TreePattern *P = I->second.second;
// If there is a code init for this fragment, emit the predicate code.
std::string Code = PatFragRecord->getValueAsCode("Predicate");
if (Code.empty()) continue;
if (P->getOnlyTree()->isLeaf())
OS << "inline bool Predicate_" << PatFragRecord->getName()
<< "(SDNode *N) const {\n";
else {
std::string ClassName =
CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline bool Predicate_" << PatFragRecord->getName()
<< "(SDNode *" << C2 << ") const {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
}
OS << Code << "\n}\n";
}
OS << "\n\n";
}
/// CouldMatchSameInput - Return true if it is possible for these two patterns
/// to match the same input. For example, (add reg, reg) and
/// (add reg, (mul ...)) could both match the same input. Where this is
/// conservative, it falls back to returning true.
static bool CouldMatchSameInput(const TreePatternNode *N1,
const TreePatternNode *N2) {
// If the types of the two nodes differ, they can't match the same thing.
if (N1->getNumTypes() != N2->getNumTypes()) return false;
for (unsigned i = 0, e = N1->getNumTypes(); i != e; ++i)
if (N1->getType(i) != N2->getType(i))
return false;
// Handle the case when at least one is a leaf.
if (N1->isLeaf()) {
if (N2->isLeaf()) {
// Handle leaf/leaf cases. Register operands can match just about
// anything, so we can only disambiguate a few things here.
// If both operands are leaf integer nodes with different values, they
// can't match the same thing.
if (IntInit *II1 = dynamic_cast<IntInit*>(N1->getLeafValue()))
if (IntInit *II2 = dynamic_cast<IntInit*>(N2->getLeafValue()))
return II1->getValue() == II2->getValue();
DefInit *DI1 = dynamic_cast<DefInit*>(N1->getLeafValue());
DefInit *DI2 = dynamic_cast<DefInit*>(N2->getLeafValue());
if (DI1 != 0 && DI2 != 0) {
if (DI1->getDef()->isSubClassOf("ValueType") &&
DI2->getDef()->isSubClassOf("ValueType"))
return DI1 == DI2;
if (DI1->getDef()->isSubClassOf("CondCode") &&
DI2->getDef()->isSubClassOf("CondCode"))
return DI1 == DI2;
}
// TODO: Regclass cannot match a condcode etc.
// Otherwise, complex pattern could match anything, so just return a
// conservative response.
return true;
}
// Conservatively return true. (imm) could match "7" for example, and GPR
// can match anything.
// TODO: could handle (add ...) != "1" if we cared.
return true;
}
// If N2 is a leaf and N1 isn't, check the other way.
if (N2->isLeaf())
return CouldMatchSameInput(N2, N1);
// Now we know neither node is a leaf. If the two patterns have different
// number of children or different operators, they can't both match.
Record *Op1 = N1->getOperator(), *Op2 = N1->getOperator();
if (Op1 != Op2 || N1->getNumChildren() != N2->getNumChildren())
return false;
// If a child prevents the two patterns from matching, use that.
for (unsigned i = 0, e = N1->getNumChildren(); i != e; ++i)
if (!CouldMatchSameInput(N1->getChild(i), N2->getChild(i)))
return false;
// Otherwise, it looks like they could both match the same thing.
return true;
}
/// GetSourceMatchPreferenceOrdering - The two input patterns are guaranteed to
/// not match the same input. Decide which pattern we'd prefer to match first
/// in order to reduce compile time. This sorting predicate is used to improve
/// compile time so that we try to match scalar operations before vector
/// operations since scalar operations are much more common in practice.
///
/// This returns -1 if we prefer to match N1 before N2, 1 if we prefer to match
/// N2 before N1 or 0 if no preference.
