mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
93a23a3bd4
(reverted in r235533) Original commit message: "Calls to llvm::Value::mutateType are becoming extra-sensitive now that instructions have extra type information that will not be derived from operands or result type (alloca, gep, load, call/invoke, etc... ). The special-handling for mutateType will get more complicated as this work continues - it might be worth making mutateType virtual & pushing the complexity down into the classes that need special handling. But with only two significant uses of mutateType (vectorization and linking) this seems OK for now. Totally open to ideas/suggestions/improvements, of course. With this, and a bunch of exceptions, we can roundtrip an indirect call site through bitcode and IR. (a direct call site is actually trickier... I haven't figured out how to deal with the IR deserializer's lazy construction of Function/GlobalVariable decl's based on the type of the entity which means looking through the "pointer to T" type referring to the global)" The remapping done in ValueMapper for LTO was insufficient as the types weren't correctly mapped (though I was using the post-mapped operands, some of those operands might not have been mapped yet so the type wouldn't be post-mapped yet). Instead use the pre-mapped type and explicitly map all the types. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235651 91177308-0d34-0410-b5e6-96231b3b80d8
402 lines
15 KiB
C++
402 lines
15 KiB
C++
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MapValue function, which is shared by various parts of
|
|
// the lib/Transforms/Utils library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
using namespace llvm;
|
|
|
|
// Out of line method to get vtable etc for class.
|
|
void ValueMapTypeRemapper::anchor() {}
|
|
void ValueMaterializer::anchor() {}
|
|
|
|
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
ValueToValueMapTy::iterator I = VM.find(V);
|
|
|
|
// If the value already exists in the map, use it.
|
|
if (I != VM.end() && I->second) return I->second;
|
|
|
|
// If we have a materializer and it can materialize a value, use that.
|
|
if (Materializer) {
|
|
if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V)))
|
|
return VM[V] = NewV;
|
|
}
|
|
|
|
// Global values do not need to be seeded into the VM if they
|
|
// are using the identity mapping.
|
|
if (isa<GlobalValue>(V))
|
|
return VM[V] = const_cast<Value*>(V);
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
// Inline asm may need *type* remapping.
|
|
FunctionType *NewTy = IA->getFunctionType();
|
|
if (TypeMapper) {
|
|
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
|
|
|
|
if (NewTy != IA->getFunctionType())
|
|
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
|
|
IA->hasSideEffects(), IA->isAlignStack());
|
|
}
|
|
|
|
return VM[V] = const_cast<Value*>(V);
|
|
}
|
|
|
|
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
|
|
const Metadata *MD = MDV->getMetadata();
|
|
// If this is a module-level metadata and we know that nothing at the module
|
|
// level is changing, then use an identity mapping.
|
|
if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
|
|
if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert(MappedMD && "Referenced metadata value not in value map");
|
|
return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
|
|
}
|
|
|
|
// Okay, this either must be a constant (which may or may not be mappable) or
|
|
// is something that is not in the mapping table.
|
|
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
|
|
Function *F =
|
|
cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
|
|
}
|
|
|
|
// Otherwise, we have some other constant to remap. Start by checking to see
|
|
// if all operands have an identity remapping.
|
|
unsigned OpNo = 0, NumOperands = C->getNumOperands();
|
|
Value *Mapped = nullptr;
|
|
for (; OpNo != NumOperands; ++OpNo) {
|
|
Value *Op = C->getOperand(OpNo);
|
|
Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
|
|
if (Mapped != C) break;
|
|
}
|
|
|
|
// See if the type mapper wants to remap the type as well.
|
|
Type *NewTy = C->getType();
|
|
if (TypeMapper)
|
|
NewTy = TypeMapper->remapType(NewTy);
|
|
|
|
// If the result type and all operands match up, then just insert an identity
|
|
// mapping.
|
|
if (OpNo == NumOperands && NewTy == C->getType())
|
|
return VM[V] = C;
|
|
|
|
// Okay, we need to create a new constant. We've already processed some or
|
|
// all of the operands, set them all up now.
