llvm-6502/lib/VMCore/Type.cpp
Christopher Lamb fe63fb986d Implement address space attribute for LLVM pointer types. Address spaces are
regions of memory that have a target specific relationship, as described in the 
Embedded C Technical Report. 

This also implements the 2007-12-11-AddressSpaces test, 
which demonstrates how address space attributes can be used in LLVM IR.

In addition, this patch changes the bitcode signature for stores (in a backwards 
compatible manner), such that the pointer type, rather than the pointee type, is 
encoded. This permits type information in the pointer (e.g. address space) to be 
preserved for stores.

LangRef updates are forthcoming.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44858 91177308-0d34-0410-b5e6-96231b3b80d8
2007-12-11 08:59:05 +00:00

1513 lines
53 KiB
C++

//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
// #define DEBUG_MERGE_TYPES 1
AbstractTypeUser::~AbstractTypeUser() {}
//===----------------------------------------------------------------------===//
// Type PATypeHolder Implementation
//===----------------------------------------------------------------------===//
/// get - This implements the forwarding part of the union-find algorithm for
/// abstract types. Before every access to the Type*, we check to see if the
/// type we are pointing to is forwarding to a new type. If so, we drop our
/// reference to the type.
///
Type* PATypeHolder::get() const {
const Type *NewTy = Ty->getForwardedType();
if (!NewTy) return const_cast<Type*>(Ty);
return *const_cast<PATypeHolder*>(this) = NewTy;
}
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
// for types as they are needed. Because resolution of types must invalidate
// all of the abstract type descriptions, we keep them in a seperate map to make
// this easy.
static ManagedStatic<std::map<const Type*,
std::string> > ConcreteTypeDescriptions;
static ManagedStatic<std::map<const Type*,
std::string> > AbstractTypeDescriptions;
/// Because of the way Type subclasses are allocated, this function is necessary
/// to use the correct kind of "delete" operator to deallocate the Type object.
/// Some type objects (FunctionTy, StructTy) allocate additional space after
/// the space for their derived type to hold the contained types array of
/// PATypeHandles. Using this allocation scheme means all the PATypeHandles are
/// allocated with the type object, decreasing allocations and eliminating the
/// need for a std::vector to be used in the Type class itself.
/// @brief Type destruction function
void Type::destroy() const {
// Structures and Functions allocate their contained types past the end of
// the type object itself. These need to be destroyed differently than the
// other types.
if (isa<FunctionType>(this) || isa<StructType>(this)) {
// First, make sure we destruct any PATypeHandles allocated by these
// subclasses. They must be manually destructed.
for (unsigned i = 0; i < NumContainedTys; ++i)
ContainedTys[i].PATypeHandle::~PATypeHandle();
// Now call the destructor for the subclass directly because we're going
// to delete this as an array of char.
if (isa<FunctionType>(this))
((FunctionType*)this)->FunctionType::~FunctionType();
else
((StructType*)this)->StructType::~StructType();
// Finally, remove the memory as an array deallocation of the chars it was
// constructed from.
delete [] reinterpret_cast<const char*>(this);
return;
}
// For all the other type subclasses, there is either no contained types or
// just one (all Sequentials). For Sequentials, the PATypeHandle is not
// allocated past the type object, its included directly in the SequentialType
// class. This means we can safely just do "normal" delete of this object and
// all the destructors that need to run will be run.
delete this;
}
const Type *Type::getPrimitiveType(TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return VoidTy;
case FloatTyID : return FloatTy;
case DoubleTyID : return DoubleTy;
case X86_FP80TyID : return X86_FP80Ty;
case FP128TyID : return FP128Ty;
case PPC_FP128TyID : return PPC_FP128Ty;
case LabelTyID : return LabelTy;
default:
return 0;
}
}
const Type *Type::getVAArgsPromotedType() const {
if (ID == IntegerTyID && getSubclassData() < 32)
return Type::Int32Ty;
else if (ID == FloatTyID)
return Type::DoubleTy;
else
return this;
}
/// isIntOrIntVector - Return true if this is an integer type or a vector of
/// integer types.
///
bool Type::isIntOrIntVector() const {
if (isInteger())
return true;
if (ID != Type::VectorTyID) return false;
return cast<VectorType>(this)->getElementType()->isInteger();
}
/// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
///
bool Type::isFPOrFPVector() const {
if (ID == Type::FloatTyID || ID == Type::DoubleTyID ||
ID == Type::FP128TyID || ID == Type::X86_FP80TyID ||
ID == Type::PPC_FP128TyID)
return true;
if (ID != Type::VectorTyID) return false;
return cast<VectorType>(this)->getElementType()->isFloatingPoint();
}
// canLosslesllyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, uint to int.
