mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
6690dbffe0
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis. Differential Revision: http://reviews.llvm.org/D10398 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241979 91177308-0d34-0410-b5e6-96231b3b80d8
3720 lines
140 KiB
C++
3720 lines
140 KiB
C++
//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the function verifier interface, that can be used for some
|
|
// sanity checking of input to the system.
|
|
//
|
|
// Note that this does not provide full `Java style' security and verifications,
|
|
// instead it just tries to ensure that code is well-formed.
|
|
//
|
|
// * Both of a binary operator's parameters are of the same type
|
|
// * Verify that the indices of mem access instructions match other operands
|
|
// * Verify that arithmetic and other things are only performed on first-class
|
|
// types. Verify that shifts & logicals only happen on integrals f.e.
|
|
// * All of the constants in a switch statement are of the correct type
|
|
// * The code is in valid SSA form
|
|
// * It should be illegal to put a label into any other type (like a structure)
|
|
// or to return one. [except constant arrays!]
|
|
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
|
|
// * PHI nodes must have an entry for each predecessor, with no extras.
|
|
// * PHI nodes must be the first thing in a basic block, all grouped together
|
|
// * PHI nodes must have at least one entry
|
|
// * All basic blocks should only end with terminator insts, not contain them
|
|
// * The entry node to a function must not have predecessors
|
|
// * All Instructions must be embedded into a basic block
|
|
// * Functions cannot take a void-typed parameter
|
|
// * Verify that a function's argument list agrees with it's declared type.
|
|
// * It is illegal to specify a name for a void value.
|
|
// * It is illegal to have a internal global value with no initializer
|
|
// * It is illegal to have a ret instruction that returns a value that does not
|
|
// agree with the function return value type.
|
|
// * Function call argument types match the function prototype
|
|
// * A landing pad is defined by a landingpad instruction, and can be jumped to
|
|
// only by the unwind edge of an invoke instruction.
|
|
// * A landingpad instruction must be the first non-PHI instruction in the
|
|
// block.
|
|
// * All landingpad instructions must use the same personality function with
|
|
// the same function.
|
|
// * All other things that are tested by asserts spread about the code...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cstdarg>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
|
|
|
|
namespace {
|
|
struct VerifierSupport {
|
|
raw_ostream &OS;
|
|
const Module *M;
|
|
|
|
/// \brief Track the brokenness of the module while recursively visiting.
|
|
bool Broken;
|
|
|
|
explicit VerifierSupport(raw_ostream &OS)
|
|
: OS(OS), M(nullptr), Broken(false) {}
|
|
|
|
private:
|
|
void Write(const Value *V) {
|
|
if (!V)
|
|
return;
|
|
if (isa<Instruction>(V)) {
|
|
OS << *V << '\n';
|
|
} else {
|
|
V->printAsOperand(OS, true, M);
|
|
OS << '\n';
|
|
}
|
|
}
|
|
void Write(ImmutableCallSite CS) {
|
|
Write(CS.getInstruction());
|
|
}
|
|
|
|
void Write(const Metadata *MD) {
|
|
if (!MD)
|
|
return;
|
|
MD->print(OS, M);
|
|
OS << '\n';
|
|
}
|
|
|
|
template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
|
|
Write(MD.get());
|
|
}
|
|
|
|
void Write(const NamedMDNode *NMD) {
|
|
if (!NMD)
|
|
return;
|
|
NMD->print(OS);
|
|
OS << '\n';
|
|
}
|
|
|
|
void Write(Type *T) {
|
|
if (!T)
|
|
return;
|
|
OS << ' ' << *T;
|
|
}
|
|
|
|
void Write(const Comdat *C) {
|
|
if (!C)
|
|
return;
|
|
OS << *C;
|
|
}
|
|
|
|
template <typename T1, typename... Ts>
|
|
void WriteTs(const T1 &V1, const Ts &... Vs) {
|
|
Write(V1);
|
|
WriteTs(Vs...);
|
|
}
|
|
|
|
template <typename... Ts> void WriteTs() {}
|
|
|
|
public:
|
|
/// \brief A check failed, so printout out the condition and the message.
|
|
///
|
|
/// This provides a nice place to put a breakpoint if you want to see why
|
|
/// something is not correct.
|
|
void CheckFailed(const Twine &Message) {
|
|
OS << Message << '\n';
|
|
Broken = true;
|
|
}
|
|
|
|
/// \brief A check failed (with values to print).
|
|
///
|
|
/// This calls the Message-only version so that the above is easier to set a
|
|
/// breakpoint on.
|
|
template <typename T1, typename... Ts>
|
|
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
|
|
CheckFailed(Message);
|
|
WriteTs(V1, Vs...);
|
|
}
|
|
};
|
|
|
|
class Verifier : public InstVisitor<Verifier>, VerifierSupport {
|
|
friend class InstVisitor<Verifier>;
|
|
|
|
LLVMContext *Context;
|
|
DominatorTree DT;
|
|
|
|
/// \brief When verifying a basic block, keep track of all of the
|
|
/// instructions we have seen so far.
|
|
///
|
|
/// This allows us to do efficient dominance checks for the case when an
|
|
/// instruction has an operand that is an instruction in the same block.
|
|
SmallPtrSet<Instruction *, 16> InstsInThisBlock;
|
|
|
|
/// \brief Keep track of the metadata nodes that have been checked already.
|
|
SmallPtrSet<const Metadata *, 32> MDNodes;
|
|
|
|
/// \brief Track unresolved string-based type references.
|
|
SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
|
|
|
|
/// \brief Whether we've seen a call to @llvm.localescape in this function
|
|
/// already.
|
|
bool SawFrameEscape;
|
|
|
|
/// Stores the count of how many objects were passed to llvm.localescape for a
|
|
/// given function and the largest index passed to llvm.localrecover.
|
|
DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
|
|
|
|
public:
|
|
explicit Verifier(raw_ostream &OS)
|
|
: VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {}
|
|
|
|
bool verify(const Function &F) {
|
|
M = F.getParent();
|
|
Context = &M->getContext();
|
|
|
|
// First ensure the function is well-enough formed to compute dominance
|
|
// information.
|
|
if (F.empty()) {
|
|
OS << "Function '" << F.getName()
|
|
<< "' does not contain an entry block!\n";
|
|
return false;
|
|
}
|
|
for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
|
if (I->empty() || !I->back().isTerminator()) {
|
|
OS << "Basic Block in function '" << F.getName()
|
|
<< "' does not have terminator!\n";
|
|
I->printAsOperand(OS, true);
|
|
OS << "\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Now directly compute a dominance tree. We don't rely on the pass
|
|
// manager to provide this as it isolates us from a potentially
|
|
// out-of-date dominator tree and makes it significantly more complex to
|
|
// run this code outside of a pass manager.
|
|
// FIXME: It's really gross that we have to cast away constness here.
|
|
DT.recalculate(const_cast<Function &>(F));
|
|
|
|
Broken = false;
|
|
// FIXME: We strip const here because the inst visitor strips const.
|
|
visit(const_cast<Function &>(F));
|
|
InstsInThisBlock.clear();
|
|
SawFrameEscape = false;
|
|
|
|
return !Broken;
|
|
}
|
|
|
|
bool verify(const Module &M) {
|
|
this->M = &M;
|
|
Context = &M.getContext();
|
|
Broken = false;
|
|
|
|
// Scan through, checking all of the external function's linkage now...
|
|
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
visitGlobalValue(*I);
|
|
|
|
// Check to make sure function prototypes are okay.
|
|
if (I->isDeclaration())
|
|
visitFunction(*I);
|
|
}
|
|
|
|
// Now that we've visited every function, verify that we never asked to
|
|
// recover a frame index that wasn't escaped.
|
|
verifyFrameRecoverIndices();
|
|
|
|
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I)
|
|
visitGlobalVariable(*I);
|
|
|
|
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
|
|
I != E; ++I)
|
|
visitGlobalAlias(*I);
|
|
|
|
for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
|
|
E = M.named_metadata_end();
|
|
I != E; ++I)
|
|
visitNamedMDNode(*I);
|
|
|
|
for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
|
|
visitComdat(SMEC.getValue());
|
|
|
|
visitModuleFlags(M);
|
|
visitModuleIdents(M);
|
|
|
|
// Verify type referneces last.
|
|
verifyTypeRefs();
|
|
|
|
return !Broken;
|
|
}
|
|
|
|
private:
|
|
// Verification methods...
|
|
void visitGlobalValue(const GlobalValue &GV);
|
|
void visitGlobalVariable(const GlobalVariable &GV);
|
|
void visitGlobalAlias(const GlobalAlias &GA);
|
|
void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
|
|
void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
|
|
const GlobalAlias &A, const Constant &C);
|
|
void visitNamedMDNode(const NamedMDNode &NMD);
|
|
void visitMDNode(const MDNode &MD);
|
|
void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
|
|
void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
|
|
void visitComdat(const Comdat &C);
|
|
void visitModuleIdents(const Module &M);
|
|
void visitModuleFlags(const Module &M);
|
|
void visitModuleFlag(const MDNode *Op,
|
|
DenseMap<const MDString *, const MDNode *> &SeenIDs,
|
|
SmallVectorImpl<const MDNode *> &Requirements);
|
|
void visitFunction(const Function &F);
|
|
void visitBasicBlock(BasicBlock &BB);
|
|
void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
|
|
|
|
template <class Ty> bool isValidMetadataArray(const MDTuple &N);
|
|
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
|
|
#include "llvm/IR/Metadata.def"
|
|
void visitDIScope(const DIScope &N);
|
|
void visitDIDerivedTypeBase(const DIDerivedTypeBase &N);
|
|
void visitDIVariable(const DIVariable &N);
|
|
void visitDILexicalBlockBase(const DILexicalBlockBase &N);
|
|
void visitDITemplateParameter(const DITemplateParameter &N);
|
|
|
|
void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
|
|
|
|
/// \brief Check for a valid string-based type reference.
|
|
///
|
|
/// Checks if \c MD is a string-based type reference. If it is, keeps track
|
|
/// of it (and its user, \c N) for error messages later.
|
|
bool isValidUUID(const MDNode &N, const Metadata *MD);
|
|
|
|
/// \brief Check for a valid type reference.
|
|
///
|
|
/// Checks for subclasses of \a DIType, or \a isValidUUID().
|
|
bool isTypeRef(const MDNode &N, const Metadata *MD);
|
|
|
|
/// \brief Check for a valid scope reference.
|
|
///
|
|
/// Checks for subclasses of \a DIScope, or \a isValidUUID().
