llvm-6502/lib/CodeGen/GlobalMerge.cpp
Chandler Carruth 1b279144ec [cleanup] Re-sort all the #include lines in LLVM using
utils/sort_includes.py.

I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 11:23:27 +00:00

363 lines
13 KiB
C++

//===-- GlobalMerge.cpp - Internal globals merging -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This pass merges globals with internal linkage into one. This way all the
// globals which were merged into a biggest one can be addressed using offsets
// from the same base pointer (no need for separate base pointer for each of the
// global). Such a transformation can significantly reduce the register pressure
// when many globals are involved.
//
// For example, consider the code which touches several global variables at
// once:
//
// static int foo[N], bar[N], baz[N];
//
// for (i = 0; i < N; ++i) {
// foo[i] = bar[i] * baz[i];
// }
//
// On ARM the addresses of 3 arrays should be kept in the registers, thus
// this code has quite large register pressure (loop body):
//
// ldr r1, [r5], #4
// ldr r2, [r6], #4
// mul r1, r2, r1
// str r1, [r0], #4
//
// Pass converts the code to something like:
//
// static struct {
// int foo[N];
// int bar[N];
// int baz[N];
// } merged;
//
// for (i = 0; i < N; ++i) {
// merged.foo[i] = merged.bar[i] * merged.baz[i];
// }
//
// and in ARM code this becomes:
//
// ldr r0, [r5, #40]
// ldr r1, [r5, #80]
// mul r0, r1, r0
// str r0, [r5], #4
//
// note that we saved 2 registers here almostly "for free".
// ===---------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "global-merge"
static cl::opt<bool>
EnableGlobalMerge("enable-global-merge", cl::Hidden,
cl::desc("Enable global merge pass"),
cl::init(true));
static cl::opt<bool>
EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
cl::desc("Enable global merge pass on constants"),
cl::init(false));
// FIXME: this could be a transitional option, and we probably need to remove
// it if only we are sure this optimization could always benefit all targets.
static cl::opt<bool>
EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
cl::desc("Enable global merge pass on external linkage"),
cl::init(false));
STATISTIC(NumMerged , "Number of globals merged");
namespace {
class GlobalMerge : public FunctionPass {
const TargetMachine *TM;
bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Module &M, bool isConst, unsigned AddrSpace) const;
/// \brief Check if the given variable has been identified as must keep
/// \pre setMustKeepGlobalVariables must have been called on the Module that
/// contains GV
bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
return MustKeepGlobalVariables.count(GV);
}
/// Collect every variables marked as "used" or used in a landing pad
/// instruction for this Module.
void setMustKeepGlobalVariables(Module &M);
/// Collect every variables marked as "used"
void collectUsedGlobalVariables(Module &M);
/// Keep track of the GlobalVariable that must not be merged away
SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;
public:
static char ID; // Pass identification, replacement for typeid.
explicit GlobalMerge(const TargetMachine *TM = nullptr)
: FunctionPass(ID), TM(TM) {
initializeGlobalMergePass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
bool doFinalization(Module &M) override;
const char *getPassName() const override {
return "Merge internal globals";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
FunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char GlobalMerge::ID = 0;
INITIALIZE_TM_PASS(GlobalMerge, "global-merge", "Merge global variables",
false, false)
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Module &M, bool isConst, unsigned AddrSpace) const {
const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
const DataLayout *DL = TLI->getDataLayout();
// FIXME: Infer the maximum possible offset depending on the actual users
// (these max offsets are different for the users inside Thumb or ARM
// functions)
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
// FIXME: Find better heuristics
std::stable_sort(Globals.begin(), Globals.end(),
[DL](const GlobalVariable *GV1, const GlobalVariable *GV2) {
Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType();
Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType();
return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2));
});
Type *Int32Ty = Type::getInt32Ty(M.getContext());
assert(Globals.size() > 1);
// FIXME: This simple solution merges globals all together as maximum as
// possible. However, with this solution it would be hard to remove dead
// global symbols at link-time. An alternative solution could be checking
// global symbols references function by function, and make the symbols
// being referred in the same function merged and we would probably need
// to introduce heuristic algorithm to solve the merge conflict from
// different functions.
for (size_t i = 0, e = Globals.size(); i != e; ) {
size_t j = 0;
uint64_t MergedSize = 0;
std::vector<Type*> Tys;
std::vector<Constant*> Inits;
bool HasExternal = false;
GlobalVariable *TheFirstExternal = 0;
for (j = i; j != e; ++j) {
