llvm-6502/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
Misha Brukman 07d4516f92 Correctly handle calls to functions which are further away than 2**32 bits will
allow, i.e. make a sequence of instructions to enable an indirect call using
jump-and-link and 2 temporary registers (which we save and ultimately restore).

Warning: if the delay slot of a function call is used to do meaningful work and
not just a NOP, this behavior is incorrect. However, the Sparc backend does not
yet utilize the delay slots effectively, so it is not necessary to make an
overly complicated algorithm for something that's not used.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7178 91177308-0d34-0410-b5e6-96231b3b80d8
2003-07-15 19:09:43 +00:00

763 lines
29 KiB
C++

//===-- SparcV9CodeEmitter.cpp - --------===//
//
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
#include "Support/Statistic.h"
#include "Support/hash_set"
#include "SparcInternals.h"
#include "SparcV9CodeEmitter.h"
bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM,
MachineCodeEmitter &MCE) {
MachineCodeEmitter *M = &MCE;
DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE));
PM.add(new SparcV9CodeEmitter(*this, *M));
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
return false;
}
namespace {
class JITResolver {
SparcV9CodeEmitter &SparcV9;
MachineCodeEmitter &MCE;
// LazyCodeGenMap - Keep track of call sites for functions that are to be
// lazily resolved.
std::map<uint64_t, Function*> LazyCodeGenMap;
// LazyResolverMap - Keep track of the lazy resolver created for a
// particular function so that we can reuse them if necessary.
std::map<Function*, uint64_t> LazyResolverMap;
public:
JITResolver(SparcV9CodeEmitter &V9,
MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
uint64_t getLazyResolver(Function *F);
uint64_t addFunctionReference(uint64_t Address, Function *F);
// Utility functions for accessing data from static callback
uint64_t getCurrentPCValue() {
return MCE.getCurrentPCValue();
}
unsigned getBinaryCodeForInstr(MachineInstr &MI) {
return SparcV9.getBinaryCodeForInstr(MI);
}
inline uint64_t insertFarJumpAtAddr(int64_t Value, uint64_t Addr);
private:
uint64_t emitStubForFunction(Function *F);
static void CompilationCallback();
uint64_t resolveFunctionReference(uint64_t RetAddr);
};
JITResolver *TheJITResolver;
}
/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address. Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
LazyCodeGenMap[Address] = F;
return (intptr_t)&JITResolver::CompilationCallback;
}
uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
assert(I != LazyCodeGenMap.end() && "Not in map!");
Function *F = I->second;
LazyCodeGenMap.erase(I);
return MCE.forceCompilationOf(F);
}
uint64_t JITResolver::getLazyResolver(Function *F) {
std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
if (I != LazyResolverMap.end() && I->first == F) return I->second;
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
uint64_t Stub = emitStubForFunction(F);
LazyResolverMap.insert(I, std::make_pair(F, Stub));
return Stub;
}
uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) {
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
i7 = SparcIntRegClass::i7,
o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0;
//
// Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2
//
// stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp
MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
delete STX;
Addr += 4;
// stx %i2, [%sp + 2127] ;; save %i2 to the stack
STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
delete STX;
Addr += 4;
//
// Get address to branch into %i2, using %i1 as a temporary
//
// sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1
MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
delete SH;
Addr += 4;
// or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1
MachineInstr *OR = BuildMI(V9::ORi, 3)
.addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
delete OR;
Addr += 4;
// sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word
MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SL);
delete SL;
Addr += 4;
// sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg
SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
delete SH;
Addr += 4;
// or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2
OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
delete OR;
Addr += 4;
// or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2
OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
delete OR;
Addr += 4;
// ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72
MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
delete LDX;
Addr += 4;
// jmpl %i2, %g0, %g0 ;; indirect branch on %i2
MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*J);
delete J;
Addr += 4;
// ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80
LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
delete LDX;
Addr += 4;
return Addr;
}
void JITResolver::CompilationCallback() {
uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0);
int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom);
DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n");
// Rewrite the call target... so that we don't fault every time we execute
// the call.