///
static int GetSourceMatchPreferenceOrdering(const TreePatternNode *N1,
const TreePatternNode *N2) {
// The primary thing we sort on here is to get ints before floats and scalars
// before vectors.
for (unsigned i = 0, e = std::min(N1->getNumTypes(), N2->getNumTypes());
i != e; ++i)
if (N1->getType(i) != N2->getType(i)) {
MVT::SimpleValueType V1 = N1->getType(i), V2 = N2->getType(i);
if (MVT(V1).isVector() != MVT(V2).isVector())
return MVT(V1).isVector() ? 1 : -1;
if (MVT(V1).isFloatingPoint() != MVT(V2).isFloatingPoint())
return MVT(V1).isFloatingPoint() ? 1 : -1;
}
for (unsigned i = 0, e = std::min(N1->getNumChildren(), N2->getNumChildren());
i != e; ++i)
if (int Res = GetSourceMatchPreferenceOrdering(N1->getChild(i),
N2->getChild(i)))
return Res;
return 0;
}
namespace {
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
CodeGenDAGPatterns &CGP;
bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) {
const TreePatternNode *LHSSrc = LHS->getSrcPattern();
const TreePatternNode *RHSSrc = RHS->getSrcPattern();
// If the patterns are guaranteed to not match at the same time and we
// prefer to match one before the other (for compile time reasons) use this
// preference as our discriminator.
if (0 && !CouldMatchSameInput(LHSSrc, RHSSrc)) {
int Ordering = GetSourceMatchPreferenceOrdering(LHSSrc, RHSSrc);
if (Ordering != 0) {
if (Ordering == -1) {
errs() << "SORT: " << *LHSSrc << "\n";
errs() << "NEXT: " << *RHSSrc << "\n\n";
} else {
errs() << "SORT: " << *RHSSrc << "\n";
errs() << "NEXT: " << *LHSSrc << "\n\n";
}
}
if (Ordering == -1) return true;
if (Ordering == 1) return false;
}
// Otherwise, if the patterns might both match, sort based on complexity,
// which means that we prefer to match patterns that cover more nodes in the
// input over nodes that cover fewer.
unsigned LHSSize = LHS->getPatternComplexity(CGP);
unsigned RHSSize = RHS->getPatternComplexity(CGP);
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
if (LHSSize < RHSSize) return false;
// If the patterns have equal complexity, compare generated instruction cost
unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
if (LHSCost < RHSCost) return true;
if (LHSCost > RHSCost) return false;
unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP);
unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP);
if (LHSPatSize < RHSPatSize) return true;
if (LHSPatSize > RHSPatSize) return false;
// Sort based on the UID of the pattern, giving us a deterministic ordering
// if all other sorting conditions fail.
assert(LHS == RHS || LHS->ID != RHS->ID);
return LHS->ID < RHS->ID;
}
};
}
void DAGISelEmitter::run(raw_ostream &OS) {
EmitSourceFileHeader("DAG Instruction Selector for the " +
CGP.getTargetInfo().getName() + " target", OS);
OS << "// *** NOTE: This file is #included into the middle of the target\n"
<< "// *** instruction selector class. These functions are really "
<< "methods.\n\n";
DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n";
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
E = CGP.ptm_end(); I != E; ++I) {
errs() << "PATTERN: "; I->getSrcPattern()->dump();
errs() << "\nRESULT: "; I->getDstPattern()->dump();
errs() << "\n";
});
// FIXME: These are being used by hand written code, gross.
EmitPredicateFunctions(OS);
// Add all the patterns to a temporary list so we can sort them.
std::vector<const PatternToMatch*> Patterns;
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
I != E; ++I)
Patterns.push_back(&*I);
// We want to process the matches in order of minimal cost. Sort the patterns
// so the least cost one is at the start.
std::sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(CGP));
// Convert each variant of each pattern into a Matcher.
std::vector<Matcher*> PatternMatchers;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
for (unsigned Variant = 0; ; ++Variant) {
if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP))
PatternMatchers.push_back(M);
else
break;
}
}
Matcher *TheMatcher = new ScopeMatcher(&PatternMatchers[0],
PatternMatchers.size());
TheMatcher = OptimizeMatcher(TheMatcher, CGP);
//Matcher->dump();
EmitMatcherTable(TheMatcher, CGP, OS);
delete TheMatcher;
}