llvm-6502/lib/CodeGen/InstrSched/SchedGraph.cpp
Alkis Evlogimenos 4d7af65903 Change interface of MachineOperand as follows:
a) remove opIsUse(), opIsDefOnly(), opIsDefAndUse()
    b) add isUse(), isDef()
    c) rename opHiBits32() to isHiBits32(),
              opLoBits32() to isLoBits32(),
              opHiBits64() to isHiBits64(),
              opLoBits64() to isLoBits64().

This results to much more readable code, for example compare
"op.opIsDef() || op.opIsDefAndUse()" to "op.isDef()" a pattern used
very often in the code.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10461 91177308-0d34-0410-b5e6-96231b3b80d8
2003-12-14 13:24:17 +00:00

741 lines
27 KiB
C++

//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Scheduling graph based on SSA graph plus extra dependence edges capturing
// dependences due to machine resources (machine registers, CC registers, and
// any others).
//
//===----------------------------------------------------------------------===//
#include "SchedGraph.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "Support/STLExtras.h"
namespace llvm {
//*********************** Internal Data Structures *************************/
// The following two types need to be classes, not typedefs, so we can use
// opaque declarations in SchedGraph.h
//
struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > {
typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator;
typedef
std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator;
};
struct RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
struct ValueToDefVecMap: public hash_map<const Value*, RefVec> {
typedef hash_map<const Value*, RefVec>:: iterator iterator;
typedef hash_map<const Value*, RefVec>::const_iterator const_iterator;
};
//
// class SchedGraphNode
//
SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb,
int indexInBB, const TargetMachine& Target)
: SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(mbb ? (*mbb)[indexInBB] : 0) {
if (MI) {
MachineOpCode mopCode = MI->getOpCode();
latency = Target.getInstrInfo().hasResultInterlock(mopCode)
? Target.getInstrInfo().minLatency(mopCode)
: Target.getInstrInfo().maxLatency(mopCode);
}
}
//
// Method: SchedGraphNode Destructor
//
// Description:
// Free memory allocated by the SchedGraphNode object.
//
// Notes:
// Do not delete the edges here. The base class will take care of that.
// Only handle subclass specific stuff here (where currently there is
// none).
//
SchedGraphNode::~SchedGraphNode() {
}
//
// class SchedGraph
//
SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
: MBB(mbb) {
buildGraph(target);
}
//
// Method: SchedGraph Destructor
//
// Description:
// This method deletes memory allocated by the SchedGraph object.
//
// Notes:
// Do not delete the graphRoot or graphLeaf here. The base class handles
// that bit of work.
//
SchedGraph::~SchedGraph() {
for (const_iterator I = begin(); I != end(); ++I)
delete I->second;
}
void SchedGraph::dump() const {
std::cerr << " Sched Graph for Basic Block: ";
std::cerr << MBB.getBasicBlock()->getName()
<< " (" << MBB.getBasicBlock() << ")";
std::cerr << "\n\n Actual Root nodes : ";
for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
std::cerr << graphRoot->outEdges[i]->getSink()->getNodeId()
<< ((i == N-1)? "" : ", ");
std::cerr << "\n Graph Nodes:\n";
for (const_iterator I=begin(); I != end(); ++I)
std::cerr << "\n" << *I->second;
std::cerr << "\n";
}
void SchedGraph::addDummyEdges() {
assert(graphRoot->outEdges.size() == 0);
for (const_iterator I=begin(); I != end(); ++I) {
SchedGraphNode* node = (*I).second;
assert(node != graphRoot && node != graphLeaf);
if (node->beginInEdges() == node->endInEdges())
(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
if (node->beginOutEdges() == node->endOutEdges())
(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
void SchedGraph::addCDEdges(const TerminatorInst* term,
const TargetMachine& target) {
const TargetInstrInfo& mii = target.getInstrInfo();
MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
// Find the first branch instr in the sequence of machine instrs for term
//
unsigned first = 0;
while (! mii.isBranch(termMvec[first]->getOpCode()) &&
! mii.isReturn(termMvec[first]->getOpCode()))
++first;
assert(first < termMvec.size() &&
"No branch instructions for terminator? Ok, but weird!");
if (first == termMvec.size())
return;
SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
// Add CD edges from each instruction in the sequence to the
// *last preceding* branch instr. in the sequence
// Use a latency of 0 because we only need to prevent out-of-order issue.