#if 0
int64_t RealCallTarget = (int64_t)
((NewVal - TheJITResolver->getCurrentPCValue()) >> 4);
if (RealCallTarget >= (1<<22) || RealCallTarget <= -(1<<22)) {
std::cerr << "Address out of bounds for 22bit BA: " << RealCallTarget<<"\n";
abort();
}
#endif
//uint64_t CurrPC = TheJITResolver->getCurrentPCValue();
// we will insert 9 instructions before we do the actual jump
//int64_t NewTarget = (NewVal - 9*4 - InstAddr) >> 2;
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6,
o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0;
// Subtract 4 to overwrite the 'save' that's there now
uint64_t InstAddr = CameFrom-4;
InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
// CODE SHOULD NEVER GO PAST THIS LOAD!! The real function should return to
// the original caller, not here!!
// FIXME: add call 0 to make sure?!?
// =============== THE REAL STUB ENDS HERE =========================
// What follows below is one-time restore code, because this callback may be
// changing registers in unpredictible ways. However, since it is executed
// only once per function (after the function is resolved, the callback is no
// longer in the path), this has to be done only once.
//
// Thus, it is after the regular stub code. The call back returns to THIS
// point, but every other call to the target function will execute the code
// above. Hence, this code is one-time use.
uint64_t OneTimeRestore = InstAddr;
// restore %g0, 0, %g0
//MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0)
// .addMReg(g0, MOTy::Def);
//*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*R);
//delete R;
// FIXME: BuildMI() above crashes. Encode the instruction directly.
// restore %g0, 0, %g0
*((unsigned*)(intptr_t)InstAddr) = 0x81e82000U;
InstAddr += 4;
InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
// FIXME: if the target function is close enough to fit into the 19bit disp of
// BA, we should use this version, as its much cheaper to generate.
/*
MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(RealCallTarget);
*((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*MI);
delete MI;
InstAddr += 4;
// Add another NOP
MachineInstr *Nop = BuildMI(V9::NOP, 0);
*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*Nop);
delete Nop;
InstAddr += 4;
MachineInstr *BA = BuildMI(V9::BA, 1).addSImm(RealCallTarget-2);
*((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*BA);
delete BA;
*/
// Change the return address to reexecute the call instruction...
// The return address is really %o7, but will disappear after this function
// returns, and the register windows are rotated away.
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
__asm__ __volatile__ ("or %%g0, %0, %%i7" : : "r" (OneTimeRestore-8));
#endif
}
/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated. In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
uint64_t JITResolver::emitStubForFunction(Function *F) {
MCE.startFunctionStub(*F, 6);
DEBUG(std::cerr << "Emitting stub at addr: 0x"
<< std::hex << MCE.getCurrentPCValue() << "\n");
unsigned o6 = SparcIntRegClass::o6;
// save %sp, -192, %sp
MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV));
delete SV;
int64_t CurrPC = MCE.getCurrentPCValue();
int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
int64_t CallTarget = (Addr-CurrPC) >> 2;
if (CallTarget >= (1 << 30) || CallTarget <= -(1 << 30)) {
std::cerr << "Call target beyond 30 bit limit of CALL: "
<< CallTarget << "\n";
abort();
}
// call CallTarget ;; invoke the callback
MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
delete Call;
// nop ;; call delay slot
MachineInstr *Nop = BuildMI(V9::NOP, 0);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
delete Nop;
SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
return (intptr_t)MCE.finishFunctionStub(*F);
}
SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
MachineCodeEmitter &M): TM(tm), MCE(M)
{
TheJITResolver = new JITResolver(*this, M);
}
SparcV9CodeEmitter::~SparcV9CodeEmitter() {
delete TheJITResolver;
}
void SparcV9CodeEmitter::emitWord(unsigned Val) {
// Output the constant in big endian byte order...
