llvm-6502/include/llvm/CodeGen/LiveInterval.h
Lang Hames 233a60ec40 The Indexes Patch.
This introduces a new pass, SlotIndexes, which is responsible for numbering
instructions for register allocation (and other clients). SlotIndexes numbering
is designed to match the existing scheme, so this patch should not cause any
changes in the generated code.

For consistency, and to avoid naming confusion, LiveIndex has been renamed
SlotIndex.

The processImplicitDefs method of the LiveIntervals analysis has been moved
into its own pass so that it can be run prior to SlotIndexes. This was
necessary to match the existing numbering scheme.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85979 91177308-0d34-0410-b5e6-96231b3b80d8
2009-11-03 23:52:08 +00:00

603 lines
22 KiB
C++

//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
// interval is represented as an instance of LiveInterval.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include <cassert>
#include <climits>
namespace llvm {
class LiveIntervals;
class MachineInstr;
class MachineRegisterInfo;
class TargetRegisterInfo;
class raw_ostream;
/// VNInfo - Value Number Information.
/// This class holds information about a machine level values, including
/// definition and use points.
///
/// Care must be taken in interpreting the def index of the value. The
/// following rules apply:
///
/// If the isDefAccurate() method returns false then def does not contain the
/// index of the defining MachineInstr, or even (necessarily) to a
/// MachineInstr at all. In general such a def index is not meaningful
/// and should not be used. The exception is that, for values originally
/// defined by PHI instructions, after PHI elimination def will contain the
/// index of the MBB in which the PHI originally existed. This can be used
/// to insert code (spills or copies) which deals with the value, which will
/// be live in to the block.
class VNInfo {
private:
enum {
HAS_PHI_KILL = 1,
REDEF_BY_EC = 1 << 1,
IS_PHI_DEF = 1 << 2,
IS_UNUSED = 1 << 3,
IS_DEF_ACCURATE = 1 << 4
};
unsigned char flags;
union {
MachineInstr *copy;
unsigned reg;
} cr;
public:
typedef SmallVector<SlotIndex, 4> KillSet;
/// The ID number of this value.
unsigned id;
/// The index of the defining instruction (if isDefAccurate() returns true).
SlotIndex def;
KillSet kills;
/*
VNInfo(LiveIntervals &li_)
: defflags(IS_UNUSED), id(~1U) { cr.copy = 0; }
*/
/// VNInfo constructor.
/// d is presumed to point to the actual defining instr. If it doesn't
/// setIsDefAccurate(false) should be called after construction.
VNInfo(unsigned i, SlotIndex d, MachineInstr *c)
: flags(IS_DEF_ACCURATE), id(i), def(d) { cr.copy = c; }
/// VNInfo construtor, copies values from orig, except for the value number.
VNInfo(unsigned i, const VNInfo &orig)
: flags(orig.flags), cr(orig.cr), id(i), def(orig.def), kills(orig.kills)
{ }
/// Copy from the parameter into this VNInfo.
void copyFrom(VNInfo &src) {
flags = src.flags;
cr = src.cr;
def = src.def;
kills = src.kills;
}
/// Used for copying value number info.
unsigned getFlags() const { return flags; }
void setFlags(unsigned flags) { this->flags = flags; }
/// For a register interval, if this VN was definied by a copy instr
/// getCopy() returns a pointer to it, otherwise returns 0.
/// For a stack interval the behaviour of this method is undefined.
MachineInstr* getCopy() const { return cr.copy; }
/// For a register interval, set the copy member.
/// This method should not be called on stack intervals as it may lead to
/// undefined behavior.
void setCopy(MachineInstr *c) { cr.copy = c; }
/// For a stack interval, returns the reg which this stack interval was
/// defined from.
/// For a register interval the behaviour of this method is undefined.
unsigned getReg() const { return cr.reg; }
/// For a stack interval, set the defining register.
