mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
ae9f3a3b7c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47367 91177308-0d34-0410-b5e6-96231b3b80d8
963 lines
36 KiB
C++
963 lines
36 KiB
C++
//===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the target-independent Mach-O writer. This file writes
|
|
// out the Mach-O file in the following order:
|
|
//
|
|
// #1 FatHeader (universal-only)
|
|
// #2 FatArch (universal-only, 1 per universal arch)
|
|
// Per arch:
|
|
// #3 Header
|
|
// #4 Load Commands
|
|
// #5 Sections
|
|
// #6 Relocations
|
|
// #7 Symbols
|
|
// #8 Strings
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MachOWriter.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/CodeGen/FileWriters.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/Target/TargetAsmInfo.h"
|
|
#include "llvm/Target/TargetJITInfo.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/OutputBuffer.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
using namespace llvm;
|
|
|
|
/// AddMachOWriter - Concrete function to add the Mach-O writer to the function
|
|
/// pass manager.
|
|
MachineCodeEmitter *llvm::AddMachOWriter(FunctionPassManager &FPM,
|
|
std::ostream &O,
|
|
TargetMachine &TM) {
|
|
MachOWriter *MOW = new MachOWriter(O, TM);
|
|
FPM.add(MOW);
|
|
return &MOW->getMachineCodeEmitter();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachOCodeEmitter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
/// MachOCodeEmitter - This class is used by the MachOWriter to emit the code
|
|
/// for functions to the Mach-O file.
|
|
class MachOCodeEmitter : public MachineCodeEmitter {
|
|
MachOWriter &MOW;
|
|
|
|
/// Target machine description.
|
|
TargetMachine &TM;
|
|
|
|
/// is64Bit/isLittleEndian - This information is inferred from the target
|
|
/// machine directly, indicating what header values and flags to set.
|
|
bool is64Bit, isLittleEndian;
|
|
|
|
/// Relocations - These are the relocations that the function needs, as
|
|
/// emitted.
|
|
std::vector<MachineRelocation> Relocations;
|
|
|
|
/// CPLocations - This is a map of constant pool indices to offsets from the
|
|
/// start of the section for that constant pool index.
|
|
std::vector<intptr_t> CPLocations;
|
|
|
|
/// CPSections - This is a map of constant pool indices to the MachOSection
|
|
/// containing the constant pool entry for that index.
|
|
std::vector<unsigned> CPSections;
|
|
|
|
/// JTLocations - This is a map of jump table indices to offsets from the
|
|
/// start of the section for that jump table index.
|
|
std::vector<intptr_t> JTLocations;
|
|
|
|
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
|
|
/// It is filled in by the StartMachineBasicBlock callback and queried by
|
|
/// the getMachineBasicBlockAddress callback.
|
|
std::vector<intptr_t> MBBLocations;
|
|
|
|
public:
|
|
MachOCodeEmitter(MachOWriter &mow) : MOW(mow), TM(MOW.TM) {
|
|
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
|
|
isLittleEndian = TM.getTargetData()->isLittleEndian();
|
|
}
|
|
|
|
virtual void startFunction(MachineFunction &MF);
|
|
virtual bool finishFunction(MachineFunction &MF);
|
|
|
|
virtual void addRelocation(const MachineRelocation &MR) {
|
|
Relocations.push_back(MR);
|
|
}
|
|
|
|
void emitConstantPool(MachineConstantPool *MCP);
|
|
void emitJumpTables(MachineJumpTableInfo *MJTI);
|
|
|
|
virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const {
|
|
assert(CPLocations.size() > Index && "CP not emitted!");
|
|
return CPLocations[Index];
|
|
}
|
|
virtual intptr_t getJumpTableEntryAddress(unsigned Index) const {
|
|
assert(JTLocations.size() > Index && "JT not emitted!");
|
|
return JTLocations[Index];
|
|
}
|
|
|
|
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
|
|
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
|
|
MBBLocations.resize((MBB->getNumber()+1)*2);
|
|
MBBLocations[MBB->getNumber()] = getCurrentPCOffset();
|
|
}
|
|
|
|
virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
|
|
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
|
|
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
|
|
return MBBLocations[MBB->getNumber()];
|
|
}
|
|
|
|
virtual intptr_t getLabelAddress(uint64_t Label) const {
|
|
assert(0 && "get Label not implemented");
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
virtual void emitLabel(uint64_t LabelID) {
|
|
assert(0 && "emit Label not implemented");
|
|
abort();
|
|
}
|
|
|
|
|
|
virtual void setModuleInfo(llvm::MachineModuleInfo* MMI) { }
|
|
|
|
/// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
|
|
virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) {
|
|
assert(0 && "JIT specific function called!");
|
|
abort();
|
|
}
|
|
virtual void *finishFunctionStub(const Function *F) {
|
|
assert(0 && "JIT specific function called!");
|
|
abort();
|
|
return 0;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// startFunction - This callback is invoked when a new machine function is
|
|
/// about to be emitted.