|
|
bool isScopeRef(const MDNode &N, const Metadata *MD);
|
|
|
|
/// \brief Check for a valid debug info reference.
|
|
///
|
|
/// Checks for subclasses of \a DINode, or \a isValidUUID().
|
|
bool isDIRef(const MDNode &N, const Metadata *MD);
|
|
|
|
// InstVisitor overrides...
|
|
using InstVisitor<Verifier>::visit;
|
|
void visit(Instruction &I);
|
|
|
|
void visitTruncInst(TruncInst &I);
|
|
void visitZExtInst(ZExtInst &I);
|
|
void visitSExtInst(SExtInst &I);
|
|
void visitFPTruncInst(FPTruncInst &I);
|
|
void visitFPExtInst(FPExtInst &I);
|
|
void visitFPToUIInst(FPToUIInst &I);
|
|
void visitFPToSIInst(FPToSIInst &I);
|
|
void visitUIToFPInst(UIToFPInst &I);
|
|
void visitSIToFPInst(SIToFPInst &I);
|
|
void visitIntToPtrInst(IntToPtrInst &I);
|
|
void visitPtrToIntInst(PtrToIntInst &I);
|
|
void visitBitCastInst(BitCastInst &I);
|
|
void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
|
|
void visitPHINode(PHINode &PN);
|
|
void visitBinaryOperator(BinaryOperator &B);
|
|
void visitICmpInst(ICmpInst &IC);
|
|
void visitFCmpInst(FCmpInst &FC);
|
|
void visitExtractElementInst(ExtractElementInst &EI);
|
|
void visitInsertElementInst(InsertElementInst &EI);
|
|
void visitShuffleVectorInst(ShuffleVectorInst &EI);
|
|
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
|
|
void visitCallInst(CallInst &CI);
|
|
void visitInvokeInst(InvokeInst &II);
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void verifyDominatesUse(Instruction &I, unsigned i);
|
|
void visitInstruction(Instruction &I);
|
|
void visitTerminatorInst(TerminatorInst &I);
|
|
void visitBranchInst(BranchInst &BI);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitSwitchInst(SwitchInst &SI);
|
|
void visitIndirectBrInst(IndirectBrInst &BI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
void visitUserOp1(Instruction &I);
|
|
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
|
|
void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
|
|
template <class DbgIntrinsicTy>
|
|
void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
|
|
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
|
|
void visitAtomicRMWInst(AtomicRMWInst &RMWI);
|
|
void visitFenceInst(FenceInst &FI);
|
|
void visitAllocaInst(AllocaInst &AI);
|
|
void visitExtractValueInst(ExtractValueInst &EVI);
|
|
void visitInsertValueInst(InsertValueInst &IVI);
|
|
void visitLandingPadInst(LandingPadInst &LPI);
|
|
|
|
void VerifyCallSite(CallSite CS);
|
|
void verifyMustTailCall(CallInst &CI);
|
|
bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
|
|
unsigned ArgNo, std::string &Suffix);
|
|
bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
SmallVectorImpl<Type *> &ArgTys);
|
|
bool VerifyIntrinsicIsVarArg(bool isVarArg,
|
|
ArrayRef<Intrinsic::IITDescriptor> &Infos);
|
|
bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
|
|
void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
|
|
const Value *V);
|
|
void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
|
|
bool isReturnValue, const Value *V);
|
|
void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
|
|
const Value *V);
|
|
void VerifyFunctionMetadata(
|
|
const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
|
|
|
|
void VerifyConstantExprBitcastType(const ConstantExpr *CE);
|
|
void VerifyStatepoint(ImmutableCallSite CS);
|
|
void verifyFrameRecoverIndices();
|
|
|
|
// Module-level debug info verification...
|
|
void verifyTypeRefs();
|
|
template <class MapTy>
|
|
void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
|
|
const MapTy &TypeRefs);
|
|
void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
// Assert - We know that cond should be true, if not print an error message.
|
|
#define Assert(C, ...) \
|
|
do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
|
|
|
|
void Verifier::visit(Instruction &I) {
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
|
|
InstVisitor<Verifier>::visit(I);
|
|
}
|
|
|
|
|
|
void Verifier::visitGlobalValue(const GlobalValue &GV) {
|
|
Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
|
|
GV.hasExternalWeakLinkage(),
|
|
"Global is external, but doesn't have external or weak linkage!", &GV);
|
|
|
|
Assert(GV.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &GV);
|
|
Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
|
|
"Only global variables can have appending linkage!", &GV);
|
|
|
|
if (GV.hasAppendingLinkage()) {
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
|
|
Assert(GVar && GVar->getValueType()->isArrayTy(),
|
|
"Only global arrays can have appending linkage!", GVar);
|
|
}
|
|
|
|
if (GV.isDeclarationForLinker())
|
|
Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
|
|
}
|
|
|
|
void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
|
|
if (GV.hasInitializer()) {
|
|
Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
|
|
"Global variable initializer type does not match global "
|
|
"variable type!",
|
|
&GV);
|
|
|
|
// If the global has common linkage, it must have a zero initializer and
|
|
// cannot be constant.
|
|
if (GV.hasCommonLinkage()) {
|
|
Assert(GV.getInitializer()->isNullValue(),
|
|
"'common' global must have a zero initializer!", &GV);
|
|
Assert(!GV.isConstant(), "'common' global may not be marked constant!",
|
|
&GV);
|
|
Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
|
|
}
|
|
} else {
|
|
Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
|
|
"invalid linkage type for global declaration", &GV);
|
|
}
|
|
|
|
if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
|
|
GV.getName() == "llvm.global_dtors")) {
|
|
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
|
|
"invalid linkage for intrinsic global variable", &GV);
|
|
// Don't worry about emitting an error for it not being an array,
|
|
// visitGlobalValue will complain on appending non-array.
|
|
if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
|
|
StructType *STy = dyn_cast<StructType>(ATy->getElementType());
|
|
PointerType *FuncPtrTy =
|
|
FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
|
|
// FIXME: Reject the 2-field form in LLVM 4.0.
|
|
Assert(STy &&
|
|
(STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
|
|
STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
|
|
STy->getTypeAtIndex(1) == FuncPtrTy,
|
|
"wrong type for intrinsic global variable", &GV);
|
|
if (STy->getNumElements() == 3) {
|
|
Type *ETy = STy->getTypeAtIndex(2);
|
|
Assert(ETy->isPointerTy() &&
|
|
cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
|
|
"wrong type for intrinsic global variable", &GV);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (GV.hasName() && (GV.getName() == "llvm.used" ||
|
|
GV.getName() == "llvm.compiler.used")) {
|
|
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
|
|
"invalid linkage for intrinsic global variable", &GV);
|
|
Type *GVType = GV.getValueType();
|
|
if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
|
|
PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
|
|
Assert(PTy, "wrong type for intrinsic global variable", &GV);
|
|
if (GV.hasInitializer()) {
|
|
const Constant *Init = GV.getInitializer();
|
|
const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
|
|
Assert(InitArray, "wrong initalizer for intrinsic global variable",
|
|
Init);
|
|
for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
|
|
Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
|
|
Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
|
|
isa<GlobalAlias>(V),
|
|
"invalid llvm.used member", V);
|
|
Assert(V->hasName(), "members of llvm.used must be named", V);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Assert(!GV.hasDLLImportStorageClass() ||
|
|
(GV.isDeclaration() && GV.hasExternalLinkage()) ||
|
|
GV.hasAvailableExternallyLinkage(),
|
|
"Global is marked as dllimport, but not external", &GV);
|
|
|
|
if (!GV.hasInitializer()) {
|
|
visitGlobalValue(GV);
|
|
return;
|
|
}
|
|
|
|
// Walk any aggregate initializers looking for bitcasts between address spaces
|
|
SmallPtrSet<const Value *, 4> Visited;
|
|
SmallVector<const Value *, 4> WorkStack;
|
|
WorkStack.push_back(cast<Value>(GV.getInitializer()));
|
|
|
|
while (!WorkStack.empty()) {
|
|
const Value *V = WorkStack.pop_back_val();
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
|
|
if (const User *U = dyn_cast<User>(V)) {
|
|
WorkStack.append(U->op_begin(), U->op_end());
|
|
}
|
|
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
VerifyConstantExprBitcastType(CE);
|
|
if (Broken)
|
|
return;
|
|
}
|
|
}
|
|
|
|
visitGlobalValue(GV);
|
|
}
|
|
|
|
void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
|
|
SmallPtrSet<const GlobalAlias*, 4> Visited;
|
|
Visited.insert(&GA);
|
|
visitAliaseeSubExpr(Visited, GA, C);
|
|
}
|
|
|
|
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
|
|
const GlobalAlias &GA, const Constant &C) {
|
|
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
|
|
Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
|
|
|
|
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
|
|
Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
|
|
|
|
Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
|
|
&GA);
|
|
} else {
|
|
// Only continue verifying subexpressions of GlobalAliases.
|
|
// Do not recurse into global initializers.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const auto *CE = dyn_cast<ConstantExpr>(&C))
|
|
VerifyConstantExprBitcastType(CE);
|
|
|
|
for (const Use &U : C.operands()) {
|
|
Value *V = &*U;
|
|
if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
|
|
visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
|
|
else if (const auto *C2 = dyn_cast<Constant>(V))
|
|
visitAliaseeSubExpr(Visited, GA, *C2);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
|
|
Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
|
|
"Alias should have private, internal, linkonce, weak, linkonce_odr, "
|
|
"weak_odr, or external linkage!",
|
|
&GA);
|
|
const Constant *Aliasee = GA.getAliasee();
|
|
Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
|
|
Assert(GA.getType() == Aliasee->getType(),
|
|
"Alias and aliasee types should match!", &GA);
|
|
|
|
Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
|
|
"Aliasee should be either GlobalValue or ConstantExpr", &GA);
|
|
|
|
visitAliaseeSubExpr(GA, *Aliasee);
|
|
|
|
visitGlobalValue(GA);
|
|
}
|
|
|
|
void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
|
|
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
|
|
MDNode *MD = NMD.getOperand(i);
|
|
|
|
if (NMD.getName() == "llvm.dbg.cu") {
|
|
Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
|
|
}
|
|
|
|
if (!MD)
|
|
continue;
|
|
|
|
visitMDNode(*MD);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitMDNode(const MDNode &MD) {
|
|
// Only visit each node once. Metadata can be mutually recursive, so this
|
|
// avoids infinite recursion here, as well as being an optimization.