//
bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
// Identity cast means no change so return true
if (this == Ty)
return true;
// They are not convertible unless they are at least first class types
if (!this->isFirstClassType() || !Ty->isFirstClassType())
return false;
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not.
if (const VectorType *thisPTy = dyn_cast<VectorType>(this))
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
// At this point we have only various mismatches of the first class types
// remaining and ptr->ptr. Just select the lossless conversions. Everything
// else is not lossless.
if (isa<PointerType>(this))
return isa<PointerType>(Ty);
return false; // Other types have no identity values
}
unsigned Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::FloatTyID: return 32;
case Type::DoubleTyID: return 64;
case Type::X86_FP80TyID: return 80;
case Type::FP128TyID: return 128;
case Type::PPC_FP128TyID: return 128;
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
default: return 0;
}
}
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType() const {
if (isa<IntegerType>(this))
return true;
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized();
if (const VectorType *PTy = dyn_cast<VectorType>(this))
return PTy->getElementType()->isSized();
if (!isa<StructType>(this))
return false;
// Okay, our struct is sized if all of the elements are...
for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
if (!(*I)->isSized())
return false;
return true;
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
cast<DerivedType>(RealForwardedType)->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
cast<DerivedType>(ForwardType)->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
abort();
}
void Type::typeBecameConcrete(const DerivedType *AbsTy) {
abort();
}
// getTypeDescription - This is a recursive function that walks a type hierarchy
// calculating the description for a type.
//
static std::string getTypeDescription(const Type *Ty,
std::vector<const Type *> &TypeStack) {
if (isa<OpaqueType>(Ty)) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
AbstractTypeDescriptions->lower_bound(Ty);
if (I != AbstractTypeDescriptions->end() && I->first == Ty)
return I->second;
std::string Desc = "opaque";
AbstractTypeDescriptions->insert(std::make_pair(Ty, Desc));
return Desc;
}
if (!Ty->isAbstract()) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
ConcreteTypeDescriptions->find(Ty);
if (I != ConcreteTypeDescriptions->end())
return I->second;
if (Ty->isPrimitiveType()) {
switch (Ty->getTypeID()) {
default: assert(0 && "Unknown prim type!");
case Type::VoidTyID: return (*ConcreteTypeDescriptions)[Ty] = "void";
case Type::FloatTyID: return (*ConcreteTypeDescriptions)[Ty] = "float";
case Type::DoubleTyID: return (*ConcreteTypeDescriptions)[Ty] = "double";
case Type::X86_FP80TyID:
return (*ConcreteTypeDescriptions)[Ty] = "x86_fp80";
case Type::FP128TyID: return (*ConcreteTypeDescriptions)[Ty] = "fp128";
case Type::PPC_FP128TyID:
return (*ConcreteTypeDescriptions)[Ty] = "ppc_fp128";
case Type::LabelTyID: return (*ConcreteTypeDescriptions)[Ty] = "label";
}
}
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
// Recursive case: derived types...
std::string Result;
TypeStack.push_back(Ty); // Add us to the stack..
switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
const IntegerType *ITy = cast<IntegerType>(Ty);
Result = "i" + utostr(ITy->getBitWidth());
break;
}
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
if (!Result.empty())
Result += " ";
Result += getTypeDescription(FTy->getReturnType(), TypeStack) + " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
if (STy->isPacked())
Result = "<{ ";
else
Result = "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
if (I != STy->element_begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
Result += " }";
if (STy->isPacked())
Result += ">";
break;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
Result = getTypeDescription(PTy->getElementType(), TypeStack);
if (unsigned AddressSpace = PTy->getAddressSpace())
Result += " addrspace(" + utostr(AddressSpace) + ")";
Result += " *";
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
Result = "[";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(ATy->getElementType(), TypeStack) + "]";
break;
}
case Type::VectorTyID: {
const VectorType *PTy = cast<VectorType>(Ty);
unsigned NumElements = PTy->getNumElements();
Result = "<";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(PTy->getElementType(), TypeStack) + ">";
break;
}
default:
Result = "<error>";
assert(0 && "Unhandled type in getTypeDescription!");
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
static const std::string &getOrCreateDesc(std::map<const Type*,std::string>&Map,
const Type *Ty) {
std::map<const Type*, std::string>::iterator I = Map.find(Ty);
if (I != Map.end()) return I->second;
std::vector<const Type *> TypeStack;
std::string Result = getTypeDescription(Ty, TypeStack);
return Map[Ty] = Result;
}
const std::string &Type::getDescription() const {
if (isAbstract())
return getOrCreateDesc(*AbstractTypeDescriptions, this);
else
return getOrCreateDesc(*ConcreteTypeDescriptions, this);
}
bool StructType::indexValid(const Value *V) const {
// Structure indexes require 32-bit integer constants.