|
|
void MachOCodeEmitter::startFunction(MachineFunction &MF) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
const Function *F = MF.getFunction();
|
|
|
|
// Align the output buffer to the appropriate alignment, power of 2.
|
|
unsigned FnAlign = F->getAlignment();
|
|
unsigned TDAlign = TD->getPrefTypeAlignment(F->getType());
|
|
unsigned Align = Log2_32(std::max(FnAlign, TDAlign));
|
|
assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
|
|
|
|
// Get the Mach-O Section that this function belongs in.
|
|
MachOWriter::MachOSection *MOS = MOW.getTextSection();
|
|
|
|
// FIXME: better memory management
|
|
MOS->SectionData.reserve(4096);
|
|
BufferBegin = &MOS->SectionData[0];
|
|
BufferEnd = BufferBegin + MOS->SectionData.capacity();
|
|
|
|
// Upgrade the section alignment if required.
|
|
if (MOS->align < Align) MOS->align = Align;
|
|
|
|
// Round the size up to the correct alignment for starting the new function.
|
|
if ((MOS->size & ((1 << Align) - 1)) != 0) {
|
|
MOS->size += (1 << Align);
|
|
MOS->size &= ~((1 << Align) - 1);
|
|
}
|
|
|
|
// FIXME: Using MOS->size directly here instead of calculating it from the
|
|
// output buffer size (impossible because the code emitter deals only in raw
|
|
// bytes) forces us to manually synchronize size and write padding zero bytes
|
|
// to the output buffer for all non-text sections. For text sections, we do
|
|
// not synchonize the output buffer, and we just blow up if anyone tries to
|
|
// write non-code to it. An assert should probably be added to
|
|
// AddSymbolToSection to prevent calling it on the text section.
|
|
CurBufferPtr = BufferBegin + MOS->size;
|
|
|
|
// Clear per-function data structures.
|
|
CPLocations.clear();
|
|
CPSections.clear();
|
|
JTLocations.clear();
|
|
MBBLocations.clear();
|
|
}
|
|
|
|
/// finishFunction - This callback is invoked after the function is completely
|
|
/// finished.
|
|
bool MachOCodeEmitter::finishFunction(MachineFunction &MF) {
|
|
// Get the Mach-O Section that this function belongs in.
|
|
MachOWriter::MachOSection *MOS = MOW.getTextSection();
|
|
|
|
// Get a symbol for the function to add to the symbol table
|
|
// FIXME: it seems like we should call something like AddSymbolToSection
|
|
// in startFunction rather than changing the section size and symbol n_value
|
|
// here.
|
|
const GlobalValue *FuncV = MF.getFunction();
|
|
MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index, TM);
|
|
FnSym.n_value = MOS->size;
|
|
MOS->size = CurBufferPtr - BufferBegin;
|
|
|
|
// Emit constant pool to appropriate section(s)
|
|
emitConstantPool(MF.getConstantPool());
|
|
|
|
// Emit jump tables to appropriate section
|
|
emitJumpTables(MF.getJumpTableInfo());
|
|
|
|
// If we have emitted any relocations to function-specific objects such as
|
|
// basic blocks, constant pools entries, or jump tables, record their
|
|
// addresses now so that we can rewrite them with the correct addresses
|
|
// later.
|
|
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
|
|
MachineRelocation &MR = Relocations[i];
|
|
intptr_t Addr;
|
|
|
|
if (MR.isBasicBlock()) {
|
|
Addr = getMachineBasicBlockAddress(MR.getBasicBlock());
|
|
MR.setConstantVal(MOS->Index);
|
|
MR.setResultPointer((void*)Addr);
|
|
} else if (MR.isJumpTableIndex()) {
|
|
Addr = getJumpTableEntryAddress(MR.getJumpTableIndex());
|
|
MR.setConstantVal(MOW.getJumpTableSection()->Index);
|
|
MR.setResultPointer((void*)Addr);
|
|
} else if (MR.isConstantPoolIndex()) {
|
|
Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex());
|
|
MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]);
|
|
MR.setResultPointer((void*)Addr);
|
|
} else if (MR.isGlobalValue()) {
|
|
// FIXME: This should be a set or something that uniques
|
|
MOW.PendingGlobals.push_back(MR.getGlobalValue());
|
|
} else {
|
|
assert(0 && "Unhandled relocation type");
|
|
}
|
|
MOS->Relocations.push_back(MR);
|
|
}
|
|
Relocations.clear();
|
|
|
|
// Finally, add it to the symtab.
|
|
MOW.SymbolTable.push_back(FnSym);
|
|
return false;
|
|
}
|
|
|
|
/// emitConstantPool - For each constant pool entry, figure out which section
|
|
/// the constant should live in, allocate space for it, and emit it to the
|
|
/// Section data buffer.