|
|
if (!MDNodes.insert(&MD).second)
|
|
return;
|
|
|
|
switch (MD.getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid MDNode subclass");
|
|
case Metadata::MDTupleKind:
|
|
break;
|
|
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
visit##CLASS(cast<CLASS>(MD)); \
|
|
break;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
|
|
for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
|
|
Metadata *Op = MD.getOperand(i);
|
|
if (!Op)
|
|
continue;
|
|
Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
|
|
&MD, Op);
|
|
if (auto *N = dyn_cast<MDNode>(Op)) {
|
|
visitMDNode(*N);
|
|
continue;
|
|
}
|
|
if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
|
|
visitValueAsMetadata(*V, nullptr);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check these last, so we diagnose problems in operands first.
|
|
Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
|
|
Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
|
|
}
|
|
|
|
void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
|
|
Assert(MD.getValue(), "Expected valid value", &MD);
|
|
Assert(!MD.getValue()->getType()->isMetadataTy(),
|
|
"Unexpected metadata round-trip through values", &MD, MD.getValue());
|
|
|
|
auto *L = dyn_cast<LocalAsMetadata>(&MD);
|
|
if (!L)
|
|
return;
|
|
|
|
Assert(F, "function-local metadata used outside a function", L);
|
|
|
|
// If this was an instruction, bb, or argument, verify that it is in the
|
|
// function that we expect.
|
|
Function *ActualF = nullptr;
|
|
if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
|
|
Assert(I->getParent(), "function-local metadata not in basic block", L, I);
|
|
ActualF = I->getParent()->getParent();
|
|
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
|
|
ActualF = BB->getParent();
|
|
else if (Argument *A = dyn_cast<Argument>(L->getValue()))
|
|
ActualF = A->getParent();
|
|
assert(ActualF && "Unimplemented function local metadata case!");
|
|
|
|
Assert(ActualF == F, "function-local metadata used in wrong function", L);
|
|
}
|
|
|
|
void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
|
|
Metadata *MD = MDV.getMetadata();
|
|
if (auto *N = dyn_cast<MDNode>(MD)) {
|
|
visitMDNode(*N);
|
|
return;
|
|
}
|
|
|
|
// Only visit each node once. Metadata can be mutually recursive, so this
|
|
// avoids infinite recursion here, as well as being an optimization.
|
|
if (!MDNodes.insert(MD).second)
|
|
return;
|
|
|
|
if (auto *V = dyn_cast<ValueAsMetadata>(MD))
|
|
visitValueAsMetadata(*V, F);
|
|
}
|
|
|
|
bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
|
|
auto *S = dyn_cast<MDString>(MD);
|
|
if (!S)
|
|
return false;
|
|
if (S->getString().empty())
|
|
return false;
|
|
|
|
// Keep track of names of types referenced via UUID so we can check that they
|
|
// actually exist.
|
|
UnresolvedTypeRefs.insert(std::make_pair(S, &N));
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check if a value can be a reference to a type.
|
|
bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
|
|
return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
|
|
}
|
|
|
|
/// \brief Check if a value can be a ScopeRef.
|
|
bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
|
|
return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
|
|
}
|
|
|
|
/// \brief Check if a value can be a debug info ref.
|
|
bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
|
|
return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
|
|
}
|
|
|
|
template <class Ty>
|
|
bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
|
|
for (Metadata *MD : N.operands()) {
|
|
if (MD) {
|
|
if (!isa<Ty>(MD))
|
|
return false;
|
|
} else {
|
|
if (!AllowNull)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Ty>
|
|
bool isValidMetadataArray(const MDTuple &N) {
|
|
return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
|
|
}
|
|
|
|
template <class Ty>
|
|
bool isValidMetadataNullArray(const MDTuple &N) {
|
|
return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
|
|
}
|
|
|
|
void Verifier::visitDILocation(const DILocation &N) {
|
|
Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
|
|
"location requires a valid scope", &N, N.getRawScope());
|
|
if (auto *IA = N.getRawInlinedAt())
|
|
Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
|
|
}
|
|
|
|
void Verifier::visitGenericDINode(const GenericDINode &N) {
|
|
Assert(N.getTag(), "invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIScope(const DIScope &N) {
|
|
if (auto *F = N.getRawFile())
|
|
Assert(isa<DIFile>(F), "invalid file", &N, F);
|
|
}
|
|
|
|
void Verifier::visitDISubrange(const DISubrange &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
|
|
Assert(N.getCount() >= -1, "invalid subrange count", &N);
|
|
}
|
|
|
|
void Verifier::visitDIEnumerator(const DIEnumerator &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIBasicType(const DIBasicType &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_base_type ||
|
|
N.getTag() == dwarf::DW_TAG_unspecified_type,
|
|
"invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) {
|
|
// Common scope checks.
|
|
visitDIScope(N);
|
|
|
|
Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
|
|
Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
|
|
N.getBaseType());
|
|
|
|
// FIXME: Sink this into the subclass verifies.
|
|
if (!N.getFile() || N.getFile()->getFilename().empty()) {
|
|
// Check whether the filename is allowed to be empty.
|
|
uint16_t Tag = N.getTag();
|
|
Assert(
|
|
Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
|
|
Tag == dwarf::DW_TAG_pointer_type ||
|
|
Tag == dwarf::DW_TAG_ptr_to_member_type ||
|
|
Tag == dwarf::DW_TAG_reference_type ||
|
|
Tag == dwarf::DW_TAG_rvalue_reference_type ||
|
|
Tag == dwarf::DW_TAG_restrict_type ||
|
|
Tag == dwarf::DW_TAG_array_type ||
|
|
Tag == dwarf::DW_TAG_enumeration_type ||
|
|
Tag == dwarf::DW_TAG_subroutine_type ||
|
|
Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
|
|
Tag == dwarf::DW_TAG_structure_type ||
|
|
Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
|
|
"derived/composite type requires a filename", &N, N.getFile());
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDIDerivedType(const DIDerivedType &N) {
|
|
// Common derived type checks.
|
|
visitDIDerivedTypeBase(N);
|
|
|
|
Assert(N.getTag() == dwarf::DW_TAG_typedef ||
|
|
N.getTag() == dwarf::DW_TAG_pointer_type ||
|
|
N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
|
|
N.getTag() == dwarf::DW_TAG_reference_type ||
|
|
N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
|
|
N.getTag() == dwarf::DW_TAG_const_type ||
|
|
N.getTag() == dwarf::DW_TAG_volatile_type ||
|
|
N.getTag() == dwarf::DW_TAG_restrict_type ||
|
|
N.getTag() == dwarf::DW_TAG_member ||
|
|
N.getTag() == dwarf::DW_TAG_inheritance ||
|
|
N.getTag() == dwarf::DW_TAG_friend,
|
|
"invalid tag", &N);
|
|
if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
|
|
Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
|
|
N.getExtraData());
|
|
}
|
|
}
|
|
|
|
static bool hasConflictingReferenceFlags(unsigned Flags) {
|
|
return (Flags & DINode::FlagLValueReference) &&
|
|
(Flags & DINode::FlagRValueReference);
|
|
}
|
|
|
|
void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
|
|
auto *Params = dyn_cast<MDTuple>(&RawParams);
|
|
Assert(Params, "invalid template params", &N, &RawParams);
|
|
for (Metadata *Op : Params->operands()) {
|
|
Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
|
|
Params, Op);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDICompositeType(const DICompositeType &N) {
|
|
// Common derived type checks.
|
|
visitDIDerivedTypeBase(N);
|
|
|
|
Assert(N.getTag() == dwarf::DW_TAG_array_type ||
|
|
N.getTag() == dwarf::DW_TAG_structure_type ||
|
|
N.getTag() == dwarf::DW_TAG_union_type ||
|
|
N.getTag() == dwarf::DW_TAG_enumeration_type ||
|
|
N.getTag() == dwarf::DW_TAG_subroutine_type ||
|
|
N.getTag() == dwarf::DW_TAG_class_type,
|
|
"invalid tag", &N);
|
|
|
|
Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
|
|
"invalid composite elements", &N, N.getRawElements());
|
|
Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
|
|
N.getRawVTableHolder());
|
|
Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
|
|
"invalid composite elements", &N, N.getRawElements());
|
|
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
|
|
&N);
|
|
if (auto *Params = N.getRawTemplateParams())
|
|
visitTemplateParams(N, *Params);
|
|
}
|
|
|
|
void Verifier::visitDISubroutineType(const DISubroutineType &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
|
|
if (auto *Types = N.getRawTypeArray()) {
|
|
Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
|
|
for (Metadata *Ty : N.getTypeArray()->operands()) {
|
|
Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
|
|
}
|
|
}
|
|
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
|
|
&N);
|
|
}
|
|
|
|
void Verifier::visitDIFile(const DIFile &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDICompileUnit(const DICompileUnit &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
|
|
|
|
// Don't bother verifying the compilation directory or producer string
|
|
// as those could be empty.
|
|
Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
|
|
N.getRawFile());
|
|
Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
|
|
N.getFile());
|
|
|
|
if (auto *Array = N.getRawEnumTypes()) {
|
|
Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
|
|
for (Metadata *Op : N.getEnumTypes()->operands()) {
|
|
auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
|
|
Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
|
|
"invalid enum type", &N, N.getEnumTypes(), Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawRetainedTypes()) {
|
|
Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
|
|
for (Metadata *Op : N.getRetainedTypes()->operands()) {
|
|
Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawSubprograms()) {
|
|
Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
|
|
for (Metadata *Op : N.getSubprograms()->operands()) {
|
|
Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawGlobalVariables()) {
|
|
Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
|
|
for (Metadata *Op : N.getGlobalVariables()->operands()) {
|
|
Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
|
|
Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawImportedEntities()) {
|
|
Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
|
|
for (Metadata *Op : N.getImportedEntities()->operands()) {
|
|
Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
|
|
Op);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDISubprogram(const DISubprogram &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
|
|
Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
|
|
if (auto *T = N.getRawType())
|
|
Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
|
|
Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
|
|
N.getRawContainingType());
|
|
if (auto *RawF = N.getRawFunction()) {
|
|
auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
|
|
auto *F = FMD ? FMD->getValue() : nullptr;
|
|
auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
|
|
Assert(F && FT && isa<FunctionType>(FT->getElementType()),
|
|
"invalid function", &N, F, FT);
|
|
}
|
|
if (auto *Params = N.getRawTemplateParams())
|
|
visitTemplateParams(N, *Params);
|
|
if (auto *S = N.getRawDeclaration()) {
|
|
Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
|
|
"invalid subprogram declaration", &N, S);
|
|
}
|
|
if (auto *RawVars = N.getRawVariables()) {
|
|
auto *Vars = dyn_cast<MDTuple>(RawVars);
|
|
Assert(Vars, "invalid variable list", &N, RawVars);
|
|
for (Metadata *Op : Vars->operands()) {
|
|
Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
|
|
Op);
|
|
}
|
|
}
|
|
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
|
|
&N);
|
|
|
|
auto *F = N.getFunction();
|
|
if (!F)
|
|
return;
|
|
|
|
// Check that all !dbg attachments lead to back to N (or, at least, another
|
|
// subprogram that describes the same function).