if (V->getType() == Type::Int32Ty)
if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
return CU->getZExtValue() < NumContainedTys;
return false;
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
assert(indexValid(V) && "Invalid structure index!");
unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
return ContainedTys[Idx];
}
//===----------------------------------------------------------------------===//
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
const Type *Type::VoidTy = new Type(Type::VoidTyID);
const Type *Type::FloatTy = new Type(Type::FloatTyID);
const Type *Type::DoubleTy = new Type(Type::DoubleTyID);
const Type *Type::X86_FP80Ty = new Type(Type::X86_FP80TyID);
const Type *Type::FP128Ty = new Type(Type::FP128TyID);
const Type *Type::PPC_FP128Ty = new Type(Type::PPC_FP128TyID);
const Type *Type::LabelTy = new Type(Type::LabelTyID);
namespace {
struct BuiltinIntegerType : public IntegerType {
BuiltinIntegerType(unsigned W) : IntegerType(W) {}
};
}
const IntegerType *Type::Int1Ty = new BuiltinIntegerType(1);
const IntegerType *Type::Int8Ty = new BuiltinIntegerType(8);
const IntegerType *Type::Int16Ty = new BuiltinIntegerType(16);
const IntegerType *Type::Int32Ty = new BuiltinIntegerType(32);
const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs)
: DerivedType(FunctionTyID), isVarArgs(IsVarArgs) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
NumContainedTys = Params.size() + 1; // + 1 for result type
assert((Result->isFirstClassType() || Result == Type::VoidTy ||
isa<OpaqueType>(Result)) &&
"LLVM functions cannot return aggregates");
bool isAbstract = Result->isAbstract();
new (&ContainedTys[0]) PATypeHandle(Result, this);
for (unsigned i = 0; i != Params.size(); ++i) {
assert((Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])) &&
"Function arguments must be value types!");
new (&ContainedTys[i+1]) PATypeHandle(Params[i],this);
isAbstract |= Params[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
StructType::StructType(const std::vector<const Type*> &Types, bool isPacked)
: CompositeType(StructTyID) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
NumContainedTys = Types.size();
setSubclassData(isPacked);
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] != Type::VoidTy && "Void type for structure field!!");
new (&ContainedTys[i]) PATypeHandle(Types[i], this);
isAbstract |= Types[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
ArrayType::ArrayType(const Type *ElType, uint64_t NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
// Calculate whether or not this type is abstract
setAbstract(ElType->isAbstract());
}
VectorType::VectorType(const Type *ElType, unsigned NumEl)
: SequentialType(VectorTyID, ElType) {
NumElements = NumEl;
setAbstract(ElType->isAbstract());
assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0");
assert((ElType->isInteger() || ElType->isFloatingPoint() ||
isa<OpaqueType>(ElType)) &&
"Elements of a VectorType must be a primitive type");
}
PointerType::PointerType(const Type *E, unsigned AddrSpace)
: SequentialType(PointerTyID, E) {
AddressSpace = AddrSpace;
// Calculate whether or not this type is abstract
setAbstract(E->isAbstract());
}
OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *this << "\n";
#endif
}
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() {
if (NumContainedTys != 0) {
// The type must stay abstract. To do this, we insert a pointer to a type
// that will never get resolved, thus will always be abstract.
static Type *AlwaysOpaqueTy = OpaqueType::get();
static PATypeHolder Holder(AlwaysOpaqueTy);
ContainedTys[0] = AlwaysOpaqueTy;
// Change the rest of the types to be Int32Ty's. It doesn't matter what we
// pick so long as it doesn't point back to this type. We choose something
// concrete to avoid overhead for adding to AbstracTypeUser lists and stuff.
for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
ContainedTys[i] = Type::Int32Ty;
}
}
/// TypePromotionGraph and graph traits - this is designed to allow us to do
/// efficient SCC processing of type graphs. This is the exact same as
/// GraphTraits<Type*>, except that we pretend that concrete types have no
/// children to avoid processing them.
struct TypePromotionGraph {
Type *Ty;
TypePromotionGraph(Type *T) : Ty(T) {}
};
namespace llvm {
template <> struct GraphTraits<TypePromotionGraph> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; }
static inline ChildIteratorType child_begin(NodeType *N) {
if (N->isAbstract())
return N->subtype_begin();
else // No need to process children of concrete types.
return N->subtype_end();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
}
// PromoteAbstractToConcrete - This is a recursive function that walks a type
// graph calculating whether or not a type is abstract.