unsigned byteVal;
for (int i = 3; i >= 0; --i) {
byteVal = Val >> 8*i;
MCE.emitByte(byteVal & 255);
}
}
bool SparcV9CodeEmitter::isFPInstr(MachineInstr &MI) {
for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isPhysicalRegister()) {
unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
regType = TM.getRegInfo().getRegType(fakeReg);
// At least map fakeReg into its class
// fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass);
if (regType == UltraSparcRegInfo::FPSingleRegType ||
regType == UltraSparcRegInfo::FPDoubleRegType)
return true;
}
}
return false;
}
unsigned
SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg,
MachineInstr &MI) {
const TargetRegInfo &RI = TM.getRegInfo();
unsigned regClass, regType = RI.getRegType(fakeReg);
// At least map fakeReg into its class
fakeReg = RI.getClassRegNum(fakeReg, regClass);
switch (regClass) {
case UltraSparcRegInfo::IntRegClassID: {
// Sparc manual, p31
static const unsigned IntRegMap[] = {
// "o0", "o1", "o2", "o3", "o4", "o5", "o7",
8, 9, 10, 11, 12, 13, 15,
// "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
16, 17, 18, 19, 20, 21, 22, 23,
// "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7",
24, 25, 26, 27, 28, 29, 30, 31,
// "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
0, 1, 2, 3, 4, 5, 6, 7,
// "o6"
14
};
return IntRegMap[fakeReg];
break;
}
case UltraSparcRegInfo::FloatRegClassID: {
DEBUG(std::cerr << "FP reg: " << fakeReg << "\n");
if (regType == UltraSparcRegInfo::FPSingleRegType) {
// only numbered 0-31, hence can already fit into 5 bits (and 6)
DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n");
} else if (regType == UltraSparcRegInfo::FPDoubleRegType) {
// FIXME: This assumes that we only have 5-bit register fiels!
// From Sparc Manual, page 40.
// The bit layout becomes: b[4], b[3], b[2], b[1], b[5]
fakeReg |= (fakeReg >> 5) & 1;
fakeReg &= 0x1f;
DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n");
}
return fakeReg;
}
case UltraSparcRegInfo::IntCCRegClassID: {
/* xcc, icc, ccr */
static const unsigned FPInstrIntCCReg[] = { 6, 4, 2 };
static const unsigned IntInstrIntCCReg[] = { 2, 0, 2 };
if (isFPInstr(MI)) {
assert(fakeReg < sizeof(FPInstrIntCCReg)/sizeof(FPInstrIntCCReg[0])
&& "FP CC register out of bounds for FPInstr IntCCReg map");
DEBUG(std::cerr << "FP instr, IntCC reg: " << FPInstrIntCCReg[fakeReg] << "\n");
return FPInstrIntCCReg[fakeReg];
} else {
assert(fakeReg < sizeof(IntInstrIntCCReg)/sizeof(IntInstrIntCCReg[0])
&& "Int CC register out of bounds for IntInstr IntCCReg map");
DEBUG(std::cerr << "FP instr, IntCC reg: " << IntInstrIntCCReg[fakeReg] << "\n");
return IntInstrIntCCReg[fakeReg];
}
}
case UltraSparcRegInfo::FloatCCRegClassID: {
/* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */
DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n");
return fakeReg;
}
default:
assert(0 && "Invalid unified register number in getRegType");
return fakeReg;
}
}
// WARNING: if the call used the delay slot to do meaningful work, that's not
// being accounted for, and the behavior will be incorrect!!
inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target) {
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
i7 = SparcIntRegClass::i7,
o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0;
//
// Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2
//
// stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp
MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119);
emitWord(getBinaryCodeForInstr(*STX));
delete STX;
// stx %i2, [%sp + 2127] ;; save %i2 to the stack
STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127);
emitWord(getBinaryCodeForInstr(*STX));
delete STX;
//
// Get address to branch into %i2, using %i1 as a temporary
//
// sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1
MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1);
emitWord(getBinaryCodeForInstr(*SH));
delete SH;
// or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1
MachineInstr *OR = BuildMI(V9::ORi, 3)
.addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1);
emitWord(getBinaryCodeForInstr(*OR));
delete OR;
// sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word
MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1);
emitWord(getBinaryCodeForInstr(*SL));
delete SL;
// sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg
SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2);
emitWord(getBinaryCodeForInstr(*SH));
delete SH;
// or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2
OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2);
emitWord(getBinaryCodeForInstr(*OR));
delete OR;
// or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2
OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2);
emitWord(getBinaryCodeForInstr(*OR));
delete OR;
// ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72
MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1);
emitWord(getBinaryCodeForInstr(*LDX));
delete LDX;
// jmpl %i2, %g0, %07 ;; indirect call on %i2
MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(07);
emitWord(getBinaryCodeForInstr(*J));
delete J;
// ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80
LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2);
emitWord(getBinaryCodeForInstr(*LDX));
delete LDX;
}
int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
MachineOperand &MO) {
int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
// or things that get fixed up later by the JIT.