/// This method should not be called on register intervals as it may lead
/// to undefined behaviour.
void setReg(unsigned reg) { cr.reg = reg; }
/// Returns true if one or more kills are PHI nodes.
bool hasPHIKill() const { return flags & HAS_PHI_KILL; }
/// Set the PHI kill flag on this value.
void setHasPHIKill(bool hasKill) {
if (hasKill)
flags |= HAS_PHI_KILL;
else
flags &= ~HAS_PHI_KILL;
}
/// Returns true if this value is re-defined by an early clobber somewhere
/// during the live range.
bool hasRedefByEC() const { return flags & REDEF_BY_EC; }
/// Set the "redef by early clobber" flag on this value.
void setHasRedefByEC(bool hasRedef) {
if (hasRedef)
flags |= REDEF_BY_EC;
else
flags &= ~REDEF_BY_EC;
}
/// Returns true if this value is defined by a PHI instruction (or was,
/// PHI instrucions may have been eliminated).
bool isPHIDef() const { return flags & IS_PHI_DEF; }
/// Set the "phi def" flag on this value.
void setIsPHIDef(bool phiDef) {
if (phiDef)
flags |= IS_PHI_DEF;
else
flags &= ~IS_PHI_DEF;
}
/// Returns true if this value is unused.
bool isUnused() const { return flags & IS_UNUSED; }
/// Set the "is unused" flag on this value.
void setIsUnused(bool unused) {
if (unused)
flags |= IS_UNUSED;
else
flags &= ~IS_UNUSED;
}
/// Returns true if the def is accurate.
bool isDefAccurate() const { return flags & IS_DEF_ACCURATE; }
/// Set the "is def accurate" flag on this value.
void setIsDefAccurate(bool defAccurate) {
if (defAccurate)
flags |= IS_DEF_ACCURATE;
else
flags &= ~IS_DEF_ACCURATE;
}
/// Returns true if the given index is a kill of this value.
bool isKill(SlotIndex k) const {
KillSet::const_iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
return (i != kills.end() && *i == k);
}
/// addKill - Add a kill instruction index to the specified value
/// number.
void addKill(SlotIndex k) {
if (kills.empty()) {
kills.push_back(k);
} else {
KillSet::iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
kills.insert(i, k);
}
}
/// Remove the specified kill index from this value's kills list.
/// Returns true if the value was present, otherwise returns false.
bool removeKill(SlotIndex k) {
KillSet::iterator i = std::lower_bound(kills.begin(), kills.end(), k);
if (i != kills.end() && *i == k) {
kills.erase(i);
return true;
}
return false;
}
/// Remove all kills in the range [s, e).
void removeKills(SlotIndex s, SlotIndex e) {
KillSet::iterator
si = std::lower_bound(kills.begin(), kills.end(), s),
se = std::upper_bound(kills.begin(), kills.end(), e);
kills.erase(si, se);
}
};
/// LiveRange structure - This represents a simple register range in the
/// program, with an inclusive start point and an exclusive end point.
/// These ranges are rendered as [start,end).
struct LiveRange {
SlotIndex start; // Start point of the interval (inclusive)
SlotIndex end; // End point of the interval (exclusive)
VNInfo *valno; // identifier for the value contained in this interval.
LiveRange(SlotIndex S, SlotIndex E, VNInfo *V)
: start(S), end(E), valno(V) {
assert(S < E && "Cannot create empty or backwards range");
}
/// contains - Return true if the index is covered by this range.
///
bool contains(SlotIndex I) const {
return start <= I && I < end;
}
/// containsRange - Return true if the given range, [S, E), is covered by
/// this range.
bool containsRange(SlotIndex S, SlotIndex E) const {
assert((S < E) && "Backwards interval?");
return (start <= S && S < end) && (start < E && E <= end);
}
bool operator<(const LiveRange &LR) const {
return start < LR.start || (start == LR.start && end < LR.end);
}
bool operator==(const LiveRange &LR) const {
return start == LR.start && end == LR.end;
}
void dump() const;
void print(raw_ostream &os) const;
private:
LiveRange(); // DO NOT IMPLEMENT
};
raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR);
inline bool operator<(SlotIndex V, const LiveRange &LR) {
return V < LR.start;
}
inline bool operator<(const LiveRange &LR, SlotIndex V) {
return LR.start < V;
}
/// LiveInterval - This class represents some number of live ranges for a
/// register or value. This class also contains a bit of register allocator
/// state.
class LiveInterval {
public:
typedef SmallVector<LiveRange,4> Ranges;
typedef SmallVector<VNInfo*,4> VNInfoList;
unsigned reg; // the register or stack slot of this interval
// if the top bits is set, it represents a stack slot.