|
|
void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) {
|
|
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
|
|
if (CP.empty()) return;
|
|
|
|
// FIXME: handle PIC codegen
|
|
bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
|
|
assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!");
|
|
|
|
// Although there is no strict necessity that I am aware of, we will do what
|
|
// gcc for OS X does and put each constant pool entry in a section of constant
|
|
// objects of a certain size. That means that float constants go in the
|
|
// literal4 section, and double objects go in literal8, etc.
|
|
//
|
|
// FIXME: revisit this decision if we ever do the "stick everything into one
|
|
// "giant object for PIC" optimization.
|
|
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
|
|
const Type *Ty = CP[i].getType();
|
|
unsigned Size = TM.getTargetData()->getABITypeSize(Ty);
|
|
|
|
MachOWriter::MachOSection *Sec = MOW.getConstSection(CP[i].Val.ConstVal);
|
|
OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
|
|
|
|
CPLocations.push_back(Sec->SectionData.size());
|
|
CPSections.push_back(Sec->Index);
|
|
|
|
// FIXME: remove when we have unified size + output buffer
|
|
Sec->size += Size;
|
|
|
|
// Allocate space in the section for the global.
|
|
// FIXME: need alignment?
|
|
// FIXME: share between here and AddSymbolToSection?
|
|
for (unsigned j = 0; j < Size; ++j)
|
|
SecDataOut.outbyte(0);
|
|
|
|
MOW.InitMem(CP[i].Val.ConstVal, &Sec->SectionData[0], CPLocations[i],
|
|
TM.getTargetData(), Sec->Relocations);
|
|
}
|
|
}
|
|
|
|
/// emitJumpTables - Emit all the jump tables for a given jump table info
|
|
/// record to the appropriate section.
|
|
void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) {
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return;
|
|
|
|
// FIXME: handle PIC codegen
|
|
bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
|
|
assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!");
|
|
|
|
MachOWriter::MachOSection *Sec = MOW.getJumpTableSection();
|
|
unsigned TextSecIndex = MOW.getTextSection()->Index;
|
|
OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
|
|
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
|
|
// For each jump table, record its offset from the start of the section,
|
|
// reserve space for the relocations to the MBBs, and add the relocations.
|
|
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
|
|
JTLocations.push_back(Sec->SectionData.size());
|
|
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
|
|
MachineRelocation MR(MOW.GetJTRelocation(Sec->SectionData.size(),
|
|
MBBs[mi]));
|
|
MR.setResultPointer((void *)JTLocations[i]);
|
|
MR.setConstantVal(TextSecIndex);
|
|
Sec->Relocations.push_back(MR);
|
|
SecDataOut.outaddr(0);
|
|
}
|
|
}
|
|
// FIXME: remove when we have unified size + output buffer
|
|
Sec->size = Sec->SectionData.size();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachOWriter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char MachOWriter::ID = 0;
|
|
MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm)
|
|
: MachineFunctionPass((intptr_t)&ID), O(o), TM(tm) {
|
|
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
|
|
isLittleEndian = TM.getTargetData()->isLittleEndian();
|
|
|
|
// Create the machine code emitter object for this target.
|
|
MCE = new MachOCodeEmitter(*this);
|
|
}
|
|
|
|
MachOWriter::~MachOWriter() {
|
|
delete MCE;
|
|
}
|
|
|
|
void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
|
|
const Type *Ty = GV->getType()->getElementType();
|
|
unsigned Size = TM.getTargetData()->getABITypeSize(Ty);
|
|
unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);
|
|
|
|
// Reserve space in the .bss section for this symbol while maintaining the
|
|
// desired section alignment, which must be at least as much as required by
|
|
// this symbol.
|
|
OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
|
|
|
|
if (Align) {
|
|
uint64_t OrigSize = Sec->size;
|
|
Align = Log2_32(Align);
|
|
Sec->align = std::max(unsigned(Sec->align), Align);
|
|
Sec->size = (Sec->size + Align - 1) & ~(Align-1);
|
|
|
|
// Add alignment padding to buffer as well.
|
|
// FIXME: remove when we have unified size + output buffer
|
|
unsigned AlignedSize = Sec->size - OrigSize;
|
|
for (unsigned i = 0; i < AlignedSize; ++i)
|
|
SecDataOut.outbyte(0);
|
|
}
|
|
// Globals without external linkage apparently do not go in the symbol table.
|
|
if (GV->getLinkage() != GlobalValue::InternalLinkage) {
|
|
MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TM);
|
|
Sym.n_value = Sec->size;
|
|
SymbolTable.push_back(Sym);
|
|
}
|
|
|
|
// Record the offset of the symbol, and then allocate space for it.
|
|
// FIXME: remove when we have unified size + output buffer
|
|
Sec->size += Size;
|
|
|
|
// Now that we know what section the GlovalVariable is going to be emitted
|
|
// into, update our mappings.
|
|
// FIXME: We may also need to update this when outputting non-GlobalVariable
|
|
// GlobalValues such as functions.
|
|
GVSection[GV] = Sec;
|
|
GVOffset[GV] = Sec->SectionData.size();
|
|
|
|
// Allocate space in the section for the global.