//
for (unsigned i = termMvec.size(); i > first+1; --i) {
SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
assert(toNode && "No node for instr generated for branch/ret?");
for (unsigned j = i-1; j != 0; --j)
if (mii.isBranch(termMvec[j-1]->getOpCode()) ||
mii.isReturn(termMvec[j-1]->getOpCode())) {
SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
assert(brNode && "No node for instr generated for branch/ret?");
(void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
break; // only one incoming edge is enough
}
}
// Add CD edges from each instruction preceding the first branch
// to the first branch. Use a latency of 0 as above.
//
for (unsigned i = first; i != 0; --i) {
SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
assert(fromNode && "No node for instr generated for branch?");
(void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
// Now add CD edges to the first branch instruction in the sequence from
// all preceding instructions in the basic block. Use 0 latency again.
//
for (unsigned i=0, N=MBB.size(); i < N; i++) {
if (MBB[i] == termMvec[first]) // reached the first branch
break;
SchedGraphNode* fromNode = this->getGraphNodeForInstr(MBB[i]);
if (fromNode == NULL)
continue; // dummy instruction, e.g., PHI
(void) new SchedGraphEdge(fromNode, firstBrNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
// If we find any other machine instructions (other than due to
// the terminator) that also have delay slots, add an outgoing edge
// from the instruction to the instructions in the delay slots.
//
unsigned d = mii.getNumDelaySlots(MBB[i]->getOpCode());
assert(i+d < N && "Insufficient delay slots for instruction?");
for (unsigned j=1; j <= d; j++) {
SchedGraphNode* toNode = this->getGraphNodeForInstr(MBB[i+j]);
assert(toNode && "No node for machine instr in delay slot?");
(void) new SchedGraphEdge(fromNode, toNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
}
static const int SG_LOAD_REF = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF = 2;
static const unsigned int SG_DepOrderArray[][3] = {
{ SchedGraphEdge::NonDataDep,
SchedGraphEdge::AntiDep,
SchedGraphEdge::AntiDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
| SchedGraphEdge::OutputDep }
};
// Add a dependence edge between every pair of machine load/store/call
// instructions, where at least one is a store or a call.
// Use latency 1 just to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
//
void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec,
const TargetMachine& target) {
const TargetInstrInfo& mii = target.getInstrInfo();
// Instructions in memNodeVec are in execution order within the basic block,
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
//
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) {
MachineOpCode fromOpCode = memNodeVec[im]->getOpCode();
int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF
: (mii.isLoad(fromOpCode)? SG_LOAD_REF
: SG_STORE_REF));
for (unsigned jm=im+1; jm < NM; jm++) {
MachineOpCode toOpCode = memNodeVec[jm]->getOpCode();
int toType = (mii.isCall(toOpCode)? SG_CALL_REF
: (mii.isLoad(toOpCode)? SG_LOAD_REF
: SG_STORE_REF));
if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
(void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
SchedGraphEdge::MemoryDep,
SG_DepOrderArray[fromType][toType], 1);
}
}
}
// Add edges from/to CC reg instrs to/from call instrs.
// Essentially this prevents anything that sets or uses a CC reg from being
// reordered w.r.t. a call.
// Use a latency of 0 because we only need to prevent out-of-order issue,
// like with control dependences.
//
void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec,
const TargetMachine& target) {
const TargetInstrInfo& mii = target.getInstrInfo();
// Instructions in memNodeVec are in execution order within the basic block,
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
//
for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++)
if (mii.isCall(callDepNodeVec[ic]->getOpCode())) {
// Add SG_CALL_REF edges from all preds to this instruction.
for (unsigned jc=0; jc < ic; jc++)
(void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic],
SchedGraphEdge::MachineRegister,
MachineIntRegsRID, 0);
// And do the same from this instruction to all successors.
for (unsigned jc=ic+1; jc < NC; jc++)
(void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc],
SchedGraphEdge::MachineRegister,
MachineIntRegsRID, 0);
}
#ifdef CALL_DEP_NODE_VEC_CANNOT_WORK
// Find the call instruction nodes and put them in a vector.
std::vector<SchedGraphNode*> callNodeVec;
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
if (mii.isCall(memNodeVec[im]->getOpCode()))
callNodeVec.push_back(memNodeVec[im]);
// Now walk the entire basic block, looking for CC instructions *and*
// call instructions, and keep track of the order of the instructions.