float weight; // weight of this interval
Ranges ranges; // the ranges in which this register is live
VNInfoList valnos; // value#'s
struct InstrSlots {
enum {
LOAD = 0,
USE = 1,
DEF = 2,
STORE = 3,
NUM = 4
};
};
LiveInterval(unsigned Reg, float Weight, bool IsSS = false)
: reg(Reg), weight(Weight) {
if (IsSS)
reg = reg | (1U << (sizeof(unsigned)*CHAR_BIT-1));
}
typedef Ranges::iterator iterator;
iterator begin() { return ranges.begin(); }
iterator end() { return ranges.end(); }
typedef Ranges::const_iterator const_iterator;
const_iterator begin() const { return ranges.begin(); }
const_iterator end() const { return ranges.end(); }
typedef VNInfoList::iterator vni_iterator;
vni_iterator vni_begin() { return valnos.begin(); }
vni_iterator vni_end() { return valnos.end(); }
typedef VNInfoList::const_iterator const_vni_iterator;
const_vni_iterator vni_begin() const { return valnos.begin(); }
const_vni_iterator vni_end() const { return valnos.end(); }
/// advanceTo - Advance the specified iterator to point to the LiveRange
/// containing the specified position, or end() if the position is past the
/// end of the interval. If no LiveRange contains this position, but the
/// position is in a hole, this method returns an iterator pointing the the
/// LiveRange immediately after the hole.
iterator advanceTo(iterator I, SlotIndex Pos) {
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
}
void clear() {
while (!valnos.empty()) {
VNInfo *VNI = valnos.back();
valnos.pop_back();
VNI->~VNInfo();
}
ranges.clear();
}
/// isStackSlot - Return true if this is a stack slot interval.
///
bool isStackSlot() const {
return reg & (1U << (sizeof(unsigned)*CHAR_BIT-1));
}
/// getStackSlotIndex - Return stack slot index if this is a stack slot
/// interval.
int getStackSlotIndex() const {
assert(isStackSlot() && "Interval is not a stack slot interval!");
return reg & ~(1U << (sizeof(unsigned)*CHAR_BIT-1));
}
bool hasAtLeastOneValue() const { return !valnos.empty(); }
bool containsOneValue() const { return valnos.size() == 1; }
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
/// getValNumInfo - Returns pointer to the specified val#.
///
inline VNInfo *getValNumInfo(unsigned ValNo) {
return valnos[ValNo];
}
inline const VNInfo *getValNumInfo(unsigned ValNo) const {
return valnos[ValNo];
}
/// getNextValue - Create a new value number and return it. MIIdx specifies
/// the instruction that defines the value number.
VNInfo *getNextValue(SlotIndex def, MachineInstr *CopyMI,
bool isDefAccurate, BumpPtrAllocator &VNInfoAllocator){
VNInfo *VNI =
static_cast<VNInfo*>(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo),
alignof<VNInfo>()));
new (VNI) VNInfo((unsigned)valnos.size(), def, CopyMI);
VNI->setIsDefAccurate(isDefAccurate);
valnos.push_back(VNI);
return VNI;
}
/// Create a copy of the given value. The new value will be identical except
/// for the Value number.
VNInfo *createValueCopy(const VNInfo *orig,
BumpPtrAllocator &VNInfoAllocator) {
VNInfo *VNI =
static_cast<VNInfo*>(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo),
alignof<VNInfo>()));
new (VNI) VNInfo((unsigned)valnos.size(), *orig);
valnos.push_back(VNI);
return VNI;
}
/// addKills - Add a number of kills into the VNInfo kill vector. If this
/// interval is live at a kill point, then the kill is not added.
void addKills(VNInfo *VNI, const VNInfo::KillSet &kills) {
for (unsigned i = 0, e = static_cast<unsigned>(kills.size());
i != e; ++i) {
if (!liveBeforeAndAt(kills[i])) {
VNI->addKill(kills[i]);
}
}
}
/// isOnlyLROfValNo - Return true if the specified live range is the only
/// one defined by the its val#.
bool isOnlyLROfValNo(const LiveRange *LR) {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
const LiveRange *Tmp = I;
if (Tmp != LR && Tmp->valno == LR->valno)
return false;
}
return true;
}
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// LiveRanges with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
/// MergeInClobberRanges - For any live ranges that are not defined in the
/// current interval, but are defined in the Clobbers interval, mark them
/// used with an unknown definition value. Caller must pass in reference to
/// VNInfoAllocator since it will create a new val#.
void MergeInClobberRanges(LiveIntervals &li_,
const LiveInterval &Clobbers,
BumpPtrAllocator &VNInfoAllocator);
/// MergeInClobberRange - Same as MergeInClobberRanges except it merge in a
/// single LiveRange only.
void MergeInClobberRange(LiveIntervals &li_,
SlotIndex Start,
SlotIndex End,
BumpPtrAllocator &VNInfoAllocator);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, it will replace the value numbers of the overlaped
/// live ranges with the specified value number.
void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, but only if the overlapping LiveRanges have the
/// specified value number.
void MergeValueInAsValue(const LiveInterval &RHS,
const VNInfo *RHSValNo, VNInfo *LHSValNo);
/// Copy - Copy the specified live interval. This copies all the fields
/// except for the register of the interval.
void Copy(const LiveInterval &RHS, MachineRegisterInfo *MRI,
BumpPtrAllocator &VNInfoAllocator);
bool empty() const { return ranges.empty(); }
/// beginIndex - Return the lowest numbered slot covered by interval.