|
|
for (unsigned i = 0; i < Size; ++i)
|
|
SecDataOut.outbyte(0);
|
|
}
|
|
|
|
void MachOWriter::EmitGlobal(GlobalVariable *GV) {
|
|
const Type *Ty = GV->getType()->getElementType();
|
|
unsigned Size = TM.getTargetData()->getABITypeSize(Ty);
|
|
bool NoInit = !GV->hasInitializer();
|
|
|
|
// If this global has a zero initializer, it is part of the .bss or common
|
|
// section.
|
|
if (NoInit || GV->getInitializer()->isNullValue()) {
|
|
// If this global is part of the common block, add it now. Variables are
|
|
// part of the common block if they are zero initialized and allowed to be
|
|
// merged with other symbols.
|
|
if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) {
|
|
MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), MachOSym::NO_SECT,TM);
|
|
// For undefined (N_UNDF) external (N_EXT) types, n_value is the size in
|
|
// bytes of the symbol.
|
|
ExtOrCommonSym.n_value = Size;
|
|
SymbolTable.push_back(ExtOrCommonSym);
|
|
// Remember that we've seen this symbol
|
|
GVOffset[GV] = Size;
|
|
return;
|
|
}
|
|
// Otherwise, this symbol is part of the .bss section.
|
|
MachOSection *BSS = getBSSSection();
|
|
AddSymbolToSection(BSS, GV);
|
|
return;
|
|
}
|
|
|
|
// Scalar read-only data goes in a literal section if the scalar is 4, 8, or
|
|
// 16 bytes, or a cstring. Other read only data goes into a regular const
|
|
// section. Read-write data goes in the data section.
|
|
MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) :
|
|
getDataSection();
|
|
AddSymbolToSection(Sec, GV);
|
|
InitMem(GV->getInitializer(), &Sec->SectionData[0], GVOffset[GV],
|
|
TM.getTargetData(), Sec->Relocations);
|
|
}
|
|
|
|
|
|
bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
|
|
// Nothing to do here, this is all done through the MCE object.
|
|
return false;
|
|
}
|
|
|
|
bool MachOWriter::doInitialization(Module &M) {
|
|
// Set the magic value, now that we know the pointer size and endianness
|
|
Header.setMagic(isLittleEndian, is64Bit);
|
|
|
|
// Set the file type
|
|
// FIXME: this only works for object files, we do not support the creation
|
|
// of dynamic libraries or executables at this time.
|
|
Header.filetype = MachOHeader::MH_OBJECT;
|
|
|
|
Mang = new Mangler(M);
|
|
return false;
|
|
}
|
|
|
|
/// doFinalization - Now that the module has been completely processed, emit
|
|
/// the Mach-O file to 'O'.
|
|
bool MachOWriter::doFinalization(Module &M) {
|
|
// FIXME: we don't handle debug info yet, we should probably do that.
|
|
|
|
// Okay, the.text section has been completed, build the .data, .bss, and
|
|
// "common" sections next.
|
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I)
|
|
EmitGlobal(I);
|
|
|
|
// Emit the header and load commands.
|
|
EmitHeaderAndLoadCommands();
|
|
|
|
// Emit the various sections and their relocation info.
|
|
EmitSections();
|
|
|
|
// Write the symbol table and the string table to the end of the file.
|
|
O.write((char*)&SymT[0], SymT.size());
|
|
O.write((char*)&StrT[0], StrT.size());
|
|
|
|
// We are done with the abstract symbols.
|
|
SectionList.clear();
|
|
SymbolTable.clear();
|
|
DynamicSymbolTable.clear();
|
|
|
|
// Release the name mangler object.
|
|
delete Mang; Mang = 0;
|
|
return false;
|
|
}
|
|
|
|
void MachOWriter::EmitHeaderAndLoadCommands() {
|
|
// Step #0: Fill in the segment load command size, since we need it to figure
|
|
// out the rest of the header fields
|
|
MachOSegment SEG("", is64Bit);
|
|
SEG.nsects = SectionList.size();
|
|
SEG.cmdsize = SEG.cmdSize(is64Bit) +
|
|
SEG.nsects * SectionList[0]->cmdSize(is64Bit);
|
|
|
|
// Step #1: calculate the number of load commands. We always have at least
|
|
// one, for the LC_SEGMENT load command, plus two for the normal
|
|
// and dynamic symbol tables, if there are any symbols.
|
|
Header.ncmds = SymbolTable.empty() ? 1 : 3;
|
|
|
|
// Step #2: calculate the size of the load commands
|
|
Header.sizeofcmds = SEG.cmdsize;
|
|
if (!SymbolTable.empty())
|
|
Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
|
|
|
|
// Step #3: write the header to the file
|
|
// Local alias to shortenify coming code.