// Use the call node vec to quickly find earlier and later call nodes
// relative to the current CC instruction.
//
int lastCallNodeIdx = -1;
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
if (mii.isCall(bbMvec[i]->getOpCode())) {
++lastCallNodeIdx;
for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
break;
assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
}
else if (mii.isCCInstr(bbMvec[i]->getOpCode())) {
// Add incoming/outgoing edges from/to preceding/later calls
SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
int j=0;
for ( ; j <= lastCallNodeIdx; j++)
(void) new SchedGraphEdge(callNodeVec[j], ccNode,
MachineCCRegsRID, 0);
for ( ; j < (int) callNodeVec.size(); j++)
(void) new SchedGraphEdge(ccNode, callNodeVec[j],
MachineCCRegsRID, 0);
}
#endif
}
void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target) {
// This code assumes that two registers with different numbers are
// not aliased!
//
for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I) {
int regNum = (*I).first;
RefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block
for (unsigned i=0; i < regRefVec.size(); ++i) {
SchedGraphNode* node = regRefVec[i].first;
unsigned int opNum = regRefVec[i].second;
const MachineOperand& mop =
node->getMachineInstr()->getExplOrImplOperand(opNum);
bool isDef = mop.isDef() && !mop.isUse();
bool isDefAndUse = mop.isDef() && mop.isUse();
for (unsigned p=0; p < i; ++p) {
SchedGraphNode* prevNode = regRefVec[p].first;
if (prevNode != node) {
unsigned int prevOpNum = regRefVec[p].second;
const MachineOperand& prevMop =
prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum);
bool prevIsDef = prevMop.isDef() && !prevMop.isUse();
bool prevIsDefAndUse = prevMop.isDef() && prevMop.isUse();
if (isDef) {
if (prevIsDef)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::OutputDep);
if (!prevIsDef || prevIsDefAndUse)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::AntiDep);
}
if (prevIsDef)
if (!isDef || isDefAndUse)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::TrueDep);
}
}
}
}
}
// Adds dependences to/from refNode from/to all other defs
// in the basic block. refNode may be a use, a def, or both.
// We do not consider other uses because we are not building use-use deps.
//
void SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
const RefVec& defVec,
const Value* defValue,
bool refNodeIsDef,
bool refNodeIsUse,
const TargetMachine& target) {
// Add true or output dep edges from all def nodes before refNode in BB.
// Add anti or output dep edges to all def nodes after refNode.
for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) {
if ((*I).first == refNode)
continue; // Dont add any self-loops
if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) {
// (*).first is before refNode
if (refNodeIsDef && !refNodeIsUse)
(void) new SchedGraphEdge((*I).first, refNode, defValue,
SchedGraphEdge::OutputDep);
if (refNodeIsUse)
(void) new SchedGraphEdge((*I).first, refNode, defValue,
SchedGraphEdge::TrueDep);
} else {
// (*).first is after refNode
if (refNodeIsDef && !refNodeIsUse)
(void) new SchedGraphEdge(refNode, (*I).first, defValue,
SchedGraphEdge::OutputDep);
if (refNodeIsUse)
(void) new SchedGraphEdge(refNode, (*I).first, defValue,
SchedGraphEdge::AntiDep);
}
}
}
void SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
const ValueToDefVecMap& valueToDefVecMap,
const TargetMachine& target) {
SchedGraphNode* node = getGraphNodeForInstr(&MI);
if (node == NULL)
return;
// Add edges for all operands of the machine instruction.
//
for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) {
switch (MI.getOperand(i).getType()) {
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
if (const Value* srcI = MI.getOperand(i).getVRegValue()) {
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
if (I != valueToDefVecMap.end())
addEdgesForValue(node, I->second, srcI,
MI.getOperand(i).isDef(), MI.getOperand(i).isUse(),
target);
}
break;
case MachineOperand::MO_MachineRegister:
break;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
case MachineOperand::MO_PCRelativeDisp:
case MachineOperand::MO_ConstantPoolIndex:
break; // nothing to do for immediate fields
default:
assert(0 && "Unknown machine operand type in SchedGraph builder");
break;
}
}
// Add edges for values implicitly used by the machine instruction.
// Examples include function arguments to a Call instructions or the return
// value of a Ret instruction.