//
void Type::PromoteAbstractToConcrete() {
if (!isAbstract()) return;
scc_iterator<TypePromotionGraph> SI = scc_begin(TypePromotionGraph(this));
scc_iterator<TypePromotionGraph> SE = scc_end (TypePromotionGraph(this));
for (; SI != SE; ++SI) {
std::vector<Type*> &SCC = *SI;
// Concrete types are leaves in the tree. Since an SCC will either be all
// abstract or all concrete, we only need to check one type.
if (SCC[0]->isAbstract()) {
if (isa<OpaqueType>(SCC[0]))
return; // Not going to be concrete, sorry.
// If all of the children of all of the types in this SCC are concrete,
// then this SCC is now concrete as well. If not, neither this SCC, nor
// any parent SCCs will be concrete, so we might as well just exit.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
for (Type::subtype_iterator CI = SCC[i]->subtype_begin(),
E = SCC[i]->subtype_end(); CI != E; ++CI)
if ((*CI)->isAbstract())
// If the child type is in our SCC, it doesn't make the entire SCC
// abstract unless there is a non-SCC abstract type.
if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end())
return; // Not going to be concrete, sorry.
// Okay, we just discovered this whole SCC is now concrete, mark it as
// such!
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(SCC[i]->isAbstract() && "Why are we processing concrete types?");
SCC[i]->setAbstract(false);
}
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(!SCC[i]->isAbstract() && "Concrete type became abstract?");
// The type just became concrete, notify all users!
cast<DerivedType>(SCC[i])->notifyUsesThatTypeBecameConcrete();
}
}
}
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
std::map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getTypeID() != Ty2->getTypeID()) return false;
if (isa<OpaqueType>(Ty))
return false; // Two unequal opaque types are never equal
std::map<const Type*, const Type*>::iterator It = EqTypes.lower_bound(Ty);
if (It != EqTypes.end() && It->first == Ty)
return It->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(It, std::make_pair(Ty, Ty2));
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that function types can be varargs or not. Consider this now.
//
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
const IntegerType *ITy2 = cast<IntegerType>(Ty2);
return ITy->getBitWidth() == ITy2->getBitWidth();
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
const PointerType *PTy2 = cast<PointerType>(Ty2);
return PTy->getAddressSpace() == PTy2->getAddressSpace() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructType *STy2 = cast<StructType>(Ty2);
if (STy->getNumElements() != STy2->getNumElements()) return false;
if (STy->isPacked() != STy2->isPacked()) return false;
for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i)
if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes))
return false;
return true;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy->getNumElements() == ATy2->getNumElements() &&
TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes);
} else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
const VectorType *PTy2 = cast<VectorType>(Ty2);
return PTy->getNumElements() == PTy2->getNumElements() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
} else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy->isVarArg() != FTy2->isVarArg() ||
FTy->getNumParams() != FTy2->getNumParams() ||
!TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes))
return false;
for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i) {
if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes))
return false;
}
return true;
} else {
assert(0 && "Unknown derived type!");
return false;
}
}
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
std::map<const Type *, const Type *> EqTypes;
return TypesEqual(Ty, Ty2, EqTypes);
}
// AbstractTypeHasCycleThrough - Return true there is a path from CurTy to
// TargetTy in the type graph. We know that Ty is an abstract type, so if we
// ever reach a non-abstract type, we know that we don't need to search the
// subgraph.
static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
std::set<const Type*> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!CurTy->isAbstract()) return false;
if (!VisitedTypes.insert(CurTy).second)
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
std::set<const Type*> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!VisitedTypes.insert(CurTy).second)
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
/// TypeHasCycleThroughItself - Return true if the specified type has a cycle
/// back to itself.
static bool TypeHasCycleThroughItself(const Type *Ty) {
std::set<const Type*> VisitedTypes;
if (Ty->isAbstract()) { // Optimized case for abstract types.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
} else {
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
}
return false;
}
/// getSubElementHash - Generate a hash value for all of the SubType's of this
/// type. The hash value is guaranteed to be zero if any of the subtypes are
/// an opaque type. Otherwise we try to mix them in as well as possible, but do
/// not look at the subtype's subtype's.