SlotIndex beginIndex() const {
assert(!empty() && "Call to beginIndex() on empty interval.");
return ranges.front().start;
}
/// endNumber - return the maximum point of the interval of the whole,
/// exclusive.
SlotIndex endIndex() const {
assert(!empty() && "Call to endIndex() on empty interval.");
return ranges.back().end;
}
bool expiredAt(SlotIndex index) const {
return index >= endIndex();
}
bool liveAt(SlotIndex index) const;
// liveBeforeAndAt - Check if the interval is live at the index and the
// index just before it. If index is liveAt, check if it starts a new live
// range.If it does, then check if the previous live range ends at index-1.
bool liveBeforeAndAt(SlotIndex index) const;
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
const LiveRange *getLiveRangeContaining(SlotIndex Idx) const {
const_iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveRange *getLiveRangeContaining(SlotIndex Idx) {
iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
const_iterator FindLiveRangeContaining(SlotIndex Idx) const;
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
iterator FindLiveRangeContaining(SlotIndex Idx);
/// findDefinedVNInfo - Find the by the specified
/// index (register interval) or defined
VNInfo *findDefinedVNInfoForRegInt(SlotIndex Idx) const;
/// findDefinedVNInfo - Find the VNInfo that's defined by the specified
/// register (stack inteval only).
VNInfo *findDefinedVNInfoForStackInt(unsigned Reg) const;
/// overlaps - Return true if the intersection of the two live intervals is
/// not empty.
bool overlaps(const LiveInterval& other) const {
return overlapsFrom(other, other.begin());
}
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool overlaps(SlotIndex Start, SlotIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live intervals
/// is not empty. The specified iterator is a hint that we can begin
/// scanning the Other interval starting at I.
bool overlapsFrom(const LiveInterval& other, const_iterator I) const;
/// addRange - Add the specified LiveRange to this interval, merging
/// intervals as appropriate. This returns an iterator to the inserted live
/// range (which may have grown since it was inserted.
void addRange(LiveRange LR) {
addRangeFrom(LR, ranges.begin());
}
/// join - Join two live intervals (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
/// the intervals are not joinable, this aborts.
void join(LiveInterval &Other,
const int *ValNoAssignments,
const int *RHSValNoAssignments,
SmallVector<VNInfo*, 16> &NewVNInfo,
MachineRegisterInfo *MRI);
/// isInOneLiveRange - Return true if the range specified is entirely in the
/// a single LiveRange of the live interval.
bool isInOneLiveRange(SlotIndex Start, SlotIndex End);
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be a single LiveRange in its entirety.
void removeRange(SlotIndex Start, SlotIndex End,
bool RemoveDeadValNo = false);
void removeRange(LiveRange LR, bool RemoveDeadValNo = false) {
removeRange(LR.start, LR.end, RemoveDeadValNo);
}
/// removeValNo - Remove all the ranges defined by the specified value#.
/// Also remove the value# from value# list.
void removeValNo(VNInfo *ValNo);
/// scaleNumbering - Renumber VNI and ranges to provide gaps for new
/// instructions.
void scaleNumbering(unsigned factor);
/// getSize - Returns the sum of sizes of all the LiveRange's.
///
unsigned getSize() const;
/// ComputeJoinedWeight - Set the weight of a live interval after
/// Other has been merged into it.
void ComputeJoinedWeight(const LiveInterval &Other);
bool operator<(const LiveInterval& other) const {
const SlotIndex &thisIndex = beginIndex();
const SlotIndex &otherIndex = other.beginIndex();
return (thisIndex < otherIndex ||
(thisIndex == otherIndex && reg < other.reg));
}
void print(raw_ostream &OS, const TargetRegisterInfo *TRI = 0) const;
void dump() const;
private:
Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From);
void extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd);
Ranges::iterator extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStr);
LiveInterval& operator=(const LiveInterval& rhs); // DO NOT IMPLEMENT
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
LI.print(OS);
return OS;
}
}
#endif