|
|
DataBuffer &FH = Header.HeaderData;
|
|
OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
|
|
|
|
FHOut.outword(Header.magic);
|
|
FHOut.outword(TM.getMachOWriterInfo()->getCPUType());
|
|
FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType());
|
|
FHOut.outword(Header.filetype);
|
|
FHOut.outword(Header.ncmds);
|
|
FHOut.outword(Header.sizeofcmds);
|
|
FHOut.outword(Header.flags);
|
|
if (is64Bit)
|
|
FHOut.outword(Header.reserved);
|
|
|
|
// Step #4: Finish filling in the segment load command and write it out
|
|
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
|
|
E = SectionList.end(); I != E; ++I)
|
|
SEG.filesize += (*I)->size;
|
|
|
|
SEG.vmsize = SEG.filesize;
|
|
SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
|
|
|
|
FHOut.outword(SEG.cmd);
|
|
FHOut.outword(SEG.cmdsize);
|
|
FHOut.outstring(SEG.segname, 16);
|
|
FHOut.outaddr(SEG.vmaddr);
|
|
FHOut.outaddr(SEG.vmsize);
|
|
FHOut.outaddr(SEG.fileoff);
|
|
FHOut.outaddr(SEG.filesize);
|
|
FHOut.outword(SEG.maxprot);
|
|
FHOut.outword(SEG.initprot);
|
|
FHOut.outword(SEG.nsects);
|
|
FHOut.outword(SEG.flags);
|
|
|
|
// Step #5: Finish filling in the fields of the MachOSections
|
|
uint64_t currentAddr = 0;
|
|
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
|
|
E = SectionList.end(); I != E; ++I) {
|
|
MachOSection *MOS = *I;
|
|
MOS->addr = currentAddr;
|
|
MOS->offset = currentAddr + SEG.fileoff;
|
|
|
|
// FIXME: do we need to do something with alignment here?
|
|
currentAddr += MOS->size;
|
|
}
|
|
|
|
// Step #6: Emit the symbol table to temporary buffers, so that we know the
|
|
// size of the string table when we write the next load command. This also
|
|
// sorts and assigns indices to each of the symbols, which is necessary for
|
|
// emitting relocations to externally-defined objects.
|
|
BufferSymbolAndStringTable();
|
|
|
|
// Step #7: Calculate the number of relocations for each section and write out
|
|
// the section commands for each section
|
|
currentAddr += SEG.fileoff;
|
|
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
|
|
E = SectionList.end(); I != E; ++I) {
|
|
MachOSection *MOS = *I;
|
|
// Convert the relocations to target-specific relocations, and fill in the
|
|
// relocation offset for this section.
|
|
CalculateRelocations(*MOS);
|
|
MOS->reloff = MOS->nreloc ? currentAddr : 0;
|
|
currentAddr += MOS->nreloc * 8;
|
|
|
|
// write the finalized section command to the output buffer
|
|
FHOut.outstring(MOS->sectname, 16);
|
|
FHOut.outstring(MOS->segname, 16);
|
|
FHOut.outaddr(MOS->addr);
|
|
FHOut.outaddr(MOS->size);
|
|
FHOut.outword(MOS->offset);
|
|
FHOut.outword(MOS->align);
|
|
FHOut.outword(MOS->reloff);
|
|
FHOut.outword(MOS->nreloc);
|
|
FHOut.outword(MOS->flags);
|
|
FHOut.outword(MOS->reserved1);
|
|
FHOut.outword(MOS->reserved2);
|
|
if (is64Bit)
|
|
FHOut.outword(MOS->reserved3);
|
|
}
|
|
|
|
// Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands
|
|
SymTab.symoff = currentAddr;
|
|
SymTab.nsyms = SymbolTable.size();
|
|
SymTab.stroff = SymTab.symoff + SymT.size();
|
|
SymTab.strsize = StrT.size();
|
|
FHOut.outword(SymTab.cmd);
|
|
FHOut.outword(SymTab.cmdsize);
|
|
FHOut.outword(SymTab.symoff);
|
|
FHOut.outword(SymTab.nsyms);
|
|
FHOut.outword(SymTab.stroff);
|
|
FHOut.outword(SymTab.strsize);
|
|
|
|
// FIXME: set DySymTab fields appropriately
|
|
// We should probably just update these in BufferSymbolAndStringTable since
|
|
// thats where we're partitioning up the different kinds of symbols.
|
|
FHOut.outword(DySymTab.cmd);
|
|
FHOut.outword(DySymTab.cmdsize);
|
|
FHOut.outword(DySymTab.ilocalsym);
|
|
FHOut.outword(DySymTab.nlocalsym);
|
|
FHOut.outword(DySymTab.iextdefsym);
|
|
FHOut.outword(DySymTab.nextdefsym);
|
|
FHOut.outword(DySymTab.iundefsym);
|
|
FHOut.outword(DySymTab.nundefsym);
|
|
FHOut.outword(DySymTab.tocoff);
|
|
FHOut.outword(DySymTab.ntoc);
|
|
FHOut.outword(DySymTab.modtaboff);
|
|
FHOut.outword(DySymTab.nmodtab);
|
|
FHOut.outword(DySymTab.extrefsymoff);
|
|
FHOut.outword(DySymTab.nextrefsyms);
|
|
FHOut.outword(DySymTab.indirectsymoff);
|
|
FHOut.outword(DySymTab.nindirectsyms);
|
|
FHOut.outword(DySymTab.extreloff);
|
|
FHOut.outword(DySymTab.nextrel);
|
|
FHOut.outword(DySymTab.locreloff);
|
|
FHOut.outword(DySymTab.nlocrel);
|
|
|
|
O.write((char*)&FH[0], FH.size());
|
|
}
|
|
|
|
/// EmitSections - Now that we have constructed the file header and load
|
|
/// commands, emit the data for each section to the file.