Type *Ty = Globals[j]->getType()->getElementType();
MergedSize += DL->getTypeAllocSize(Ty);
if (MergedSize > MaxOffset) {
break;
}
Tys.push_back(Ty);
Inits.push_back(Globals[j]->getInitializer());
if (Globals[j]->hasExternalLinkage() && !HasExternal) {
HasExternal = true;
TheFirstExternal = Globals[j];
}
}
// If merged variables doesn't have external linkage, we needn't to expose
// the symbol after merging.
GlobalValue::LinkageTypes Linkage = HasExternal
? GlobalValue::ExternalLinkage
: GlobalValue::InternalLinkage;
StructType *MergedTy = StructType::get(M.getContext(), Tys);
Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
// If merged variables have external linkage, we use symbol name of the
// first variable merged as the suffix of global symbol name. This would
// be able to avoid the link-time naming conflict for globalm symbols.
GlobalVariable *MergedGV = new GlobalVariable(
M, MergedTy, isConst, Linkage, MergedInit,
HasExternal ? "_MergedGlobals_" + TheFirstExternal->getName()
: "_MergedGlobals",
nullptr, GlobalVariable::NotThreadLocal, AddrSpace);
for (size_t k = i; k < j; ++k) {
GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
std::string Name = Globals[k]->getName();
Constant *Idx[2] = {
ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, k-i)
};
Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(MergedGV, Idx);
Globals[k]->replaceAllUsesWith(GEP);
Globals[k]->eraseFromParent();
if (Linkage != GlobalValue::InternalLinkage) {
// Generate a new alias...
auto *PTy = cast<PointerType>(GEP->getType());
GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
Linkage, Name, GEP, &M);
}
NumMerged++;
}
i = j;
}
return true;
}
void GlobalMerge::collectUsedGlobalVariables(Module &M) {
// Extract global variables from llvm.used array
const GlobalVariable *GV = M.getGlobalVariable("llvm.used");
if (!GV || !GV->hasInitializer()) return;
// Should be an array of 'i8*'.
const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (const GlobalVariable *G =
dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
MustKeepGlobalVariables.insert(G);
}
void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
collectUsedGlobalVariables(M);
for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn;
++IFn) {
for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end();
IBB != IEndBB; ++IBB) {
// Follow the invoke link to find the landing pad instruction
const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator());
if (!II) continue;
const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst();
// Look for globals in the clauses of the landing pad instruction
for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses();
Idx != NumClauses; ++Idx)
if (const GlobalVariable *GV =
dyn_cast<GlobalVariable>(LPInst->getClause(Idx)
->stripPointerCasts()))
MustKeepGlobalVariables.insert(GV);
}
}
}
bool GlobalMerge::doInitialization(Module &M) {
if (!EnableGlobalMerge)
return false;
DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
BSSGlobals;
const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
const DataLayout *DL = TLI->getDataLayout();
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
bool Changed = false;
setMustKeepGlobalVariables(M);
// Grab all non-const globals.
for (Module::global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I) {
// Merge is safe for "normal" internal or external globals only
if (I->isDeclaration() || I->isThreadLocal() || I->hasSection())
continue;
if (!(EnableGlobalMergeOnExternal && I->hasExternalLinkage()) &&
!I->hasInternalLinkage())
continue;
PointerType *PT = dyn_cast<PointerType>(I->getType());
assert(PT && "Global variable is not a pointer!");
unsigned AddressSpace = PT->getAddressSpace();
// Ignore fancy-aligned globals for now.
unsigned Alignment = DL->getPreferredAlignment(I);
Type *Ty = I->getType()->getElementType();
if (Alignment > DL->getABITypeAlignment(Ty))
continue;
// Ignore all 'special' globals.
if (I->getName().startswith("llvm.") ||
I->getName().startswith(".llvm."))
continue;
// Ignore all "required" globals:
if (isMustKeepGlobalVariable(I))
continue;
if (DL->getTypeAllocSize(Ty) < MaxOffset) {
if (TargetLoweringObjectFile::getKindForGlobal(I, *TM).isBSSLocal())
BSSGlobals[AddressSpace].push_back(I);
else if (I->isConstant())
ConstGlobals[AddressSpace].push_back(I);
else
Globals[AddressSpace].push_back(I);
}
}
for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
I = Globals.begin(), E = Globals.end(); I != E; ++I)
if (I->second.size() > 1)
Changed |= doMerge(I->second, M, false, I->first);
for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
if (I->second.size() > 1)
Changed |= doMerge(I->second, M, false, I->first);
if (EnableGlobalMergeOnConst)
for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I)
if (I->second.size() > 1)
Changed |= doMerge(I->second, M, true, I->first);
return Changed;
}
bool GlobalMerge::runOnFunction(Function &F) {
return false;
}
bool GlobalMerge::doFinalization(Module &M) {
MustKeepGlobalVariables.clear();
return false;
}
Pass *llvm::createGlobalMergePass(const TargetMachine *TM) {
return new GlobalMerge(TM);
}