|
|
//
|
|
// FIXME: Check this incrementally while visiting !dbg attachments.
|
|
// FIXME: Only check when N is the canonical subprogram for F.
|
|
SmallPtrSet<const MDNode *, 32> Seen;
|
|
for (auto &BB : *F)
|
|
for (auto &I : BB) {
|
|
// Be careful about using DILocation here since we might be dealing with
|
|
// broken code (this is the Verifier after all).
|
|
DILocation *DL =
|
|
dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
|
|
if (!DL)
|
|
continue;
|
|
if (!Seen.insert(DL).second)
|
|
continue;
|
|
|
|
DILocalScope *Scope = DL->getInlinedAtScope();
|
|
if (Scope && !Seen.insert(Scope).second)
|
|
continue;
|
|
|
|
DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
|
|
if (SP && !Seen.insert(SP).second)
|
|
continue;
|
|
|
|
// FIXME: Once N is canonical, check "SP == &N".
|
|
Assert(SP->describes(F),
|
|
"!dbg attachment points at wrong subprogram for function", &N, F,
|
|
&I, DL, Scope, SP);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
|
|
Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
|
|
"invalid local scope", &N, N.getRawScope());
|
|
}
|
|
|
|
void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
|
|
visitDILexicalBlockBase(N);
|
|
|
|
Assert(N.getLine() || !N.getColumn(),
|
|
"cannot have column info without line info", &N);
|
|
}
|
|
|
|
void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
|
|
visitDILexicalBlockBase(N);
|
|
}
|
|
|
|
void Verifier::visitDINamespace(const DINamespace &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
|
|
if (auto *S = N.getRawScope())
|
|
Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
|
|
}
|
|
|
|
void Verifier::visitDIModule(const DIModule &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
|
|
Assert(!N.getName().empty(), "anonymous module", &N);
|
|
}
|
|
|
|
void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
|
|
Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
|
|
}
|
|
|
|
void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
|
|
visitDITemplateParameter(N);
|
|
|
|
Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
|
|
&N);
|
|
}
|
|
|
|
void Verifier::visitDITemplateValueParameter(
|
|
const DITemplateValueParameter &N) {
|
|
visitDITemplateParameter(N);
|
|
|
|
Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
|
|
N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
|
|
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
|
|
"invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIVariable(const DIVariable &N) {
|
|
if (auto *S = N.getRawScope())
|
|
Assert(isa<DIScope>(S), "invalid scope", &N, S);
|
|
Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
|
|
if (auto *F = N.getRawFile())
|
|
Assert(isa<DIFile>(F), "invalid file", &N, F);
|
|
}
|
|
|
|
void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
|
|
// Checks common to all variables.
|
|
visitDIVariable(N);
|
|
|
|
Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
|
|
Assert(!N.getName().empty(), "missing global variable name", &N);
|
|
if (auto *V = N.getRawVariable()) {
|
|
Assert(isa<ConstantAsMetadata>(V) &&
|
|
!isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
|
|
"invalid global varaible ref", &N, V);
|
|
}
|
|
if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
|
|
Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
|
|
&N, Member);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDILocalVariable(const DILocalVariable &N) {
|
|
// Checks common to all variables.
|
|
visitDIVariable(N);
|
|
|
|
Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
|
|
N.getTag() == dwarf::DW_TAG_arg_variable,
|
|
"invalid tag", &N);
|
|
Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
|
|
"local variable requires a valid scope", &N, N.getRawScope());
|
|
}
|
|
|
|
void Verifier::visitDIExpression(const DIExpression &N) {
|
|
Assert(N.isValid(), "invalid expression", &N);
|
|
}
|
|
|
|
void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
|
|
if (auto *T = N.getRawType())
|
|
Assert(isTypeRef(N, T), "invalid type ref", &N, T);
|
|
if (auto *F = N.getRawFile())
|
|
Assert(isa<DIFile>(F), "invalid file", &N, F);
|
|
}
|
|
|
|
void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
|
|
Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
|
|
N.getTag() == dwarf::DW_TAG_imported_declaration,
|
|
"invalid tag", &N);
|
|
if (auto *S = N.getRawScope())
|
|
Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
|
|
Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
|
|
N.getEntity());
|
|
}
|
|
|
|
void Verifier::visitComdat(const Comdat &C) {
|
|
// The Module is invalid if the GlobalValue has private linkage. Entities
|
|
// with private linkage don't have entries in the symbol table.
|
|
if (const GlobalValue *GV = M->getNamedValue(C.getName()))
|
|
Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
|
|
GV);
|
|
}
|
|
|
|
void Verifier::visitModuleIdents(const Module &M) {
|
|
const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
|
|
if (!Idents)
|
|
return;
|
|
|
|
// llvm.ident takes a list of metadata entry. Each entry has only one string.
|
|
// Scan each llvm.ident entry and make sure that this requirement is met.
|
|
for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
|
|
const MDNode *N = Idents->getOperand(i);
|
|
Assert(N->getNumOperands() == 1,
|
|
"incorrect number of operands in llvm.ident metadata", N);
|
|
Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
|
|
("invalid value for llvm.ident metadata entry operand"
|
|
"(the operand should be a string)"),
|
|
N->getOperand(0));
|
|
}
|
|
}
|
|
|
|
void Verifier::visitModuleFlags(const Module &M) {
|
|
const NamedMDNode *Flags = M.getModuleFlagsMetadata();
|
|
if (!Flags) return;
|
|
|
|
// Scan each flag, and track the flags and requirements.
|
|
DenseMap<const MDString*, const MDNode*> SeenIDs;
|
|
SmallVector<const MDNode*, 16> Requirements;
|
|
for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
|
|
visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
|
|
}
|
|
|
|
// Validate that the requirements in the module are valid.
|
|
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
|
|
const MDNode *Requirement = Requirements[I];
|
|
const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
|
|
const Metadata *ReqValue = Requirement->getOperand(1);
|
|
|
|
const MDNode *Op = SeenIDs.lookup(Flag);
|
|
if (!Op) {
|
|
CheckFailed("invalid requirement on flag, flag is not present in module",
|
|
Flag);
|
|
continue;
|
|
}
|
|
|
|
if (Op->getOperand(2) != ReqValue) {
|
|
CheckFailed(("invalid requirement on flag, "
|
|
"flag does not have the required value"),
|
|
Flag);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
Verifier::visitModuleFlag(const MDNode *Op,
|
|
DenseMap<const MDString *, const MDNode *> &SeenIDs,
|
|
SmallVectorImpl<const MDNode *> &Requirements) {
|
|
// Each module flag should have three arguments, the merge behavior (a
|
|
// constant int), the flag ID (an MDString), and the value.
|
|
Assert(Op->getNumOperands() == 3,
|
|
"incorrect number of operands in module flag", Op);
|
|
Module::ModFlagBehavior MFB;
|
|
if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
|
|
Assert(
|
|
mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
|
|
"invalid behavior operand in module flag (expected constant integer)",
|
|
Op->getOperand(0));
|
|
Assert(false,
|
|
"invalid behavior operand in module flag (unexpected constant)",
|
|
Op->getOperand(0));
|
|
}
|
|
MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
|
|
Assert(ID, "invalid ID operand in module flag (expected metadata string)",
|
|
Op->getOperand(1));
|
|
|
|
// Sanity check the values for behaviors with additional requirements.
|
|
switch (MFB) {
|
|
case Module::Error:
|
|
case Module::Warning:
|
|
case Module::Override:
|
|
// These behavior types accept any value.
|
|
break;
|
|
|
|
case Module::Require: {
|
|
// The value should itself be an MDNode with two operands, a flag ID (an
|
|
// MDString), and a value.
|
|
MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
|
|
Assert(Value && Value->getNumOperands() == 2,
|
|
"invalid value for 'require' module flag (expected metadata pair)",
|
|
Op->getOperand(2));
|
|
Assert(isa<MDString>(Value->getOperand(0)),
|
|
("invalid value for 'require' module flag "
|
|
"(first value operand should be a string)"),
|
|
Value->getOperand(0));
|
|
|
|
// Append it to the list of requirements, to check once all module flags are
|
|
// scanned.
|
|
Requirements.push_back(Value);
|
|
break;
|
|
}
|
|
|
|
case Module::Append:
|
|
case Module::AppendUnique: {
|
|
// These behavior types require the operand be an MDNode.
|
|
Assert(isa<MDNode>(Op->getOperand(2)),
|
|
"invalid value for 'append'-type module flag "
|
|
"(expected a metadata node)",
|
|
Op->getOperand(2));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Unless this is a "requires" flag, check the ID is unique.