|
|
void MachOWriter::EmitSections() {
|
|
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
|
|
E = SectionList.end(); I != E; ++I)
|
|
// Emit the contents of each section
|
|
O.write((char*)&(*I)->SectionData[0], (*I)->size);
|
|
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
|
|
E = SectionList.end(); I != E; ++I)
|
|
// Emit the relocation entry data for each section.
|
|
O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
|
|
}
|
|
|
|
/// PartitionByLocal - Simple boolean predicate that returns true if Sym is
|
|
/// a local symbol rather than an external symbol.
|
|
bool MachOWriter::PartitionByLocal(const MachOSym &Sym) {
|
|
return (Sym.n_type & (MachOSym::N_EXT | MachOSym::N_PEXT)) == 0;
|
|
}
|
|
|
|
/// PartitionByDefined - Simple boolean predicate that returns true if Sym is
|
|
/// defined in this module.
|
|
bool MachOWriter::PartitionByDefined(const MachOSym &Sym) {
|
|
// FIXME: Do N_ABS or N_INDR count as defined?
|
|
return (Sym.n_type & MachOSym::N_SECT) == MachOSym::N_SECT;
|
|
}
|
|
|
|
/// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them
|
|
/// each a string table index so that they appear in the correct order in the
|
|
/// output file.
|
|
void MachOWriter::BufferSymbolAndStringTable() {
|
|
// The order of the symbol table is:
|
|
// 1. local symbols
|
|
// 2. defined external symbols (sorted by name)
|
|
// 3. undefined external symbols (sorted by name)
|
|
|
|
// Before sorting the symbols, check the PendingGlobals for any undefined
|
|
// globals that need to be put in the symbol table.
|
|
for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(),
|
|
E = PendingGlobals.end(); I != E; ++I) {
|
|
if (GVOffset[*I] == 0 && GVSection[*I] == 0) {
|
|
MachOSym UndfSym(*I, Mang->getValueName(*I), MachOSym::NO_SECT, TM);
|
|
SymbolTable.push_back(UndfSym);
|
|
GVOffset[*I] = -1;
|
|
}
|
|
}
|
|
|
|
// Sort the symbols by name, so that when we partition the symbols by scope
|
|
// of definition, we won't have to sort by name within each partition.
|
|
std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSymCmp());
|
|
|
|
// Parition the symbol table entries so that all local symbols come before
|
|
// all symbols with external linkage. { 1 | 2 3 }
|
|
std::partition(SymbolTable.begin(), SymbolTable.end(), PartitionByLocal);
|
|
|
|
// Advance iterator to beginning of external symbols and partition so that
|
|
// all external symbols defined in this module come before all external
|
|
// symbols defined elsewhere. { 1 | 2 | 3 }
|
|
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
|
|
E = SymbolTable.end(); I != E; ++I) {
|
|
if (!PartitionByLocal(*I)) {
|
|
std::partition(I, E, PartitionByDefined);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calculate the starting index for each of the local, extern defined, and
|
|
// undefined symbols, as well as the number of each to put in the LC_DYSYMTAB
|
|
// load command.
|
|
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
|
|
E = SymbolTable.end(); I != E; ++I) {
|
|
if (PartitionByLocal(*I)) {
|
|
++DySymTab.nlocalsym;
|
|
++DySymTab.iextdefsym;
|
|
++DySymTab.iundefsym;
|
|
} else if (PartitionByDefined(*I)) {
|
|
++DySymTab.nextdefsym;
|
|
++DySymTab.iundefsym;
|
|
} else {
|
|
++DySymTab.nundefsym;
|
|
}
|
|
}
|
|
|
|
// Write out a leading zero byte when emitting string table, for n_strx == 0
|
|
// which means an empty string.
|
|
OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian);
|
|
StrTOut.outbyte(0);
|
|
|
|
// The order of the string table is:
|
|
// 1. strings for external symbols
|
|
// 2. strings for local symbols
|
|
// Since this is the opposite order from the symbol table, which we have just
|
|
// sorted, we can walk the symbol table backwards to output the string table.