if (MO.isVirtualRegister()) {
std::cerr << "ERROR: virtual register found in machine code.\n";
abort();
} else if (MO.isPCRelativeDisp()) {
DEBUG(std::cerr << "PCRelativeDisp: ");
Value *V = MO.getVRegValue();
if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
DEBUG(std::cerr << "Saving reference to BB (VReg)\n");
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (const Constant *C = dyn_cast<Constant>(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
DEBUG(std::cerr << "const: 0x" << std::hex << rv << "\n");
} else {
std::cerr << "ERROR: constant not in map:" << MO << "\n";
abort();
}
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// same as MO.isGlobalAddress()
DEBUG(std::cerr << "GlobalValue: ");
// external function calls, etc.?
if (Function *F = dyn_cast<Function>(GV)) {
DEBUG(std::cerr << "Function: ");
if (F->isExternal()) {
// Sparc backend broken: this MO should be `ExternalSymbol'
rv = (int64_t)MCE.getGlobalValueAddress(F->getName());
} else {
rv = (int64_t)MCE.getGlobalValueAddress(F);
}
if (rv == 0) {
DEBUG(std::cerr << "not yet generated\n");
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
// Delayed resolution...
rv = TheJITResolver->getLazyResolver(F);
} else {
DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n");
}
} else {
rv = (int64_t)MCE.getGlobalValueAddress(GV);
if (rv == 0) {
if (Constant *C = ConstantPointerRef::get(GV)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
rv = MCE.getConstantPoolEntryAddress(ConstantMap[C]);
} else {
std::cerr << "Constant: 0x" << std::hex << (intptr_t)C
<< ", " << *V << " not found in ConstantMap!\n";
abort();
}
}
}
DEBUG(std::cerr << "Global addr: " << rv << "\n");
}
// The real target of the call is Addr = PC + (rv * 4)
// So undo that: give the instruction (Addr - PC) / 4
if (MI.getOpcode() == V9::CALL) {
int64_t CurrPC = MCE.getCurrentPCValue();
DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n"
<< "curr PC: 0x" << CurrPC << "\n");
int64_t CallInstTarget = (rv - CurrPC) >> 2;
if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) {
DEBUG(std::cerr << "Making far call!\n");
// addresss is out of bounds for the 30-bit call,
// make an indirect jump-and-link
emitFarCall(rv);
// this invalidates the instruction so that the call with an incorrect
// address will not be emitted
rv = 0;
} else {
// The call fits into 30 bits, so just return the corrected address
rv = CallInstTarget;
}
DEBUG(std::cerr << "returning addr: 0x" << rv << "\n");
}
} else {
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
abort();
}
} else if (MO.isPhysicalRegister() ||
MO.getType() == MachineOperand::MO_CCRegister)
{
// This is necessary because the Sparc backend doesn't actually lay out
// registers in the real fashion -- it skips those that it chooses not to
// allocate, i.e. those that are the FP, SP, etc.
unsigned fakeReg = MO.getAllocatedRegNum();
unsigned realRegByClass = getRealRegNum(fakeReg, MI);
DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => "
<< realRegByClass << "\n");
rv = realRegByClass;
} else if (MO.isImmediate()) {
rv = MO.getImmedValue();
DEBUG(std::cerr << "immed: " << rv << "\n");
} else if (MO.isGlobalAddress()) {
DEBUG(std::cerr << "GlobalAddress: not PC-relative\n");
rv = (int64_t)
(intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
MI, MO.isPCRelative());
} else if (MO.isMachineBasicBlock()) {
// Duplicate code of the above case for VirtualRegister, BasicBlock...