static unsigned getSubElementHash(const Type *Ty) {
unsigned HashVal = 0;
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I) {
HashVal *= 32;
const Type *SubTy = I->get();
HashVal += SubTy->getTypeID();
switch (SubTy->getTypeID()) {
default: break;
case Type::OpaqueTyID: return 0; // Opaque -> hash = 0 no matter what.
case Type::IntegerTyID:
HashVal ^= (cast<IntegerType>(SubTy)->getBitWidth() << 3);
break;
case Type::FunctionTyID:
HashVal ^= cast<FunctionType>(SubTy)->getNumParams()*2 +
cast<FunctionType>(SubTy)->isVarArg();
break;
case Type::ArrayTyID:
HashVal ^= cast<ArrayType>(SubTy)->getNumElements();
break;
case Type::VectorTyID:
HashVal ^= cast<VectorType>(SubTy)->getNumElements();
break;
case Type::StructTyID:
HashVal ^= cast<StructType>(SubTy)->getNumElements();
break;
case Type::PointerTyID:
HashVal ^= cast<PointerType>(SubTy)->getAddressSpace();
break;
}
}
return HashVal ? HashVal : 1; // Do not return zero unless opaque subty.
}
//===----------------------------------------------------------------------===//
// Derived Type Factory Functions
//===----------------------------------------------------------------------===//
namespace llvm {
class TypeMapBase {
protected:
/// TypesByHash - Keep track of types by their structure hash value. Note
/// that we only keep track of types that have cycles through themselves in
/// this map.
///
std::multimap<unsigned, PATypeHolder> TypesByHash;
public:
void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) {
std::multimap<unsigned, PATypeHolder>::iterator I =
TypesByHash.lower_bound(Hash);
for (; I != TypesByHash.end() && I->first == Hash; ++I) {
if (I->second == Ty) {
TypesByHash.erase(I);
return;
}
}
// This must be do to an opaque type that was resolved. Switch down to hash
// code of zero.
assert(Hash && "Didn't find type entry!");
RemoveFromTypesByHash(0, Ty);
}
/// TypeBecameConcrete - When Ty gets a notification that TheType just became
/// concrete, drop uses and make Ty non-abstract if we should.
void TypeBecameConcrete(DerivedType *Ty, const DerivedType *TheType) {
// If the element just became concrete, remove 'ty' from the abstract
// type user list for the type. Do this for as many times as Ty uses
// OldType.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (I->get() == TheType)
TheType->removeAbstractTypeUser(Ty);
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete! Note that this
// may send out notifications to AbstractTypeUsers that types become
// concrete.
if (Ty->isAbstract())
Ty->PromoteAbstractToConcrete();
}
};
}
// TypeMap - Make sure that only one instance of a particular type may be
// created on any given run of the compiler... note that this involves updating
// our map if an abstract type gets refined somehow.
//
namespace llvm {
template<class ValType, class TypeClass>
class TypeMap : public TypeMapBase {
std::map<ValType, PATypeHolder> Map;
public:
typedef typename std::map<ValType, PATypeHolder>::iterator iterator;
~TypeMap() { print("ON EXIT"); }
inline TypeClass *get(const ValType &V) {
iterator I = Map.find(V);
return I != Map.end() ? cast<TypeClass>((Type*)I->second.get()) : 0;
}
inline void add(const ValType &V, TypeClass *Ty) {
Map.insert(std::make_pair(V, Ty));
// If this type has a cycle, remember it.
TypesByHash.insert(std::make_pair(ValType::hashTypeStructure(Ty), Ty));
print("add");
}
/// RefineAbstractType - This method is called after we have merged a type
/// with another one. We must now either merge the type away with
/// some other type or reinstall it in the map with it's new configuration.
void RefineAbstractType(TypeClass *Ty, const DerivedType *OldType,
const Type *NewType) {
#ifdef DEBUG_MERGE_TYPES
DOUT << "RefineAbstractType(" << (void*)OldType << "[" << *OldType
<< "], " << (void*)NewType << " [" << *NewType << "])\n";
#endif
// Otherwise, we are changing one subelement type into another. Clearly the
// OldType must have been abstract, making us abstract.
assert(Ty->isAbstract() && "Refining a non-abstract type!");
assert(OldType != NewType);
// Make a temporary type holder for the type so that it doesn't disappear on
// us when we erase the entry from the map.