|
|
for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(),
|
|
E = SymbolTable.rend(); I != E; ++I) {
|
|
if (I->GVName == "") {
|
|
I->n_strx = 0;
|
|
} else {
|
|
I->n_strx = StrT.size();
|
|
StrTOut.outstring(I->GVName, I->GVName.length()+1);
|
|
}
|
|
}
|
|
|
|
OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian);
|
|
|
|
unsigned index = 0;
|
|
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
|
|
E = SymbolTable.end(); I != E; ++I, ++index) {
|
|
// Add the section base address to the section offset in the n_value field
|
|
// to calculate the full address.
|
|
// FIXME: handle symbols where the n_value field is not the address
|
|
GlobalValue *GV = const_cast<GlobalValue*>(I->GV);
|
|
if (GV && GVSection[GV])
|
|
I->n_value += GVSection[GV]->addr;
|
|
if (GV && (GVOffset[GV] == -1))
|
|
GVOffset[GV] = index;
|
|
|
|
// Emit nlist to buffer
|
|
SymTOut.outword(I->n_strx);
|
|
SymTOut.outbyte(I->n_type);
|
|
SymTOut.outbyte(I->n_sect);
|
|
SymTOut.outhalf(I->n_desc);
|
|
SymTOut.outaddr(I->n_value);
|
|
}
|
|
}
|
|
|
|
/// CalculateRelocations - For each MachineRelocation in the current section,
|
|
/// calculate the index of the section containing the object to be relocated,
|
|
/// and the offset into that section. From this information, create the
|
|
/// appropriate target-specific MachORelocation type and add buffer it to be
|
|
/// written out after we are finished writing out sections.
|
|
void MachOWriter::CalculateRelocations(MachOSection &MOS) {
|
|
for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) {
|
|
MachineRelocation &MR = MOS.Relocations[i];
|
|
unsigned TargetSection = MR.getConstantVal();
|
|
unsigned TargetAddr = 0;
|
|
unsigned TargetIndex = 0;
|
|
|
|
// This is a scattered relocation entry if it points to a global value with
|
|
// a non-zero offset.
|
|
bool Scattered = false;
|
|
bool Extern = false;
|
|
|
|
// Since we may not have seen the GlobalValue we were interested in yet at
|
|
// the time we emitted the relocation for it, fix it up now so that it
|
|
// points to the offset into the correct section.
|
|
if (MR.isGlobalValue()) {
|
|
GlobalValue *GV = MR.getGlobalValue();
|
|
MachOSection *MOSPtr = GVSection[GV];
|
|
intptr_t Offset = GVOffset[GV];
|
|
|
|
// If we have never seen the global before, it must be to a symbol
|
|
// defined in another module (N_UNDF).
|
|
if (!MOSPtr) {
|
|
// FIXME: need to append stub suffix
|
|
Extern = true;
|
|
TargetAddr = 0;
|
|
TargetIndex = GVOffset[GV];
|
|
} else {
|
|
Scattered = TargetSection != 0;
|
|
TargetSection = MOSPtr->Index;
|
|
}
|
|
MR.setResultPointer((void*)Offset);
|
|
}
|
|
|
|
// If the symbol is locally defined, pass in the address of the section and
|
|
// the section index to the code which will generate the target relocation.
|
|
if (!Extern) {
|
|
MachOSection &To = *SectionList[TargetSection - 1];
|
|
TargetAddr = To.addr;
|
|
TargetIndex = To.Index;
|
|
}
|
|
|
|
OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian);
|
|
OutputBuffer SecOut(MOS.SectionData, is64Bit, isLittleEndian);
|
|
|
|
MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex,
|
|
RelocOut, SecOut, Scattered, Extern);
|
|
}
|
|
}
|
|
|
|
// InitMem - Write the value of a Constant to the specified memory location,
|
|
// converting it into bytes and relocations.