// It should really hit this case, but Sparc backend uses VRegs instead
DEBUG(std::cerr << "Saving reference to MBB\n");
BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (MO.isExternalSymbol()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
abort();
} else if (MO.isFrameIndex()) {
// Sparc backend doesn't generate this (yet...)
int FrameIndex = MO.getFrameIndex();
std::cerr << "ERROR: Frame index unhandled.\n";
abort();
} else if (MO.isConstantPoolIndex()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: Constant Pool index unhandled.\n";
abort();
} else {
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
abort();
}
// Finally, deal with the various bitfield-extracting functions that
// are used in SPARC assembly. (Some of these make no sense in combination
// with some of the above; we'll trust that the instruction selector
// will not produce nonsense, and not check for valid combinations here.)
if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc
return rv & 0x03ff;
} else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc
return (rv >> 10) & 0x03fffff;
} else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc
return (rv >> 32) & 0x03ff;
} else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc
return rv >> 42;
} else { // (unadorned) val
return rv;
}
}
unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
Val >>= bit;
return (Val & 1);
}
bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
MCE.startFunction(MF);
DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName()
<< ", address: " << "0x" << std::hex
<< (long)MCE.getCurrentPCValue() << "\n");
// The Sparc backend does not use MachineConstantPool;
// instead, it has its own constant pool implementation.
// We create a new MachineConstantPool here to be compatible with the emitter.
MachineConstantPool MCP;
const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
for (hash_set<const Constant*>::const_iterator I = pool.begin(),
E = pool.end(); I != E; ++I)
{
Constant *C = (Constant*)*I;
unsigned idx = MCP.getConstantPoolIndex(C);
DEBUG(std::cerr << "Constant[" << idx << "] = 0x" << (intptr_t)C << "\n");
ConstantMap[C] = idx;
}
MCE.emitConstantPool(&MCP);
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
emitBasicBlock(*I);
MCE.finishFunction(MF);
DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n");
ConstantMap.clear();
// Resolve branches to BasicBlocks for the entire function
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location
<< " in instr: " << std::dec << *MI);
for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
MachineOperand &op = MI->getOperand(ii);
if (op.isPCRelativeDisp()) {
// the instruction's branch target is made such that it branches to
// PC + (branchTarget * 4), so undo that arithmetic here:
// Location is the target of the branch
// Ref is the location of the instruction, and hence the PC
int64_t branchTarget = (Location - (long)Ref) >> 2;
// Save the flags.
bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;
if (op.opLoBits32()) { loBits32=true; }
if (op.opHiBits32()) { hiBits32=true; }
if (op.opLoBits64()) { loBits64=true; }
if (op.opHiBits64()) { hiBits64=true; }
MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
branchTarget);
if (loBits32) { MI->setOperandLo32(ii); }
else if (hiBits32) { MI->setOperandHi32(ii); }
else if (loBits64) { MI->setOperandLo64(ii); }
else if (hiBits64) { MI->setOperandHi64(ii); }
DEBUG(std::cerr << "Rewrote BB ref: ");
unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
*Ref = fixedInstr;
break;
}
}
}
BBRefs.clear();
BBLocations.clear();
return false;
}
void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
currBB = MBB.getBasicBlock();
BBLocations[currBB] = MCE.getCurrentPCValue();
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
unsigned binCode = getBinaryCodeForInstr(**I);
if (binCode == (1 << 30)) {
// this is an invalid call: the addr is out of bounds. that means a code
// sequence has already been emitted, and this is a no-op
DEBUG(std::cerr << "Call supressed: already emitted far call.\n");
} else {
emitWord(binCode);
}
}
}
void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
bool isPCRelative)
{
if (isPCRelative) { // must be a call, this is a major hack!
// Try looking up the function to see if it is already compiled!
if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
intptr_t CurByte = MCE.getCurrentPCValue();
// The real target of the call is Addr = PC + (target * 4)
// CurByte is the PC, Addr we just received
return (void*) (((long)Addr - (long)CurByte) >> 2);
} else {
if (Function *F = dyn_cast<Function>(V)) {
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
cast<Function>(V));
// Delayed resolution...
return
(void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
} else if (Constant *C = ConstantPointerRef::get(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
return (void*)
(intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
} else {
std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
<< ", " << *V << " not found in ConstantMap!\n";
abort();
}
} else {
std::cerr << "Unhandled global: " << *V << "\n";
abort();
}
}
} else {
return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
}
}
#include "SparcV9CodeEmitter.inc"