|
|
if (MFB != Module::Require) {
|
|
bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
|
|
Assert(Inserted,
|
|
"module flag identifiers must be unique (or of 'require' type)", ID);
|
|
}
|
|
}
|
|
|
|
void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
|
|
bool isFunction, const Value *V) {
|
|
unsigned Slot = ~0U;
|
|
for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
|
|
if (Attrs.getSlotIndex(I) == Idx) {
|
|
Slot = I;
|
|
break;
|
|
}
|
|
|
|
assert(Slot != ~0U && "Attribute set inconsistency!");
|
|
|
|
for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
|
|
I != E; ++I) {
|
|
if (I->isStringAttribute())
|
|
continue;
|
|
|
|
if (I->getKindAsEnum() == Attribute::NoReturn ||
|
|
I->getKindAsEnum() == Attribute::NoUnwind ||
|
|
I->getKindAsEnum() == Attribute::NoInline ||
|
|
I->getKindAsEnum() == Attribute::AlwaysInline ||
|
|
I->getKindAsEnum() == Attribute::OptimizeForSize ||
|
|
I->getKindAsEnum() == Attribute::StackProtect ||
|
|
I->getKindAsEnum() == Attribute::StackProtectReq ||
|
|
I->getKindAsEnum() == Attribute::StackProtectStrong ||
|
|
I->getKindAsEnum() == Attribute::SafeStack ||
|
|
I->getKindAsEnum() == Attribute::NoRedZone ||
|
|
I->getKindAsEnum() == Attribute::NoImplicitFloat ||
|
|
I->getKindAsEnum() == Attribute::Naked ||
|
|
I->getKindAsEnum() == Attribute::InlineHint ||
|
|
I->getKindAsEnum() == Attribute::StackAlignment ||
|
|
I->getKindAsEnum() == Attribute::UWTable ||
|
|
I->getKindAsEnum() == Attribute::NonLazyBind ||
|
|
I->getKindAsEnum() == Attribute::ReturnsTwice ||
|
|
I->getKindAsEnum() == Attribute::SanitizeAddress ||
|
|
I->getKindAsEnum() == Attribute::SanitizeThread ||
|
|
I->getKindAsEnum() == Attribute::SanitizeMemory ||
|
|
I->getKindAsEnum() == Attribute::MinSize ||
|
|
I->getKindAsEnum() == Attribute::NoDuplicate ||
|
|
I->getKindAsEnum() == Attribute::Builtin ||
|
|
I->getKindAsEnum() == Attribute::NoBuiltin ||
|
|
I->getKindAsEnum() == Attribute::Cold ||
|
|
I->getKindAsEnum() == Attribute::OptimizeNone ||
|
|
I->getKindAsEnum() == Attribute::JumpTable ||
|
|
I->getKindAsEnum() == Attribute::Convergent ||
|
|
I->getKindAsEnum() == Attribute::ArgMemOnly) {
|
|
if (!isFunction) {
|
|
CheckFailed("Attribute '" + I->getAsString() +
|
|
"' only applies to functions!", V);
|
|
return;
|
|
}
|
|
} else if (I->getKindAsEnum() == Attribute::ReadOnly ||
|
|
I->getKindAsEnum() == Attribute::ReadNone) {
|
|
if (Idx == 0) {
|
|
CheckFailed("Attribute '" + I->getAsString() +
|
|
"' does not apply to function returns");
|
|
return;
|
|
}
|
|
} else if (isFunction) {
|
|
CheckFailed("Attribute '" + I->getAsString() +
|
|
"' does not apply to functions!", V);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// VerifyParameterAttrs - Check the given attributes for an argument or return
|
|
// value of the specified type. The value V is printed in error messages.
|
|
void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
|
|
bool isReturnValue, const Value *V) {
|
|
if (!Attrs.hasAttributes(Idx))
|
|
return;
|
|
|
|
VerifyAttributeTypes(Attrs, Idx, false, V);
|
|
|
|
if (isReturnValue)
|
|
Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
|
|
!Attrs.hasAttribute(Idx, Attribute::Nest) &&
|
|
!Attrs.hasAttribute(Idx, Attribute::StructRet) &&
|
|
!Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
|
|
!Attrs.hasAttribute(Idx, Attribute::Returned) &&
|
|
!Attrs.hasAttribute(Idx, Attribute::InAlloca),
|
|
"Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
|
|
"'returned' do not apply to return values!",
|
|
V);
|
|
|
|
// Check for mutually incompatible attributes. Only inreg is compatible with
|
|
// sret.
|
|
unsigned AttrCount = 0;
|
|
AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
|
|
AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
|
|
AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
|
|
Attrs.hasAttribute(Idx, Attribute::InReg);
|
|
AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
|
|
Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
|
|
"and 'sret' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
|
|
Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
|
|
"Attributes "
|
|
"'inalloca and readonly' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
|
|
Attrs.hasAttribute(Idx, Attribute::Returned)),
|
|
"Attributes "
|
|
"'sret and returned' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
|
|
Attrs.hasAttribute(Idx, Attribute::SExt)),
|
|
"Attributes "
|
|
"'zeroext and signext' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
|
|
Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
|
|
"Attributes "
|
|
"'readnone and readonly' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
|
|
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
|
|
"Attributes "
|
|
"'noinline and alwaysinline' are incompatible!",
|
|
V);
|
|
|
|
Assert(!AttrBuilder(Attrs, Idx)
|
|
.overlaps(AttributeFuncs::typeIncompatible(Ty)),
|
|
"Wrong types for attribute: " +
|
|
AttributeSet::get(*Context, Idx,
|
|
AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
|
|
V);
|
|
|
|
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
|
|
SmallPtrSet<const Type*, 4> Visited;
|
|
if (!PTy->getElementType()->isSized(&Visited)) {
|
|
Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
|
|
!Attrs.hasAttribute(Idx, Attribute::InAlloca),
|
|
"Attributes 'byval' and 'inalloca' do not support unsized types!",
|
|
V);
|
|
}
|
|
} else {
|
|
Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
|
|
"Attribute 'byval' only applies to parameters with pointer type!",
|
|
V);
|
|
}
|
|
}
|
|
|
|
// VerifyFunctionAttrs - Check parameter attributes against a function type.
|
|
// The value V is printed in error messages.
|
|
void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
|
|
const Value *V) {
|
|
if (Attrs.isEmpty())
|
|
return;
|
|
|
|
bool SawNest = false;
|
|
bool SawReturned = false;
|
|
bool SawSRet = false;
|
|
|
|
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
|
|
unsigned Idx = Attrs.getSlotIndex(i);
|
|
|
|
Type *Ty;
|
|
if (Idx == 0)
|
|
Ty = FT->getReturnType();
|
|
else if (Idx-1 < FT->getNumParams())
|
|
Ty = FT->getParamType(Idx-1);
|
|
else
|
|
break; // VarArgs attributes, verified elsewhere.
|
|
|
|
VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
|
|
|
|
if (Idx == 0)
|
|
continue;
|
|
|
|
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
|
|
Assert(!SawNest, "More than one parameter has attribute nest!", V);
|
|
SawNest = true;
|
|
}
|
|
|
|
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
|
|
Assert(!SawReturned, "More than one parameter has attribute returned!",
|
|
V);
|
|
Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
|
|
"Incompatible "
|
|
"argument and return types for 'returned' attribute",
|
|
V);
|
|
SawReturned = true;
|
|
}
|
|
|
|
if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
|
|
Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
|
|
Assert(Idx == 1 || Idx == 2,
|
|
"Attribute 'sret' is not on first or second parameter!", V);
|
|
SawSRet = true;
|
|
}
|
|
|
|
if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
|
|
Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
|
|
V);
|
|
}
|
|
}
|
|
|
|
if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
return;
|
|
|
|
VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
|
|
|
|
Assert(
|
|
!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
|
|
Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
|
|
"Attributes 'readnone and readonly' are incompatible!", V);
|
|
|
|
Assert(
|
|
!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
|
|
Attrs.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::AlwaysInline)),
|
|
"Attributes 'noinline and alwaysinline' are incompatible!", V);
|
|
|
|
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::OptimizeNone)) {
|
|
Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
|
|
"Attribute 'optnone' requires 'noinline'!", V);
|
|
|
|
Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::OptimizeForSize),
|
|
"Attributes 'optsize and optnone' are incompatible!", V);
|
|
|
|
Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
|
|
"Attributes 'minsize and optnone' are incompatible!", V);
|
|
}
|
|
|
|
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::JumpTable)) {
|
|
const GlobalValue *GV = cast<GlobalValue>(V);
|
|
Assert(GV->hasUnnamedAddr(),
|
|
"Attribute 'jumptable' requires 'unnamed_addr'", V);
|
|
}
|
|
}
|
|
|
|
void Verifier::VerifyFunctionMetadata(
|
|
const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
|
|
if (MDs.empty())
|
|
return;
|
|
|
|
for (unsigned i = 0; i < MDs.size(); i++) {
|
|
if (MDs[i].first == LLVMContext::MD_prof) {
|
|
MDNode *MD = MDs[i].second;
|
|
Assert(MD->getNumOperands() == 2,
|
|
"!prof annotations should have exactly 2 operands", MD);
|
|
|
|
// Check first operand.
|
|
Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
|
|
MD);
|
|
Assert(isa<MDString>(MD->getOperand(0)),
|
|
"expected string with name of the !prof annotation", MD);
|
|
MDString *MDS = cast<MDString>(MD->getOperand(0));
|
|
StringRef ProfName = MDS->getString();
|
|
Assert(ProfName.equals("function_entry_count"),
|
|
"first operand should be 'function_entry_count'", MD);
|
|
|
|
// Check second operand.
|
|
Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
|
|
MD);
|
|
Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
|
|
"expected integer argument to function_entry_count", MD);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
|
|
if (CE->getOpcode() != Instruction::BitCast)
|
|
return;
|
|
|
|
Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
|
|
CE->getType()),
|
|
"Invalid bitcast", CE);
|
|
}
|
|
|
|
bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
|
|
if (Attrs.getNumSlots() == 0)
|
|
return true;
|
|
|
|
unsigned LastSlot = Attrs.getNumSlots() - 1;
|
|
unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
|
|
if (LastIndex <= Params
|
|
|| (LastIndex == AttributeSet::FunctionIndex
|
|
&& (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Verify that statepoint intrinsic is well formed.
|
|
void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
|
|
assert(CS.getCalledFunction() &&
|
|
CS.getCalledFunction()->getIntrinsicID() ==
|
|
Intrinsic::experimental_gc_statepoint);
|
|
|
|
const Instruction &CI = *CS.getInstruction();
|
|
|
|
Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
|
|
!CS.onlyAccessesArgMemory(),
|
|
"gc.statepoint must read and write all memory to preserve "
|
|
"reordering restrictions required by safepoint semantics",
|
|
&CI);
|
|
|
|
const Value *IDV = CS.getArgument(0);
|
|
Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
|
|
&CI);
|
|
|
|
const Value *NumPatchBytesV = CS.getArgument(1);
|
|
Assert(isa<ConstantInt>(NumPatchBytesV),
|
|
"gc.statepoint number of patchable bytes must be a constant integer",
|
|
&CI);
|
|
const int64_t NumPatchBytes =
|
|
cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
|
|
assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
|
|
Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
|
|
"positive",
|
|
&CI);
|
|
|
|
const Value *Target = CS.getArgument(2);
|
|
const PointerType *PT = dyn_cast<PointerType>(Target->getType());
|
|
Assert(PT && PT->getElementType()->isFunctionTy(),
|
|
"gc.statepoint callee must be of function pointer type", &CI, Target);
|
|
FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
|
|
|
|
if (NumPatchBytes)
|
|
Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()),
|
|
"gc.statepoint must have null as call target if number of patchable "
|
|
"bytes is non zero",
|
|
&CI);
|
|
|
|
const Value *NumCallArgsV = CS.getArgument(3);
|
|
Assert(isa<ConstantInt>(NumCallArgsV),
|
|
"gc.statepoint number of arguments to underlying call "
|
|
"must be constant integer",
|
|
&CI);
|
|
const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
|
|
Assert(NumCallArgs >= 0,
|
|
"gc.statepoint number of arguments to underlying call "
|
|
"must be positive",
|
|
&CI);
|
|
const int NumParams = (int)TargetFuncType->getNumParams();
|
|
if (TargetFuncType->isVarArg()) {
|
|
Assert(NumCallArgs >= NumParams,
|
|
"gc.statepoint mismatch in number of vararg call args", &CI);
|
|
|
|
// TODO: Remove this limitation
|
|
Assert(TargetFuncType->getReturnType()->isVoidTy(),
|
|
"gc.statepoint doesn't support wrapping non-void "
|
|
"vararg functions yet",
|
|
&CI);
|
|
} else
|
|
Assert(NumCallArgs == NumParams,
|
|
"gc.statepoint mismatch in number of call args", &CI);
|
|
|
|
const Value *FlagsV = CS.getArgument(4);
|
|
Assert(isa<ConstantInt>(FlagsV),
|
|
"gc.statepoint flags must be constant integer", &CI);
|
|
const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
|
|
Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
|
|
"unknown flag used in gc.statepoint flags argument", &CI);
|
|
|
|
// Verify that the types of the call parameter arguments match
|
|
// the type of the wrapped callee.
