mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
7fe65d691d
As far as simplify_type is concerned, there are 3 kinds of smart pointers: * const correct: A 'const MyPtr<int> &' produces a 'const int*'. A 'MyPtr<int> &' produces a 'int *'. * always const: Even a 'MyPtr<int> &' produces a 'const int*'. * no const: Even a 'const MyPtr<int> &' produces a 'int*'. This patch then does the following: * Removes the unused specializations. Since they are unused, it is hard to know which kind should be implemented. * Make sure we don't drop const. * Fix the default forwarding so that const correct pointer only need one specialization. * Simplifies the existing specializations. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178147 91177308-0d34-0410-b5e6-96231b3b80d8
194 lines
5.9 KiB
C++
194 lines
5.9 KiB
C++
//===-- Optional.h - Simple variant for passing optional values ---*- C++ -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides Optional, a template class modeled in the spirit of
|
|
// OCaml's 'opt' variant. The idea is to strongly type whether or not
|
|
// a value can be optional.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_OPTIONAL_H
|
|
#define LLVM_ADT_OPTIONAL_H
|
|
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include <cassert>
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
#include <utility>
|
|
#endif
|
|
|
|
namespace llvm {
|
|
|
|
template<typename T>
|
|
class Optional {
|
|
AlignedCharArrayUnion<T> storage;
|
|
bool hasVal;
|
|
public:
|
|
Optional(NoneType) : hasVal(false) {}
|
|
explicit Optional() : hasVal(false) {}
|
|
Optional(const T &y) : hasVal(true) {
|
|
new (storage.buffer) T(y);
|
|
}
|
|
Optional(const Optional &O) : hasVal(O.hasVal) {
|
|
if (hasVal)
|
|
new (storage.buffer) T(*O);
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
Optional(T &&y) : hasVal(true) {
|
|
new (storage.buffer) T(std::forward<T>(y));
|
|
}
|
|
Optional(Optional<T> &&O) : hasVal(O) {
|
|
if (O) {
|
|
new (storage.buffer) T(std::move(*O));
|
|
O.reset();
|
|
}
|
|
}
|
|
Optional &operator=(T &&y) {
|
|
if (hasVal)
|
|
**this = std::move(y);
|
|
else {
|
|
new (storage.buffer) T(std::move(y));
|
|
hasVal = true;
|
|
}
|
|
return *this;
|
|
}
|
|
Optional &operator=(Optional &&O) {
|
|
if (!O)
|
|
reset();
|
|
else {
|
|
*this = std::move(*O);
|
|
O.reset();
|
|
}
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
static inline Optional create(const T* y) {
|
|
return y ? Optional(*y) : Optional();
|
|
}
|
|
|
|
// FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
|
|
// could be made more efficient by passing by value, possibly unifying them
|
|
// with the rvalue versions above - but this could place a different set of
|
|
// requirements (notably: the existence of a default ctor) when implemented
|
|
// in that way. Careful SFINAE to avoid such pitfalls would be required.
|
|
Optional &operator=(const T &y) {
|
|
if (hasVal)
|
|
**this = y;
|
|
else {
|
|
new (storage.buffer) T(y);
|
|
hasVal = true;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Optional &operator=(const Optional &O) {
|
|
if (!O)
|
|
reset();
|
|
else
|
|
*this = *O;
|
|
return *this;
|
|
}
|
|
|
|
void reset() {
|
|
if (hasVal) {
|
|
(**this).~T();
|
|
hasVal = false;
|
|
}
|
|
}
|
|
|
|
~Optional() {
|
|
reset();
|
|
}
|
|
|
|
const T* getPointer() const { assert(hasVal); return reinterpret_cast<const T*>(storage.buffer); }
|
|
T* getPointer() { assert(hasVal); return reinterpret_cast<T*>(storage.buffer); }
|
|
const T& getValue() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
|
|
T& getValue() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
|
|
|
|
LLVM_EXPLICIT operator bool() const { return hasVal; }
|
|
bool hasValue() const { return hasVal; }
|
|
const T* operator->() const { return getPointer(); }
|
|
T* operator->() { return getPointer(); }
|
|
const T& operator*() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
|
|
T& operator*() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCE_THIS
|
|
T&& getValue() && { assert(hasVal); return std::move(*getPointer()); }
|
|
T&& operator*() && { assert(hasVal); return std::move(*getPointer()); }
|
|
#endif
|
|
};
|
|
|
|
template <typename T> struct isPodLike;
|
|
template <typename T> struct isPodLike<Optional<T> > {
|
|
// An Optional<T> is pod-like if T is.
|
|
static const bool value = isPodLike<T>::value;
|
|
};
|
|
|
|
/// \brief Poison comparison between two \c Optional objects. Clients needs to
|
|
/// explicitly compare the underlying values and account for empty \c Optional
|
|
/// objects.
|
|
///
|
|
/// This routine will never be defined. It returns \c void to help diagnose
|
|
/// errors at compile time.
|
|
template<typename T, typename U>
|
|
void operator==(const Optional<T> &X, const Optional<U> &Y);
|
|
|
|
/// \brief Poison comparison between two \c Optional objects. Clients needs to
|
|
/// explicitly compare the underlying values and account for empty \c Optional
|
|
/// objects.
|
|
///
|
|
/// This routine will never be defined. It returns \c void to help diagnose
|
|
/// errors at compile time.
|
|
template<typename T, typename U>
|
|
void operator!=(const Optional<T> &X, const Optional<U> &Y);
|
|
|
|
/// \brief Poison comparison between two \c Optional objects. Clients needs to
|
|
/// explicitly compare the underlying values and account for empty \c Optional
|
|
/// objects.
|
|
///
|
|
/// This routine will never be defined. It returns \c void to help diagnose
|
|
/// errors at compile time.
|
|
template<typename T, typename U>
|
|
void operator<(const Optional<T> &X, const Optional<U> &Y);
|
|
|
|
/// \brief Poison comparison between two \c Optional objects. Clients needs to
|
|
/// explicitly compare the underlying values and account for empty \c Optional
|
|
/// objects.
|
|
///
|
|
/// This routine will never be defined. It returns \c void to help diagnose
|
|
/// errors at compile time.
|
|
template<typename T, typename U>
|
|
void operator<=(const Optional<T> &X, const Optional<U> &Y);
|
|
|
|
/// \brief Poison comparison between two \c Optional objects. Clients needs to
|
|
/// explicitly compare the underlying values and account for empty \c Optional
|
|
/// objects.
|
|
///
|
|
/// This routine will never be defined. It returns \c void to help diagnose
|
|
/// errors at compile time.
|
|
template<typename T, typename U>
|
|
void operator>=(const Optional<T> &X, const Optional<U> &Y);
|
|
|
|
/// \brief Poison comparison between two \c Optional objects. Clients needs to
|
|
/// explicitly compare the underlying values and account for empty \c Optional
|
|
/// objects.
|
|
///
|
|
/// This routine will never be defined. It returns \c void to help diagnose
|
|
/// errors at compile time.
|
|
template<typename T, typename U>
|
|
void operator>(const Optional<T> &X, const Optional<U> &Y);
|
|
|
|
} // end llvm namespace
|
|
|
|
#endif
|