llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
Dan Gohman 343f0c0467 Experimental post-pass scheduling support. Post-pass scheduling
is currently off by default, and can be enabled with
-disable-post-RA-scheduler=false.

This doesn't have a significant impact on most code yet because it doesn't
yet do anything to address anti-dependencies and it doesn't attempt to
disambiguate memory references. Also, several popular targets
don't have pipeline descriptions yet.

The majority of the changes here are splitting the SelectionDAG-specific
code out of ScheduleDAG, so that ScheduleDAG can be moved to
libLLVMCodeGen.a. The interface between ScheduleDAG-using code and
the rest of the scheduling code is somewhat rough and will evolve.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59676 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-19 23:18:57 +00:00

258 lines
9.3 KiB
C++

//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAG class, which is a base class used by
// scheduling implementation classes.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
ScheduleDAGSDNodes::ScheduleDAGSDNodes(SelectionDAG *dag, MachineBasicBlock *bb,
const TargetMachine &tm)
: ScheduleDAG(dag, bb, tm) {
}
SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
SUnit *SU = NewSUnit(Old->getNode());
SU->OrigNode = Old->OrigNode;
SU->Latency = Old->Latency;
SU->isTwoAddress = Old->isTwoAddress;
SU->isCommutable = Old->isCommutable;
SU->hasPhysRegDefs = Old->hasPhysRegDefs;
return SU;
}
/// CheckForPhysRegDependency - Check if the dependency between def and use of
/// a specified operand is a physical register dependency. If so, returns the
/// register and the cost of copying the register.
static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII,
unsigned &PhysReg, int &Cost) {
if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
return;
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
return;
unsigned ResNo = User->getOperand(2).getResNo();
if (Def->isMachineOpcode()) {
const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
if (ResNo >= II.getNumDefs() &&
II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
PhysReg = Reg;
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
Cost = RC->getCopyCost();
}
}
}
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
/// together nodes with a single SUnit.
void ScheduleDAGSDNodes::BuildSchedUnits() {
// Reserve entries in the vector for each of the SUnits we are creating. This
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
// invalidated.
SUnits.reserve(DAG->allnodes_size());
// During scheduling, the NodeId field of SDNode is used to map SDNodes
// to their associated SUnits by holding SUnits table indices. A value
// of -1 means the SDNode does not yet have an associated SUnit.
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI)
NI->setNodeId(-1);
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI) {
if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
continue;
// If this node has already been processed, stop now.
if (NI->getNodeId() != -1) continue;
SUnit *NodeSUnit = NewSUnit(NI);
// See if anything is flagged to this node, if so, add them to flagged
// nodes. Nodes can have at most one flag input and one flag output. Flags
// are required the be the last operand and result of a node.
// Scan up to find flagged preds.
SDNode *N = NI;
if (N->getNumOperands() &&
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
do {
N = N->getOperand(N->getNumOperands()-1).getNode();
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
} while (N->getNumOperands() &&
N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
}
// Scan down to find any flagged succs.
N = NI;
while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
SDValue FlagVal(N, N->getNumValues()-1);
// There are either zero or one users of the Flag result.
bool HasFlagUse = false;
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI)
if (FlagVal.isOperandOf(*UI)) {
HasFlagUse = true;
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
N = *UI;
break;
}
if (!HasFlagUse) break;
}
// If there are flag operands involved, N is now the bottom-most node
// of the sequence of nodes that are flagged together.
// Update the SUnit.
NodeSUnit->setNode(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
ComputeLatency(NodeSUnit);
}
// Pass 2: add the preds, succs, etc.
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
SUnit *SU = &SUnits[su];
SDNode *MainNode = SU->getNode();
if (MainNode->isMachineOpcode()) {
unsigned Opc = MainNode->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
SU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
SU->isCommutable = true;
}
// Find all predecessors and successors of the group.
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
if (N->isMachineOpcode() &&
TII->get(N->getMachineOpcode()).getImplicitDefs() &&
CountResults(N) > TII->get(N->getMachineOpcode()).getNumDefs())
SU->hasPhysRegDefs = true;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDNode *OpN = N->getOperand(i).getNode();
if (isPassiveNode(OpN)) continue; // Not scheduled.
SUnit *OpSU = &SUnits[OpN->getNodeId()];
assert(OpSU && "Node has no SUnit!");
if (OpSU == SU) continue; // In the same group.
MVT OpVT = N->getOperand(i).getValueType();
assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
bool isChain = OpVT == MVT::Other;
unsigned PhysReg = 0;
int Cost = 1;
// Determine if this is a physical register dependency.
CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
SU->addPred(OpSU, isChain, false, PhysReg, Cost);
}
}
}
}
void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
// Compute the latency for the node. We use the sum of the latencies for
// all nodes flagged together into this SUnit.
if (InstrItins.isEmpty()) {
// No latency information.
SU->Latency = 1;
return;
}
SU->Latency = 0;
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) {
if (N->isMachineOpcode()) {
unsigned SchedClass = TII->get(N->getMachineOpcode()).getSchedClass();
const InstrStage *S = InstrItins.begin(SchedClass);
const InstrStage *E = InstrItins.end(SchedClass);
for (; S != E; ++S)
SU->Latency += S->Cycles;
}
}
}
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the resulting MachineInstr).
unsigned ScheduleDAGSDNodes::CountResults(SDNode *Node) {
unsigned N = Node->getNumValues();
while (N && Node->getValueType(N - 1) == MVT::Flag)
--N;
if (N && Node->getValueType(N - 1) == MVT::Other)
--N; // Skip over chain result.
return N;
}
/// CountOperands - The inputs to target nodes have any actual inputs first,
/// followed by special operands that describe memory references, then an
/// optional chain operand, then an optional flag operand. Compute the number
/// of actual operands that will go into the resulting MachineInstr.
unsigned ScheduleDAGSDNodes::CountOperands(SDNode *Node) {
unsigned N = ComputeMemOperandsEnd(Node);
while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).getNode()))
--N; // Ignore MEMOPERAND nodes
return N;
}
/// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode
/// operand
unsigned ScheduleDAGSDNodes::ComputeMemOperandsEnd(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
--N;
if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
--N; // Ignore chain if it exists.
return N;
}
void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
if (SU->getNode())
SU->getNode()->dump(DAG);
else
cerr << "CROSS RC COPY ";
cerr << "\n";
SmallVector<SDNode *, 4> FlaggedNodes;
for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
FlaggedNodes.push_back(N);
while (!FlaggedNodes.empty()) {
cerr << " ";
FlaggedNodes.back()->dump(DAG);
cerr << "\n";
FlaggedNodes.pop_back();
}
}