//
for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
if (MI.getImplicitOp(i).isUse())
if (const Value* srcI = MI.getImplicitRef(i)) {
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
if (I != valueToDefVecMap.end())
addEdgesForValue(node, I->second, srcI,
MI.getImplicitOp(i).isDef(),
MI.getImplicitOp(i).isUse(), target);
}
}
void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
SchedGraphNode* node,
std::vector<SchedGraphNode*>& memNodeVec,
std::vector<SchedGraphNode*>& callDepNodeVec,
RegToRefVecMap& regToRefVecMap,
ValueToDefVecMap& valueToDefVecMap) {
const TargetInstrInfo& mii = target.getInstrInfo();
MachineOpCode opCode = node->getOpCode();
if (mii.isCall(opCode) || mii.isCCInstr(opCode))
callDepNodeVec.push_back(node);
if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
memNodeVec.push_back(node);
// Collect the register references and value defs. for explicit operands
//
const MachineInstr& MI = *node->getMachineInstr();
for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) {
const MachineOperand& mop = MI.getOperand(i);
// if this references a register other than the hardwired
// "zero" register, record the reference.
if (mop.hasAllocatedReg()) {
int regNum = mop.getAllocatedRegNum();
// If this is not a dummy zero register, record the reference in order
if (regNum != target.getRegInfo().getZeroRegNum())
regToRefVecMap[mop.getAllocatedRegNum()]
.push_back(std::make_pair(node, i));
// If this is a volatile register, add the instruction to callDepVec
// (only if the node is not already on the callDepVec!)
if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node)
{
unsigned rcid;
int regInClass = target.getRegInfo().getClassRegNum(regNum, rcid);
if (target.getRegInfo().getMachineRegClass(rcid)
->isRegVolatile(regInClass))
callDepNodeVec.push_back(node);
}
continue; // nothing more to do
}
// ignore all other non-def operands
if (!MI.getOperand(i).isDef())
continue;
// We must be defining a value.
assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
mop.getType() == MachineOperand::MO_CCRegister)
&& "Do not expect any other kind of operand to be defined!");
assert(mop.getVRegValue() != NULL && "Null value being defined?");
valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i));
}
//
// Collect value defs. for implicit operands. They may have allocated
// physical registers also.
//
for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) {
const MachineOperand& mop = MI.getImplicitOp(i);
if (mop.hasAllocatedReg()) {
int regNum = mop.getAllocatedRegNum();
if (regNum != target.getRegInfo().getZeroRegNum())
regToRefVecMap[mop.getAllocatedRegNum()]
.push_back(std::make_pair(node, i + MI.getNumOperands()));
continue; // nothing more to do
}
if (mop.isDef()) {
assert(MI.getImplicitRef(i) != NULL && "Null value being defined?");
valueToDefVecMap[MI.getImplicitRef(i)].push_back(
std::make_pair(node, -i));
}
}
}
void SchedGraph::buildNodesForBB(const TargetMachine& target,
MachineBasicBlock& MBB,
std::vector<SchedGraphNode*>& memNodeVec,
std::vector<SchedGraphNode*>& callDepNodeVec,
RegToRefVecMap& regToRefVecMap,
ValueToDefVecMap& valueToDefVecMap) {
const TargetInstrInfo& mii = target.getInstrInfo();
// Build graph nodes for each VM instruction and gather def/use info.
// Do both those together in a single pass over all machine instructions.
for (unsigned i=0; i < MBB.size(); i++)
if (!mii.isDummyPhiInstr(MBB[i]->getOpCode())) {
SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
noteGraphNodeForInstr(MBB[i], node);
// Remember all register references and value defs
findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec,
regToRefVecMap, valueToDefVecMap);
}
}
void SchedGraph::buildGraph(const TargetMachine& target) {
// Use this data structure to note all machine operands that compute
// ordinary LLVM values. These must be computed defs (i.e., instructions).
// Note that there may be multiple machine instructions that define
// each Value.
ValueToDefVecMap valueToDefVecMap;
// Use this data structure to note all memory instructions.
// We use this to add memory dependence edges without a second full walk.
std::vector<SchedGraphNode*> memNodeVec;
// Use this data structure to note all instructions that access physical
// registers that can be modified by a call (including call instructions)
std::vector<SchedGraphNode*> callDepNodeVec;
// Use this data structure to note any uses or definitions of
// machine registers so we can add edges for those later without
// extra passes over the nodes.