|
|
for (int i = 0; i < NumParams; i++) {
|
|
Type *ParamType = TargetFuncType->getParamType(i);
|
|
Type *ArgType = CS.getArgument(5 + i)->getType();
|
|
Assert(ArgType == ParamType,
|
|
"gc.statepoint call argument does not match wrapped "
|
|
"function type",
|
|
&CI);
|
|
}
|
|
|
|
const int EndCallArgsInx = 4 + NumCallArgs;
|
|
|
|
const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
|
|
Assert(isa<ConstantInt>(NumTransitionArgsV),
|
|
"gc.statepoint number of transition arguments "
|
|
"must be constant integer",
|
|
&CI);
|
|
const int NumTransitionArgs =
|
|
cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
|
|
Assert(NumTransitionArgs >= 0,
|
|
"gc.statepoint number of transition arguments must be positive", &CI);
|
|
const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
|
|
|
|
const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
|
|
Assert(isa<ConstantInt>(NumDeoptArgsV),
|
|
"gc.statepoint number of deoptimization arguments "
|
|
"must be constant integer",
|
|
&CI);
|
|
const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
|
|
Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
|
|
"must be positive",
|
|
&CI);
|
|
|
|
const int ExpectedNumArgs =
|
|
7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
|
|
Assert(ExpectedNumArgs <= (int)CS.arg_size(),
|
|
"gc.statepoint too few arguments according to length fields", &CI);
|
|
|
|
// Check that the only uses of this gc.statepoint are gc.result or
|
|
// gc.relocate calls which are tied to this statepoint and thus part
|
|
// of the same statepoint sequence
|
|
for (const User *U : CI.users()) {
|
|
const CallInst *Call = dyn_cast<const CallInst>(U);
|
|
Assert(Call, "illegal use of statepoint token", &CI, U);
|
|
if (!Call) continue;
|
|
Assert(isGCRelocate(Call) || isGCResult(Call),
|
|
"gc.result or gc.relocate are the only value uses"
|
|
"of a gc.statepoint",
|
|
&CI, U);
|
|
if (isGCResult(Call)) {
|
|
Assert(Call->getArgOperand(0) == &CI,
|
|
"gc.result connected to wrong gc.statepoint", &CI, Call);
|
|
} else if (isGCRelocate(Call)) {
|
|
Assert(Call->getArgOperand(0) == &CI,
|
|
"gc.relocate connected to wrong gc.statepoint", &CI, Call);
|
|
}
|
|
}
|
|
|
|
// Note: It is legal for a single derived pointer to be listed multiple
|
|
// times. It's non-optimal, but it is legal. It can also happen after
|
|
// insertion if we strip a bitcast away.
|
|
// Note: It is really tempting to check that each base is relocated and
|
|
// that a derived pointer is never reused as a base pointer. This turns
|
|
// out to be problematic since optimizations run after safepoint insertion
|
|
// can recognize equality properties that the insertion logic doesn't know
|
|
// about. See example statepoint.ll in the verifier subdirectory
|
|
}
|
|
|
|
void Verifier::verifyFrameRecoverIndices() {
|
|
for (auto &Counts : FrameEscapeInfo) {
|
|
Function *F = Counts.first;
|
|
unsigned EscapedObjectCount = Counts.second.first;
|
|
unsigned MaxRecoveredIndex = Counts.second.second;
|
|
Assert(MaxRecoveredIndex <= EscapedObjectCount,
|
|
"all indices passed to llvm.localrecover must be less than the "
|
|
"number of arguments passed ot llvm.localescape in the parent "
|
|
"function",
|
|
F);
|
|
}
|
|
}
|
|
|
|
// visitFunction - Verify that a function is ok.
|
|
//
|
|
void Verifier::visitFunction(const Function &F) {
|
|
// Check function arguments.
|
|
FunctionType *FT = F.getFunctionType();
|
|
unsigned NumArgs = F.arg_size();
|
|
|
|
Assert(Context == &F.getContext(),
|
|
"Function context does not match Module context!", &F);
|
|
|
|
Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
|
|
Assert(FT->getNumParams() == NumArgs,
|
|
"# formal arguments must match # of arguments for function type!", &F,
|
|
FT);
|
|
Assert(F.getReturnType()->isFirstClassType() ||
|
|
F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
|
|
"Functions cannot return aggregate values!", &F);
|
|
|
|
Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
|
|
"Invalid struct return type!", &F);
|
|
|
|
AttributeSet Attrs = F.getAttributes();
|
|
|
|
Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
|
|
"Attribute after last parameter!", &F);
|
|
|
|
// Check function attributes.
|
|
VerifyFunctionAttrs(FT, Attrs, &F);
|
|
|
|
// On function declarations/definitions, we do not support the builtin
|
|
// attribute. We do not check this in VerifyFunctionAttrs since that is
|
|
// checking for Attributes that can/can not ever be on functions.
|
|
Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
|
|
"Attribute 'builtin' can only be applied to a callsite.", &F);
|
|
|
|
// Check that this function meets the restrictions on this calling convention.
|
|
// Sometimes varargs is used for perfectly forwarding thunks, so some of these
|
|
// restrictions can be lifted.
|
|
switch (F.getCallingConv()) {
|
|
default:
|
|
case CallingConv::C:
|
|
break;
|
|
case CallingConv::Fast:
|
|
case CallingConv::Cold:
|
|
case CallingConv::Intel_OCL_BI:
|
|
case CallingConv::PTX_Kernel:
|
|
case CallingConv::PTX_Device:
|
|
Assert(!F.isVarArg(), "Calling convention does not support varargs or "
|
|
"perfect forwarding!",
|
|
&F);
|
|
break;
|
|
}
|
|
|
|
bool isLLVMdotName = F.getName().size() >= 5 &&
|
|
F.getName().substr(0, 5) == "llvm.";
|
|
|
|
// Check that the argument values match the function type for this function...
|
|
unsigned i = 0;
|
|
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
|
|
++I, ++i) {
|
|
Assert(I->getType() == FT->getParamType(i),
|
|
"Argument value does not match function argument type!", I,
|
|
FT->getParamType(i));
|
|
Assert(I->getType()->isFirstClassType(),
|
|
"Function arguments must have first-class types!", I);
|
|
if (!isLLVMdotName)
|
|
Assert(!I->getType()->isMetadataTy(),
|
|
"Function takes metadata but isn't an intrinsic", I, &F);
|
|
}
|
|
|
|
// Get the function metadata attachments.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
F.getAllMetadata(MDs);
|
|
assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
|
|
VerifyFunctionMetadata(MDs);
|
|
|
|
if (F.isMaterializable()) {
|
|
// Function has a body somewhere we can't see.
|
|
Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
|
|
MDs.empty() ? nullptr : MDs.front().second);
|
|
} else if (F.isDeclaration()) {
|
|
Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
|
|
"invalid linkage type for function declaration", &F);
|
|
Assert(MDs.empty(), "function without a body cannot have metadata", &F,
|
|
MDs.empty() ? nullptr : MDs.front().second);
|
|
Assert(!F.hasPersonalityFn(),
|
|
"Function declaration shouldn't have a personality routine", &F);
|
|
} else {
|
|
// Verify that this function (which has a body) is not named "llvm.*". It
|
|
// is not legal to define intrinsics.
|
|
Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
|
|
|
|
// Check the entry node
|
|
const BasicBlock *Entry = &F.getEntryBlock();
|
|
Assert(pred_empty(Entry),
|
|
"Entry block to function must not have predecessors!", Entry);
|
|
|
|
// The address of the entry block cannot be taken, unless it is dead.
|
|
if (Entry->hasAddressTaken()) {
|
|
Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
|
|
"blockaddress may not be used with the entry block!", Entry);
|
|
}
|
|
|
|
// Visit metadata attachments.
|
|
for (const auto &I : MDs)
|
|
visitMDNode(*I.second);
|
|
}
|
|
|
|
// If this function is actually an intrinsic, verify that it is only used in
|
|
// direct call/invokes, never having its "address taken".
|
|
if (F.getIntrinsicID()) {
|
|
const User *U;
|
|
if (F.hasAddressTaken(&U))
|
|
Assert(0, "Invalid user of intrinsic instruction!", U);
|
|
}
|
|
|
|
Assert(!F.hasDLLImportStorageClass() ||
|
|
(F.isDeclaration() && F.hasExternalLinkage()) ||
|
|
F.hasAvailableExternallyLinkage(),
|
|
"Function is marked as dllimport, but not external.", &F);
|
|
}
|
|
|
|
// verifyBasicBlock - Verify that a basic block is well formed...
|
|
//
|
|
void Verifier::visitBasicBlock(BasicBlock &BB) {
|
|
InstsInThisBlock.clear();
|
|
|
|
// Ensure that basic blocks have terminators!
|
|
Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
|
|
|
|
// Check constraints that this basic block imposes on all of the PHI nodes in
|
|
// it.
|
|
if (isa<PHINode>(BB.front())) {
|
|
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
|
|
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
|
|
std::sort(Preds.begin(), Preds.end());
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
|
|
// Ensure that PHI nodes have at least one entry!