PATypeHolder TyHolder = Ty;
// The old record is now out-of-date, because one of the children has been
// updated. Remove the obsolete entry from the map.
unsigned NumErased = Map.erase(ValType::get(Ty));
assert(NumErased && "Element not found!");
// Remember the structural hash for the type before we start hacking on it,
// in case we need it later.
unsigned OldTypeHash = ValType::hashTypeStructure(Ty);
// Find the type element we are refining... and change it now!
for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i)
if (Ty->ContainedTys[i] == OldType)
Ty->ContainedTys[i] = NewType;
unsigned NewTypeHash = ValType::hashTypeStructure(Ty);
// If there are no cycles going through this node, we can do a simple,
// efficient lookup in the map, instead of an inefficient nasty linear
// lookup.
if (!TypeHasCycleThroughItself(Ty)) {
typename std::map<ValType, PATypeHolder>::iterator I;
bool Inserted;
tie(I, Inserted) = Map.insert(std::make_pair(ValType::get(Ty), Ty));
if (!Inserted) {
// Refined to a different type altogether?
RemoveFromTypesByHash(OldTypeHash, Ty);
// We already have this type in the table. Get rid of the newly refined
// type.
TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
Ty->refineAbstractTypeTo(NewTy);
return;
}
} else {
// Now we check to see if there is an existing entry in the table which is
// structurally identical to the newly refined type. If so, this type
// gets refined to the pre-existing type.
//
std::multimap<unsigned, PATypeHolder>::iterator I, E, Entry;
tie(I, E) = TypesByHash.equal_range(NewTypeHash);
Entry = E;
for (; I != E; ++I) {
if (I->second == Ty) {
// Remember the position of the old type if we see it in our scan.
Entry = I;
} else {
if (TypesEqual(Ty, I->second)) {
TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
// Remove the old entry form TypesByHash. If the hash values differ
// now, remove it from the old place. Otherwise, continue scanning
// withing this hashcode to reduce work.
if (NewTypeHash != OldTypeHash) {
RemoveFromTypesByHash(OldTypeHash, Ty);
} else {
if (Entry == E) {
// Find the location of Ty in the TypesByHash structure if we
// haven't seen it already.
while (I->second != Ty) {
++I;
assert(I != E && "Structure doesn't contain type??");
}
Entry = I;
}
TypesByHash.erase(Entry);
}
Ty->refineAbstractTypeTo(NewTy);
return;
}
}
}
// If there is no existing type of the same structure, we reinsert an
// updated record into the map.
Map.insert(std::make_pair(ValType::get(Ty), Ty));
}
// If the hash codes differ, update TypesByHash
if (NewTypeHash != OldTypeHash) {
RemoveFromTypesByHash(OldTypeHash, Ty);
TypesByHash.insert(std::make_pair(NewTypeHash, Ty));
}
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete! Note that this
// may send out notifications to AbstractTypeUsers that types become
// concrete.
if (Ty->isAbstract())
Ty->PromoteAbstractToConcrete();
}
void print(const char *Arg) const {
#ifdef DEBUG_MERGE_TYPES
DOUT << "TypeMap<>::" << Arg << " table contents:\n";
unsigned i = 0;
for (typename std::map<ValType, PATypeHolder>::const_iterator I
= Map.begin(), E = Map.end(); I != E; ++I)
DOUT << " " << (++i) << ". " << (void*)I->second.get() << " "
<< *I->second.get() << "\n";
#endif
}
void dump() const { print("dump output"); }
};
}
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
//===----------------------------------------------------------------------===//
// Integer Type Factory...
//
namespace llvm {
class IntegerValType {
uint32_t bits;
public:
IntegerValType(uint16_t numbits) : bits(numbits) {}
static IntegerValType get(const IntegerType *Ty) {
return IntegerValType(Ty->getBitWidth());
}
static unsigned hashTypeStructure(const IntegerType *Ty) {
return (unsigned)Ty->getBitWidth();
}
inline bool operator<(const IntegerValType &IVT) const {
return bits < IVT.bits;
}
};
}
static ManagedStatic<TypeMap<IntegerValType, IntegerType> > IntegerTypes;
const IntegerType *IntegerType::get(unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
case 1: return cast<IntegerType>(Type::Int1Ty);
case 8: return cast<IntegerType>(Type::Int8Ty);
case 16: return cast<IntegerType>(Type::Int16Ty);
case 32: return cast<IntegerType>(Type::Int32Ty);
case 64: return cast<IntegerType>(Type::Int64Ty);
default:
break;
}
IntegerValType IVT(NumBits);
IntegerType *ITy = IntegerTypes->get(IVT);
if (ITy) return ITy; // Found a match, return it!
// Value not found. Derive a new type!