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.reserve(NumOperands);
|
|
for (unsigned j = 0; j != OpNo; ++j)
|
|
Ops.push_back(cast<Constant>(C->getOperand(j)));
|
|
|
|
// If one of the operands mismatch, push it and the other mapped operands.
|
|
if (OpNo != NumOperands) {
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
|
|
// Map the rest of the operands that aren't processed yet.
|
|
for (++OpNo; OpNo != NumOperands; ++OpNo)
|
|
Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
}
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
return VM[V] = CE->getWithOperands(Ops, NewTy);
|
|
if (isa<ConstantArray>(C))
|
|
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
|
|
if (isa<ConstantStruct>(C))
|
|
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
|
|
if (isa<ConstantVector>(C))
|
|
return VM[V] = ConstantVector::get(Ops);
|
|
// If this is a no-operand constant, it must be because the type was remapped.
|
|
if (isa<UndefValue>(C))
|
|
return VM[V] = UndefValue::get(NewTy);
|
|
if (isa<ConstantAggregateZero>(C))
|
|
return VM[V] = ConstantAggregateZero::get(NewTy);
|
|
assert(isa<ConstantPointerNull>(C));
|
|
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
|
|
}
|
|
|
|
static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
|
|
Metadata *Val) {
|
|
VM.MD()[Key].reset(Val);
|
|
return Val;
|
|
}
|
|
|
|
static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
|
|
return mapToMetadata(VM, MD, const_cast<Metadata *>(MD));
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer);
|
|
|
|
static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
if (!Op)
|
|
return nullptr;
|
|
if (Metadata *MappedOp =
|
|
MapMetadataImpl(Op, Cycles, VM, Flags, TypeMapper, Materializer))
|
|
return MappedOp;
|
|
// Use identity map if MappedOp is null and we can ignore missing entries.
|
|
if (Flags & RF_IgnoreMissingEntries)
|
|
return Op;
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// llvm_unreachable("Referenced metadata not in value map!");
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Remap nodes.
|
|
///
|
|
/// Insert \c NewNode in the value map, and then remap \c OldNode's operands.
|
|
/// Assumes that \c NewNode is already a clone of \c OldNode.
|
|
///
|
|
/// \pre \c NewNode is a clone of \c OldNode.
|
|
static bool remap(const MDNode *OldNode, MDNode *NewNode,
|
|
SmallVectorImpl<MDNode *> &Cycles, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(OldNode->getNumOperands() == NewNode->getNumOperands() &&
|
|
"Expected nodes to match");
|
|
assert(OldNode->isResolved() && "Expected resolved node");
|
|
assert(!NewNode->isUniqued() && "Expected non-uniqued node");
|
|
|
|
// Map the node upfront so it's available for cyclic references.
|
|
mapToMetadata(VM, OldNode, NewNode);
|
|
bool AnyChanged = false;
|
|
for (unsigned I = 0, E = OldNode->getNumOperands(); I != E; ++I) {
|
|
Metadata *Old = OldNode->getOperand(I);
|
|
assert(NewNode->getOperand(I) == Old &&
|
|
"Expected old operands to already be in place");
|
|
|
|
Metadata *New = mapMetadataOp(OldNode->getOperand(I), Cycles, VM, Flags,
|
|
TypeMapper, Materializer);
|
|
if (Old != New) {
|
|
AnyChanged = true;
|
|
NewNode->replaceOperandWith(I, New);
|
|
}
|
|
}
|
|
|
|
return AnyChanged;
|
|
}
|
|
|
|
/// \brief Map a distinct MDNode.
|
|
///
|
|
/// Distinct nodes are not uniqued, so they must always recreated.
|
|
static Metadata *mapDistinctNode(const MDNode *Node,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(Node->isDistinct() && "Expected distinct node");
|
|
|
|
MDNode *NewMD = MDNode::replaceWithDistinct(Node->clone());
|
|
remap(Node, NewMD, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
|
|
// Track any cycles beneath this node.
|
|
for (Metadata *Op : NewMD->operands())
|
|
if (auto *Node = dyn_cast_or_null<MDNode>(Op))
|
|
if (!Node->isResolved())
|
|
Cycles.push_back(Node);
|
|
|
|
return NewMD;
|
|
}
|
|
|
|
/// \brief Map a uniqued MDNode.
|
|
///
|
|
/// Uniqued nodes may not need to be recreated (they may map to themselves).
|
|
static Metadata *mapUniquedNode(const MDNode *Node,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(Node->isUniqued() && "Expected uniqued node");
|
|
|
|
// Create a temporary node upfront in case we have a metadata cycle.