|
|
void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
|
|
const TargetData *TD,
|
|
std::vector<MachineRelocation> &MRs) {
|
|
typedef std::pair<const Constant*, intptr_t> CPair;
|
|
std::vector<CPair> WorkList;
|
|
|
|
WorkList.push_back(CPair(C,(intptr_t)Addr + Offset));
|
|
|
|
intptr_t ScatteredOffset = 0;
|
|
|
|
while (!WorkList.empty()) {
|
|
const Constant *PC = WorkList.back().first;
|
|
intptr_t PA = WorkList.back().second;
|
|
WorkList.pop_back();
|
|
|
|
if (isa<UndefValue>(PC)) {
|
|
continue;
|
|
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) {
|
|
unsigned ElementSize =
|
|
TD->getABITypeSize(CP->getType()->getElementType());
|
|
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
|
|
WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize));
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) {
|
|
//
|
|
// FIXME: Handle ConstantExpression. See EE::getConstantValue()
|
|
//
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr: {
|
|
SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
|
|
ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(),
|
|
&Indices[0], Indices.size());
|
|
WorkList.push_back(CPair(CE->getOperand(0), PA));
|
|
break;
|
|
}
|
|
case Instruction::Add:
|
|
default:
|
|
cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
|
|
abort();
|
|
break;
|
|
}
|
|
} else if (PC->getType()->isFirstClassType()) {
|
|
unsigned char *ptr = (unsigned char *)PA;
|
|
switch (PC->getType()->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth();
|
|
uint64_t val = cast<ConstantInt>(PC)->getZExtValue();
|
|
if (NumBits <= 8)
|
|
ptr[0] = val;
|
|
else if (NumBits <= 16) {
|
|
if (TD->isBigEndian())
|
|
val = ByteSwap_16(val);
|
|
ptr[0] = val;
|
|
ptr[1] = val >> 8;
|
|
} else if (NumBits <= 32) {
|
|
if (TD->isBigEndian())
|
|
val = ByteSwap_32(val);
|
|
ptr[0] = val;
|
|
ptr[1] = val >> 8;
|
|
ptr[2] = val >> 16;
|
|
ptr[3] = val >> 24;
|
|
} else if (NumBits <= 64) {
|
|
if (TD->isBigEndian())
|
|
val = ByteSwap_64(val);
|
|
ptr[0] = val;
|
|
ptr[1] = val >> 8;
|
|
ptr[2] = val >> 16;
|
|
ptr[3] = val >> 24;
|
|
ptr[4] = val >> 32;
|
|
ptr[5] = val >> 40;
|
|
ptr[6] = val >> 48;
|
|
ptr[7] = val >> 56;
|
|
} else {
|
|
assert(0 && "Not implemented: bit widths > 64");
|
|
}
|
|
break;
|
|
}
|
|
case Type::FloatTyID: {
|
|
uint32_t val = cast<ConstantFP>(PC)->getValueAPF().convertToAPInt().
|
|
getZExtValue();
|
|
if (TD->isBigEndian())
|
|
val = ByteSwap_32(val);
|
|
ptr[0] = val;
|
|
ptr[1] = val >> 8;
|
|
ptr[2] = val >> 16;
|
|
ptr[3] = val >> 24;
|
|
break;
|
|
}
|
|
case Type::DoubleTyID: {
|
|
uint64_t val = cast<ConstantFP>(PC)->getValueAPF().convertToAPInt().
|
|
getZExtValue();
|
|
if (TD->isBigEndian())
|
|
val = ByteSwap_64(val);
|
|
ptr[0] = val;
|
|
ptr[1] = val >> 8;
|
|
ptr[2] = val >> 16;
|
|
ptr[3] = val >> 24;
|
|
ptr[4] = val >> 32;
|
|
ptr[5] = val >> 40;
|
|
ptr[6] = val >> 48;
|
|
ptr[7] = val >> 56;
|
|
break;
|
|
}
|
|
case Type::PointerTyID:
|
|
if (isa<ConstantPointerNull>(PC))
|
|
memset(ptr, 0, TD->getPointerSize());
|
|
else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) {
|
|
// FIXME: what about function stubs?
|
|
MRs.push_back(MachineRelocation::getGV(PA-(intptr_t)Addr,
|
|
MachineRelocation::VANILLA,
|
|
const_cast<GlobalValue*>(GV),
|
|
ScatteredOffset));
|
|
ScatteredOffset = 0;
|
|
} else
|
|
assert(0 && "Unknown constant pointer type!");
|
|
break;
|
|
default:
|
|
cerr << "ERROR: Constant unimp for type: " << *PC->getType() << "\n";
|
|
abort();
|
|
}
|
|
} else if (isa<ConstantAggregateZero>(PC)) {
|
|
memset((void*)PA, 0, (size_t)TD->getABITypeSize(PC->getType()));
|
|
} else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) {
|
|
unsigned ElementSize =
|
|
TD->getABITypeSize(CPA->getType()->getElementType());
|
|
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
|
|
WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize));
|
|
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) {
|
|
const StructLayout *SL =
|
|
TD->getStructLayout(cast<StructType>(CPS->getType()));
|
|
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
|
|
WorkList.push_back(CPair(CPS->getOperand(i),
|
|
PA+SL->getElementOffset(i)));
|
|
} else {
|
|
cerr << "Bad Type: " << *PC->getType() << "\n";
|
|
assert(0 && "Unknown constant type to initialize memory with!");
|
|
}
|
|
}
|
|
}
|
|
|
|
MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
|
|
TargetMachine &TM) :
|
|
GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect),
|
|
n_desc(0), n_value(0) {
|
|
|
|
const TargetAsmInfo *TAI = TM.getTargetAsmInfo();
|
|
|
|
switch (GV->getLinkage()) {
|
|
default:
|
|
assert(0 && "Unexpected linkage type!");
|
|
break;
|
|
case GlobalValue::WeakLinkage:
|
|
case GlobalValue::LinkOnceLinkage:
|
|
assert(!isa<Function>(gv) && "Unexpected linkage type for Function!");
|
|
case GlobalValue::ExternalLinkage:
|
|
GVName = TAI->getGlobalPrefix() + name;
|
|
n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT;
|
|
break;
|
|
case GlobalValue::InternalLinkage:
|
|
GVName = TAI->getGlobalPrefix() + name;
|
|
break;
|
|
}
|
|
}
|