ITy = new IntegerType(NumBits);
IntegerTypes->add(IVT, ITy);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *ITy << "\n";
#endif
return ITy;
}
bool IntegerType::isPowerOf2ByteWidth() const {
unsigned BitWidth = getBitWidth();
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}
APInt IntegerType::getMask() const {
return APInt::getAllOnesValue(getBitWidth());
}
// FunctionValType - Define a class to hold the key that goes into the TypeMap
//
namespace llvm {
class FunctionValType {
const Type *RetTy;
std::vector<const Type*> ArgTypes;
bool isVarArg;
public:
FunctionValType(const Type *ret, const std::vector<const Type*> &args,
bool isVA) : RetTy(ret), isVarArg(isVA) {
for (unsigned i = 0; i < args.size(); ++i)
ArgTypes.push_back(args[i]);
}
static FunctionValType get(const FunctionType *FT);
static unsigned hashTypeStructure(const FunctionType *FT) {
unsigned Result = FT->getNumParams()*2 + FT->isVarArg();
return Result;
}
inline bool operator<(const FunctionValType &MTV) const {
if (RetTy < MTV.RetTy) return true;
if (RetTy > MTV.RetTy) return false;
if (isVarArg < MTV.isVarArg) return true;
if (isVarArg > MTV.isVarArg) return false;
if (ArgTypes < MTV.ArgTypes) return true;
if (ArgTypes > MTV.ArgTypes) return false;
return false;
}
};
}
// Define the actual map itself now...
static ManagedStatic<TypeMap<FunctionValType, FunctionType> > FunctionTypes;
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getNumParams());
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg());
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
bool isVarArg) {
FunctionValType VT(ReturnType, Params, isVarArg);
FunctionType *FT = FunctionTypes->get(VT);
if (FT) {
return FT;
}
FT = (FunctionType*) new char[sizeof(FunctionType) +
sizeof(PATypeHandle)*(Params.size()+1)];
new (FT) FunctionType(ReturnType, Params, isVarArg);
FunctionTypes->add(VT, FT);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << FT << "\n";
#endif
return FT;
}
//===----------------------------------------------------------------------===//
// Array Type Factory...
//
namespace llvm {
class ArrayValType {
const Type *ValTy;
uint64_t Size;
public:
ArrayValType(const Type *val, uint64_t sz) : ValTy(val), Size(sz) {}
static ArrayValType get(const ArrayType *AT) {
return ArrayValType(AT->getElementType(), AT->getNumElements());
}
static unsigned hashTypeStructure(const ArrayType *AT) {
return (unsigned)AT->getNumElements();
}
inline bool operator<(const ArrayValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy < MTV.ValTy;
}
};
}
static ManagedStatic<TypeMap<ArrayValType, ArrayType> > ArrayTypes;
ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
assert(ElementType && "Can't get array of null types!");
ArrayValType AVT(ElementType, NumElements);
ArrayType *AT = ArrayTypes->get(AVT);
if (AT) return AT; // Found a match, return it!
// Value not found. Derive a new type!
ArrayTypes->add(AVT, AT = new ArrayType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *AT << "\n";
#endif
return AT;
}
//===----------------------------------------------------------------------===//
// Vector Type Factory...
//
namespace llvm {
class VectorValType {
const Type *ValTy;
unsigned Size;
public:
VectorValType(const Type *val, int sz) : ValTy(val), Size(sz) {}
static VectorValType get(const VectorType *PT) {
return VectorValType(PT->getElementType(), PT->getNumElements());
}
static unsigned hashTypeStructure(const VectorType *PT) {
return PT->getNumElements();
}
inline bool operator<(const VectorValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy < MTV.ValTy;
}
};
}
static ManagedStatic<TypeMap<VectorValType, VectorType> > VectorTypes;
VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get vector of null types!");
VectorValType PVT(ElementType, NumElements);
VectorType *PT = VectorTypes->get(PVT);
if (PT) return PT; // Found a match, return it!
// Value not found. Derive a new type!
VectorTypes->add(PVT, PT = new VectorType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
namespace llvm {
// StructValType - Define a class to hold the key that goes into the TypeMap
//
class StructValType {
std::vector<const Type*> ElTypes;
bool packed;
public:
StructValType(const std::vector<const Type*> &args, bool isPacked)
: ElTypes(args), packed(isPacked) {}
static StructValType get(const StructType *ST) {
std::vector<const Type *> ElTypes;
ElTypes.reserve(ST->getNumElements());
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
ElTypes.push_back(ST->getElementType(i));
return StructValType(ElTypes, ST->isPacked());
}
static unsigned hashTypeStructure(const StructType *ST) {
return ST->getNumElements();
}
inline bool operator<(const StructValType &STV) const {
if (ElTypes < STV.ElTypes) return true;
else if (ElTypes > STV.ElTypes) return false;
else return (int)packed < (int)STV.packed;
}
};
}
static ManagedStatic<TypeMap<StructValType, StructType> > StructTypes;
StructType *StructType::get(const std::vector<const Type*> &ETypes,
bool isPacked) {
StructValType STV(ETypes, isPacked);
StructType *ST = StructTypes->get(STV);
if (ST) return ST;
// Value not found. Derive a new type!