// The vector holds an ordered list of references to the machine reg,
// ordered according to control-flow order. This only works for a
// single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>.
//
RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, -1, target);
graphLeaf = new SchedGraphNode(1, NULL, -1, target);
//----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block
// because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the SchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later.
//----------------------------------------------------------------
buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec,
regToRefVecMap, valueToDefVecMap);
//----------------------------------------------------------------
// Now add edges for the following (all are incoming edges except (4)):
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) memory load/store dependences
// (3) other resource dependences for the machine instruction, if any
// (4) output dependences when multiple machine instructions define the
// same value; all must have been generated from a single VM instrn
// (5) control dependences to branch instructions generated for the
// terminator instruction of the BB. Because of delay slots and
// 2-way conditional branches, multiple CD edges are needed
// (see addCDEdges for details).
// Also, note any uses or defs of machine registers.
//
//----------------------------------------------------------------
// First, add edges to the terminator instruction of the basic block.
this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
// Then add memory dep edges: store->load, load->store, and store->store.
// Call instructions are treated as both load and store.
this->addMemEdges(memNodeVec, target);
// Then add edges between call instructions and CC set/use instructions
this->addCallDepEdges(callDepNodeVec, target);
// Then add incoming def-use (SSA) edges for each machine instruction.
for (unsigned i=0, N=MBB.size(); i < N; i++)
addEdgesForInstruction(*MBB[i], valueToDefVecMap, target);
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
// Then add non-SSA edges for all VM instructions in the block.
// We assume that all machine instructions that define a value are
// generated from the VM instruction corresponding to that value.
// TODO: This could probably be done much more efficiently.
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
this->addNonSSAEdgesForValue(*II, target);
#endif //NEED_SEPARATE_NONSSA_EDGES_CODE
// Then add edges for dependences on machine registers
this->addMachineRegEdges(regToRefVecMap, target);
// Finally, add edges from the dummy root and to dummy leaf
this->addDummyEdges();
}
//
// class SchedGraphSet
//
SchedGraphSet::SchedGraphSet(const Function* _function,
const TargetMachine& target) :
function(_function) {
buildGraphsForMethod(function, target);
}
SchedGraphSet::~SchedGraphSet() {
// delete all the graphs
for(iterator I = begin(), E = end(); I != E; ++I)
delete *I; // destructor is a friend
}
void SchedGraphSet::dump() const {
std::cerr << "======== Sched graphs for function `" << function->getName()
<< "' ========\n\n";
for (const_iterator I=begin(); I != end(); ++I)
(*I)->dump();
std::cerr << "\n====== End graphs for function `" << function->getName()
<< "' ========\n\n";
}
void SchedGraphSet::buildGraphsForMethod(const Function *F,
const TargetMachine& target) {
MachineFunction &MF = MachineFunction::get(F);
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
addGraph(new SchedGraph(*I, target));
}
void SchedGraphEdge::print(std::ostream &os) const {
os << "edge [" << src->getNodeId() << "] -> ["
<< sink->getNodeId() << "] : ";
switch(depType) {
case SchedGraphEdge::CtrlDep:
os<< "Control Dep";
break;
case SchedGraphEdge::ValueDep:
os<< "Reg Value " << val;
break;
case SchedGraphEdge::MemoryDep:
os<< "Memory Dep";
break;
case SchedGraphEdge::MachineRegister:
os<< "Reg " << machineRegNum;
break;
case SchedGraphEdge::MachineResource:
os<<"Resource "<< resourceId;
break;
default:
assert(0);
break;
}
os << " : delay = " << minDelay << "\n";
}
void SchedGraphNode::print(std::ostream &os) const {
os << std::string(8, ' ')
<< "Node " << ID << " : "
<< "latency = " << latency << "\n" << std::string(12, ' ');
if (getMachineInstr() == NULL)
os << "(Dummy node)\n";
else {
os << *getMachineInstr() << "\n" << std::string(12, ' ');
os << inEdges.size() << " Incoming Edges:\n";
for (unsigned i=0, N = inEdges.size(); i < N; i++)
os << std::string(16, ' ') << *inEdges[i];
os << std::string(12, ' ') << outEdges.size()
<< " Outgoing Edges:\n";
for (unsigned i=0, N= outEdges.size(); i < N; i++)
os << std::string(16, ' ') << *outEdges[i];
}
}
} // End llvm namespace