|
|
Assert(PN->getNumIncomingValues() != 0,
|
|
"PHI nodes must have at least one entry. If the block is dead, "
|
|
"the PHI should be removed!",
|
|
PN);
|
|
Assert(PN->getNumIncomingValues() == Preds.size(),
|
|
"PHINode should have one entry for each predecessor of its "
|
|
"parent basic block!",
|
|
PN);
|
|
|
|
// Get and sort all incoming values in the PHI node...
|
|
Values.clear();
|
|
Values.reserve(PN->getNumIncomingValues());
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
|
|
PN->getIncomingValue(i)));
|
|
std::sort(Values.begin(), Values.end());
|
|
|
|
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
|
|
// Check to make sure that if there is more than one entry for a
|
|
// particular basic block in this PHI node, that the incoming values are
|
|
// all identical.
|
|
//
|
|
Assert(i == 0 || Values[i].first != Values[i - 1].first ||
|
|
Values[i].second == Values[i - 1].second,
|
|
"PHI node has multiple entries for the same basic block with "
|
|
"different incoming values!",
|
|
PN, Values[i].first, Values[i].second, Values[i - 1].second);
|
|
|
|
// Check to make sure that the predecessors and PHI node entries are
|
|
// matched up.
|
|
Assert(Values[i].first == Preds[i],
|
|
"PHI node entries do not match predecessors!", PN,
|
|
Values[i].first, Preds[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that all instructions have their parent pointers set up correctly.
|
|
for (auto &I : BB)
|
|
{
|
|
Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
|
|
}
|
|
}
|
|
|
|
void Verifier::visitTerminatorInst(TerminatorInst &I) {
|
|
// Ensure that terminators only exist at the end of the basic block.
|
|
Assert(&I == I.getParent()->getTerminator(),
|
|
"Terminator found in the middle of a basic block!", I.getParent());
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitBranchInst(BranchInst &BI) {
|
|
if (BI.isConditional()) {
|
|
Assert(BI.getCondition()->getType()->isIntegerTy(1),
|
|
"Branch condition is not 'i1' type!", &BI, BI.getCondition());
|
|
}
|
|
visitTerminatorInst(BI);
|
|
}
|
|
|
|
void Verifier::visitReturnInst(ReturnInst &RI) {
|
|
Function *F = RI.getParent()->getParent();
|
|
unsigned N = RI.getNumOperands();
|
|
if (F->getReturnType()->isVoidTy())
|
|
Assert(N == 0,
|
|
"Found return instr that returns non-void in Function of void "
|
|
"return type!",
|
|
&RI, F->getReturnType());
|
|
else
|
|
Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
|
|
"Function return type does not match operand "
|
|
"type of return inst!",
|
|
&RI, F->getReturnType());
|
|
|
|
// Check to make sure that the return value has necessary properties for
|
|
// terminators...
|
|
visitTerminatorInst(RI);
|
|
}
|
|
|
|
void Verifier::visitSwitchInst(SwitchInst &SI) {
|
|
// Check to make sure that all of the constants in the switch instruction
|
|
// have the same type as the switched-on value.
|
|
Type *SwitchTy = SI.getCondition()->getType();
|
|
SmallPtrSet<ConstantInt*, 32> Constants;
|
|
for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
|
|
Assert(i.getCaseValue()->getType() == SwitchTy,
|
|
"Switch constants must all be same type as switch value!", &SI);
|
|
Assert(Constants.insert(i.getCaseValue()).second,
|
|
"Duplicate integer as switch case", &SI, i.getCaseValue());
|
|
}
|
|
|
|
visitTerminatorInst(SI);
|
|
}
|
|
|
|
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
|
|
Assert(BI.getAddress()->getType()->isPointerTy(),
|
|
"Indirectbr operand must have pointer type!", &BI);
|
|
for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
|
|
Assert(BI.getDestination(i)->getType()->isLabelTy(),
|
|
"Indirectbr destinations must all have pointer type!", &BI);
|
|
|
|
visitTerminatorInst(BI);
|
|
}
|
|
|
|
void Verifier::visitSelectInst(SelectInst &SI) {
|
|
Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
|
|
SI.getOperand(2)),
|
|
"Invalid operands for select instruction!", &SI);
|
|
|
|
Assert(SI.getTrueValue()->getType() == SI.getType(),
|
|
"Select values must have same type as select instruction!", &SI);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
|
|
/// a pass, if any exist, it's an error.
|
|
///
|
|
void Verifier::visitUserOp1(Instruction &I) {
|
|
Assert(0, "User-defined operators should not live outside of a pass!", &I);
|
|
}
|
|
|
|
void Verifier::visitTruncInst(TruncInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
|
|
Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"trunc source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitZExtInst(ZExtInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
|
|
Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"zext source and destination must both be a vector or neither", &I);
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSExtInst(SExtInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
|
|
Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"sext source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPTruncInst(FPTruncInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"fptrunc source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPExtInst(FPExtInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"fpext source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitUIToFPInst(UIToFPInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"UIToFP source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isIntOrIntVectorTy(),
|
|
"UIToFP source must be integer or integer vector", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
|
|
&I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"UIToFP source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSIToFPInst(SIToFPInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"SIToFP source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isIntOrIntVectorTy(),
|
|
"SIToFP source must be integer or integer vector", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
|
|
&I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"SIToFP source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToUIInst(FPToUIInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"FPToUI source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
|
|
&I);
|
|
Assert(DestTy->isIntOrIntVectorTy(),
|
|
"FPToUI result must be integer or integer vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"FPToUI source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToSIInst(FPToSIInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"FPToSI source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
|
|
&I);
|
|
Assert(DestTy->isIntOrIntVectorTy(),
|
|
"FPToSI result must be integer or integer vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"FPToSI source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
Assert(SrcTy->getScalarType()->isPointerTy(),
|
|
"PtrToInt source must be pointer", &I);
|
|
Assert(DestTy->getScalarType()->isIntegerTy(),
|
|
"PtrToInt result must be integral", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
|
|
&I);
|
|
|
|
if (SrcTy->isVectorTy()) {
|
|
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
|
|
VectorType *VDest = dyn_cast<VectorType>(DestTy);
|
|
Assert(VSrc->getNumElements() == VDest->getNumElements(),
|
|
"PtrToInt Vector width mismatch", &I);
|
|
}
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
Assert(SrcTy->getScalarType()->isIntegerTy(),
|
|
"IntToPtr source must be an integral", &I);
|
|
Assert(DestTy->getScalarType()->isPointerTy(),
|
|
"IntToPtr result must be a pointer", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
|
|
&I);
|
|
if (SrcTy->isVectorTy()) {
|
|
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
|
|
VectorType *VDest = dyn_cast<VectorType>(DestTy);
|
|
Assert(VSrc->getNumElements() == VDest->getNumElements(),
|
|
"IntToPtr Vector width mismatch", &I);
|
|
}
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitBitCastInst(BitCastInst &I) {
|
|
Assert(
|
|
CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
|
|
"Invalid bitcast", &I);
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
|
|
&I);
|
|
Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
|
|
&I);
|
|
Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
|
|
"AddrSpaceCast must be between different address spaces", &I);
|
|
if (SrcTy->isVectorTy())
|
|
Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
|
|
"AddrSpaceCast vector pointer number of elements mismatch", &I);
|
|
visitInstruction(I);
|
|
}
|
|
|
|
/// visitPHINode - Ensure that a PHI node is well formed.
|
|
///
|
|
void Verifier::visitPHINode(PHINode &PN) {
|
|
// Ensure that the PHI nodes are all grouped together at the top of the block.
|
|
// This can be tested by checking whether the instruction before this is
|
|
// either nonexistent (because this is begin()) or is a PHI node. If not,
|
|
// then there is some other instruction before a PHI.
|
|
Assert(&PN == &PN.getParent()->front() ||
|
|
isa<PHINode>(--BasicBlock::iterator(&PN)),
|
|
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
|
|
|
|
// Check that all of the values of the PHI node have the same type as the
|
|
// result, and that the incoming blocks are really basic blocks.
|
|
for (Value *IncValue : PN.incoming_values()) {
|
|
Assert(PN.getType() == IncValue->getType(),
|
|
"PHI node operands are not the same type as the result!", &PN);
|
|
}
|
|
|
|
// All other PHI node constraints are checked in the visitBasicBlock method.
|
|
|
|
visitInstruction(PN);
|
|
}
|
|
|
|
void Verifier::VerifyCallSite(CallSite CS) {
|
|
Instruction *I = CS.getInstruction();
|
|
|
|
Assert(CS.getCalledValue()->getType()->isPointerTy(),
|
|
"Called function must be a pointer!", I);
|
|
PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
|
|
|
|
Assert(FPTy->getElementType()->isFunctionTy(),
|
|
"Called function is not pointer to function type!", I);
|
|
|
|
Assert(FPTy->getElementType() == CS.getFunctionType(),
|
|
"Called function is not the same type as the call!", I);
|
|
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
|
|
// Verify that the correct number of arguments are being passed
|
|
if (FTy->isVarArg())
|
|
Assert(CS.arg_size() >= FTy->getNumParams(),
|
|
"Called function requires more parameters than were provided!", I);
|
|
else
|
|
Assert(CS.arg_size() == FTy->getNumParams(),
|
|
"Incorrect number of arguments passed to called function!", I);
|
|
|
|
// Verify that all arguments to the call match the function type.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
|
|
"Call parameter type does not match function signature!",
|
|
CS.getArgument(i), FTy->getParamType(i), I);
|
|
|
|
AttributeSet Attrs = CS.getAttributes();
|
|
|
|
Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
|
|
"Attribute after last parameter!", I);
|
|
|
|
// Verify call attributes.
|
|
VerifyFunctionAttrs(FTy, Attrs, I);
|
|
|
|
// Conservatively check the inalloca argument.
|
|
// We have a bug if we can find that there is an underlying alloca without
|
|
// inalloca.
|
|
if (CS.hasInAllocaArgument()) {
|
|
Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
|
|
if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
|
|
Assert(AI->isUsedWithInAlloca(),
|
|
"inalloca argument for call has mismatched alloca", AI, I);
|
|
}
|
|
|
|
if (FTy->isVarArg()) {
|
|
// FIXME? is 'nest' even legal here?
|
|
bool SawNest = false;
|
|
bool SawReturned = false;
|
|
|
|
for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
|
|
if (Attrs.hasAttribute(Idx, Attribute::Nest))
|
|
SawNest = true;
|
|
if (Attrs.hasAttribute(Idx, Attribute::Returned))
|
|
SawReturned = true;
|
|
}
|
|
|
|
// Check attributes on the varargs part.