ST = (StructType*) new char[sizeof(StructType) +
sizeof(PATypeHandle) * ETypes.size()];
new (ST) StructType(ETypes, isPacked);
StructTypes->add(STV, ST);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *ST << "\n";
#endif
return ST;
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
// PointerValType - Define a class to hold the key that goes into the TypeMap
//
namespace llvm {
class PointerValType {
const Type *ValTy;
unsigned AddressSpace;
public:
PointerValType(const Type *val, unsigned as) : ValTy(val), AddressSpace(as) {}
static PointerValType get(const PointerType *PT) {
return PointerValType(PT->getElementType(), PT->getAddressSpace());
}
static unsigned hashTypeStructure(const PointerType *PT) {
return getSubElementHash(PT);
}
bool operator<(const PointerValType &MTV) const {
if (AddressSpace < MTV.AddressSpace) return true;
return AddressSpace == MTV.AddressSpace && ValTy < MTV.ValTy;
}
};
}
static ManagedStatic<TypeMap<PointerValType, PointerType> > PointerTypes;
PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
assert(ValueType && "Can't get a pointer to <null> type!");
assert(ValueType != Type::VoidTy &&
"Pointer to void is not valid, use sbyte* instead!");
assert(ValueType != Type::LabelTy && "Pointer to label is not valid!");
PointerValType PVT(ValueType, AddressSpace);
PointerType *PT = PointerTypes->get(PVT);
if (PT) return PT;
// Value not found. Derive a new type!
PointerTypes->add(PVT, PT = new PointerType(ValueType, AddressSpace));
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever again.
//
void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
unsigned i;
for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
assert(i != 0 && "AbstractTypeUser not in user list!");
--i; // Convert to be in range 0 <= i < size()
assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound?
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
DOUT << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n";
#endif
if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
DOUT << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n";
#endif
this->destroy();
}
}
// refineAbstractTypeTo - This function is used when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete type
// NewType and for 'this' to be deleted.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
assert(ForwardType == 0 && "This type has already been refined!");
// The descriptions may be out of date. Conservatively clear them all!
AbstractTypeDescriptions->clear();
#ifdef DEBUG_MERGE_TYPES
DOUT << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n";
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
// Any PATypeHolders referring to this type will now automatically forward to
// the type we are resolved to.
ForwardType = NewType;
if (NewType->isAbstract())
cast<DerivedType>(NewType)->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after the function exits.
//
PATypeHolder CurrentTy(this);
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses();
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically. We have to check to
// make sure that NewTy doesn't _become_ 'this'. If it does, resolving types
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size();
#ifdef DEBUG_MERGE_TYPES
DOUT << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n";
#endif
User->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
// This may occur on exit of this function, as the CurrentTy object is
// destroyed.
}
// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
// the current type has transitioned from being abstract to being concrete.
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
DOUT << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
#endif
unsigned OldSize = AbstractTypeUsers.size();
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
ATU->typeBecameConcrete(this);
assert(AbstractTypeUsers.size() < OldSize-- &&
"AbstractTypeUser did not remove itself from the use list!");
}
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
FunctionTypes->RefineAbstractType(this, OldType, NewType);
}
void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
FunctionTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
ArrayTypes->RefineAbstractType(this, OldType, NewType);
}
void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
ArrayTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void VectorType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
VectorTypes->RefineAbstractType(this, OldType, NewType);
}
void VectorType::typeBecameConcrete(const DerivedType *AbsTy) {
VectorTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
StructTypes->RefineAbstractType(this, OldType, NewType);
}
void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
StructTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
PointerTypes->RefineAbstractType(this, OldType, NewType);
}
void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
PointerTypes->TypeBecameConcrete(this, AbsTy);
}
bool SequentialType::indexValid(const Value *V) const {
if (const IntegerType *IT = dyn_cast<IntegerType>(V->getType()))
return IT->getBitWidth() == 32 || IT->getBitWidth() == 64;
return false;
}
namespace llvm {
std::ostream &operator<<(std::ostream &OS, const Type *T) {
if (T == 0)
OS << "<null> value!\n";
else
T->print(OS);
return OS;
}
std::ostream &operator<<(std::ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
}