|
|
auto ClonedMD = Node->clone();
|
|
if (!remap(Node, ClonedMD.get(), Cycles, VM, Flags, TypeMapper, Materializer))
|
|
// No operands changed, so use the identity mapping.
|
|
return mapToSelf(VM, Node);
|
|
|
|
// At least one operand has changed, so uniquify the cloned node.
|
|
return mapToMetadata(VM, Node,
|
|
MDNode::replaceWithUniqued(std::move(ClonedMD)));
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD,
|
|
SmallVectorImpl<MDNode *> &Cycles,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
// If the value already exists in the map, use it.
|
|
if (Metadata *NewMD = VM.MD().lookup(MD).get())
|
|
return NewMD;
|
|
|
|
if (isa<MDString>(MD))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (isa<ConstantAsMetadata>(MD))
|
|
if ((Flags & RF_NoModuleLevelChanges))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
|
|
Value *MappedV =
|
|
MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
|
|
if (VMD->getValue() == MappedV ||
|
|
(!MappedV && (Flags & RF_IgnoreMissingEntries)))
|
|
return mapToSelf(VM, MD);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert(MappedV && "Referenced metadata not in value map!");
|
|
if (MappedV)
|
|
return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV));
|
|
return nullptr;
|
|
}
|
|
|
|
// Note: this cast precedes the Flags check so we always get its associated
|
|
// assertion.
|
|
const MDNode *Node = cast<MDNode>(MD);
|
|
|
|
// If this is a module-level metadata and we know that nothing at the
|
|
// module level is changing, then use an identity mapping.
|
|
if (Flags & RF_NoModuleLevelChanges)
|
|
return mapToSelf(VM, MD);
|
|
|
|
// Require resolved nodes whenever metadata might be remapped.
|
|
assert(Node->isResolved() && "Unexpected unresolved node");
|
|
|
|
if (Node->isDistinct())
|
|
return mapDistinctNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
|
|
return mapUniquedNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
}
|
|
|
|
Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
SmallVector<MDNode *, 8> Cycles;
|
|
Metadata *NewMD =
|
|
MapMetadataImpl(MD, Cycles, VM, Flags, TypeMapper, Materializer);
|
|
|
|
// Resolve cycles underneath MD.
|
|
if (NewMD && NewMD != MD) {
|
|
if (auto *N = dyn_cast<MDNode>(NewMD))
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
|
|
for (MDNode *N : Cycles)
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
} else {
|
|
// Shouldn't get unresolved cycles if nothing was remapped.
|
|
assert(Cycles.empty() && "Expected no unresolved cycles");
|
|
}
|
|
|
|
return NewMD;
|
|
}
|
|
|
|
MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
|
|
TypeMapper, Materializer));
|
|
}
|
|
|
|
/// RemapInstruction - Convert the instruction operands from referencing the
|
|
/// current values into those specified by VMap.
|
|
///
|
|
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer){
|
|
// Remap operands.
|
|
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
|
|
Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
*op = V;
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced value not in value map!");
|
|
}
|
|
|
|
// Remap phi nodes' incoming blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
PN->setIncomingBlock(i, cast<BasicBlock>(V));
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced block not in value map!");
|
|
}
|
|
}
|
|
|
|
// Remap attached metadata.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I->getAllMetadata(MDs);
|
|
for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
|
|
MI = MDs.begin(),
|
|
ME = MDs.end();
|
|
MI != ME; ++MI) {
|
|
MDNode *Old = MI->second;
|
|
MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
|
|
if (New != Old)
|
|
I->setMetadata(MI->first, New);
|
|
}
|
|
|
|
if (!TypeMapper)
|
|
return;
|
|
|
|
// If the instruction's type is being remapped, do so now.
|
|
if (auto CS = CallSite(I)) {
|
|
SmallVector<Type *, 3> Tys;
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
Tys.reserve(FTy->getNumParams());
|
|
for (Type *Ty : FTy->params())
|
|
Tys.push_back(TypeMapper->remapType(Ty));
|
|
CS.mutateFunctionType(FunctionType::get(
|
|
TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
|
|
} else
|
|
I->mutateType(TypeMapper->remapType(I->getType()));
|
|
}
|