|
|
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
|
|
Type *Ty = CS.getArgument(Idx-1)->getType();
|
|
VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
|
|
|
|
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
|
|
Assert(!SawNest, "More than one parameter has attribute nest!", I);
|
|
SawNest = true;
|
|
}
|
|
|
|
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
|
|
Assert(!SawReturned, "More than one parameter has attribute returned!",
|
|
I);
|
|
Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
|
|
"Incompatible argument and return types for 'returned' "
|
|
"attribute",
|
|
I);
|
|
SawReturned = true;
|
|
}
|
|
|
|
Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
|
|
"Attribute 'sret' cannot be used for vararg call arguments!", I);
|
|
|
|
if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
|
|
Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
|
|
}
|
|
}
|
|
|
|
// Verify that there's no metadata unless it's a direct call to an intrinsic.
|
|
if (CS.getCalledFunction() == nullptr ||
|
|
!CS.getCalledFunction()->getName().startswith("llvm.")) {
|
|
for (FunctionType::param_iterator PI = FTy->param_begin(),
|
|
PE = FTy->param_end(); PI != PE; ++PI)
|
|
Assert(!(*PI)->isMetadataTy(),
|
|
"Function has metadata parameter but isn't an intrinsic", I);
|
|
}
|
|
|
|
if (Function *F = CS.getCalledFunction())
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
|
|
visitIntrinsicCallSite(ID, CS);
|
|
|
|
visitInstruction(*I);
|
|
}
|
|
|
|
/// Two types are "congruent" if they are identical, or if they are both pointer
|
|
/// types with different pointee types and the same address space.
|
|
static bool isTypeCongruent(Type *L, Type *R) {
|
|
if (L == R)
|
|
return true;
|
|
PointerType *PL = dyn_cast<PointerType>(L);
|
|
PointerType *PR = dyn_cast<PointerType>(R);
|
|
if (!PL || !PR)
|
|
return false;
|
|
return PL->getAddressSpace() == PR->getAddressSpace();
|
|
}
|
|
|
|
static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
|
|
static const Attribute::AttrKind ABIAttrs[] = {
|
|
Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
|
|
Attribute::InReg, Attribute::Returned};
|
|
AttrBuilder Copy;
|
|
for (auto AK : ABIAttrs) {
|
|
if (Attrs.hasAttribute(I + 1, AK))
|
|
Copy.addAttribute(AK);
|
|
}
|
|
if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
|
|
Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
|
|
return Copy;
|
|
}
|
|
|
|
void Verifier::verifyMustTailCall(CallInst &CI) {
|
|
Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
|
|
|
|
// - The caller and callee prototypes must match. Pointer types of
|
|
// parameters or return types may differ in pointee type, but not
|
|
// address space.
|
|
Function *F = CI.getParent()->getParent();
|
|
FunctionType *CallerTy = F->getFunctionType();
|
|
FunctionType *CalleeTy = CI.getFunctionType();
|
|
Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
|
|
"cannot guarantee tail call due to mismatched parameter counts", &CI);
|
|
Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
|
|
"cannot guarantee tail call due to mismatched varargs", &CI);
|
|
Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
|
|
"cannot guarantee tail call due to mismatched return types", &CI);
|
|
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
|
|
Assert(
|
|
isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
|
|
"cannot guarantee tail call due to mismatched parameter types", &CI);
|
|
}
|
|
|
|
// - The calling conventions of the caller and callee must match.
|
|
Assert(F->getCallingConv() == CI.getCallingConv(),
|
|
"cannot guarantee tail call due to mismatched calling conv", &CI);
|
|
|
|
// - All ABI-impacting function attributes, such as sret, byval, inreg,
|
|
// returned, and inalloca, must match.
|
|
AttributeSet CallerAttrs = F->getAttributes();
|
|
AttributeSet CalleeAttrs = CI.getAttributes();
|
|
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
|
|
AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
|
|
AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
|
|
Assert(CallerABIAttrs == CalleeABIAttrs,
|
|
"cannot guarantee tail call due to mismatched ABI impacting "
|
|
"function attributes",
|
|
&CI, CI.getOperand(I));
|
|
}
|
|
|
|
// - The call must immediately precede a :ref:`ret <i_ret>` instruction,
|
|
// or a pointer bitcast followed by a ret instruction.
|
|
// - The ret instruction must return the (possibly bitcasted) value
|
|
// produced by the call or void.
|
|
Value *RetVal = &CI;
|
|
Instruction *Next = CI.getNextNode();
|
|
|
|
// Handle the optional bitcast.
|
|
if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
|
|
Assert(BI->getOperand(0) == RetVal,
|
|
"bitcast following musttail call must use the call", BI);
|
|
RetVal = BI;
|
|
Next = BI->getNextNode();
|
|
}
|
|
|
|
// Check the return.
|
|
ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
|
|
Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
|
|
&CI);
|
|
Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
|
|
"musttail call result must be returned", Ret);
|
|
}
|
|
|
|
void Verifier::visitCallInst(CallInst &CI) {
|
|
VerifyCallSite(&CI);
|
|
|
|
if (CI.isMustTailCall())
|
|
verifyMustTailCall(CI);
|
|
}
|
|
|
|
void Verifier::visitInvokeInst(InvokeInst &II) {
|
|
VerifyCallSite(&II);
|
|
|
|
// Verify that there is a landingpad instruction as the first non-PHI
|
|
// instruction of the 'unwind' destination.
|
|
Assert(II.getUnwindDest()->isLandingPad(),
|
|
"The unwind destination does not have a landingpad instruction!", &II);
|
|
|
|
visitTerminatorInst(II);
|
|
}
|
|
|
|
/// visitBinaryOperator - Check that both arguments to the binary operator are
|
|
/// of the same type!
|
|
///
|
|
void Verifier::visitBinaryOperator(BinaryOperator &B) {
|
|
Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
|
|
"Both operands to a binary operator are not of the same type!", &B);
|
|
|
|
switch (B.getOpcode()) {
|
|
// Check that integer arithmetic operators are only used with
|
|
// integral operands.
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::SDiv:
|
|
case Instruction::UDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::URem:
|
|
Assert(B.getType()->isIntOrIntVectorTy(),
|
|
"Integer arithmetic operators only work with integral types!", &B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Integer arithmetic operators must have same type "
|
|
"for operands and result!",
|
|
&B);
|
|
break;
|
|
// Check that floating-point arithmetic operators are only used with
|
|
// floating-point operands.
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
Assert(B.getType()->isFPOrFPVectorTy(),
|
|
"Floating-point arithmetic operators only work with "
|
|
"floating-point types!",
|
|
&B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Floating-point arithmetic operators must have same type "
|
|
"for operands and result!",
|
|
&B);
|
|
break;
|
|
// Check that logical operators are only used with integral operands.
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
Assert(B.getType()->isIntOrIntVectorTy(),
|
|
"Logical operators only work with integral types!", &B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Logical operators must have same type for operands and result!",
|
|
&B);
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
Assert(B.getType()->isIntOrIntVectorTy(),
|
|
"Shifts only work with integral types!", &B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Shift return type must be same as operands!", &B);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown BinaryOperator opcode!");
|
|
}
|
|
|
|
visitInstruction(B);
|
|
}
|
|
|
|
void Verifier::visitICmpInst(ICmpInst &IC) {
|
|
// Check that the operands are the same type
|
|
Type *Op0Ty = IC.getOperand(0)->getType();
|
|
Type *Op1Ty = IC.getOperand(1)->getType();
|
|
Assert(Op0Ty == Op1Ty,
|
|
"Both operands to ICmp instruction are not of the same type!", &IC);
|
|
// Check that the operands are the right type
|
|
Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
|
|
"Invalid operand types for ICmp instruction", &IC);
|
|
// Check that the predicate is valid.
|
|
Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
|
|
IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
|
|
"Invalid predicate in ICmp instruction!", &IC);
|
|
|
|
visitInstruction(IC);
|
|
}
|
|
|
|
void Verifier::visitFCmpInst(FCmpInst &FC) {
|
|
// Check that the operands are the same type
|
|
Type *Op0Ty = FC.getOperand(0)->getType();
|
|
Type *Op1Ty = FC.getOperand(1)->getType();
|
|
Assert(Op0Ty == Op1Ty,
|
|
"Both operands to FCmp instruction are not of the same type!", &FC);
|
|
// Check that the operands are the right type
|
|
Assert(Op0Ty->isFPOrFPVectorTy(),
|
|
"Invalid operand types for FCmp instruction", &FC);
|
|
// Check that the predicate is valid.
|
|
Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
|
|
FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
|
|
"Invalid predicate in FCmp instruction!", &FC);
|
|
|
|
visitInstruction(FC);
|
|
}
|
|
|
|
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
|
|
Assert(
|
|
ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
|
|
"Invalid extractelement operands!", &EI);
|
|
visitInstruction(EI);
|
|
}
|
|
|
|
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
|
|
Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
|
|
IE.getOperand(2)),
|
|
"Invalid insertelement operands!", &IE);
|
|
visitInstruction(IE);
|
|
}
|
|
|
|
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
|
|
Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
|
|
SV.getOperand(2)),
|
|
"Invalid shufflevector operands!", &SV);
|
|
visitInstruction(SV);
|
|
}
|
|
|
|
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
|
|
|
|
Assert(isa<PointerType>(TargetTy),
|
|
"GEP base pointer is not a vector or a vector of pointers", &GEP);
|
|
Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
|
|
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
|
|
Type *ElTy =
|
|
GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
|
|
Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
|
|
|
|
Assert(GEP.getType()->getScalarType()->isPointerTy() &&
|
|
GEP.getResultElementType() == ElTy,
|
|
"GEP is not of right type for indices!", &GEP, ElTy);
|
|
|
|
if (GEP.getType()->isVectorTy()) {
|
|
// Additional checks for vector GEPs.
|
|
unsigned GEPWidth = GEP.getType()->getVectorNumElements();
|
|
if (GEP.getPointerOperandType()->isVectorTy())
|
|
Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
|
|
"Vector GEP result width doesn't match operand's", &GEP);
|
|
for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
|
|
Type *IndexTy = Idxs[i]->getType();
|
|
if (IndexTy->isVectorTy()) {
|
|
unsigned IndexWidth = IndexTy->getVectorNumElements();
|
|
Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
|
|
}
|
|
Assert(IndexTy->getScalarType()->isIntegerTy(),
|
|
"All GEP indices should be of integer type");
|
|
}
|
|
}
|
|
visitInstruction(GEP);
|
|
}
|
|
|
|
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
|
|
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
|
|
}
|
|
|
|
void Verifier::visitRangeMetadata(Instruction& I,
|
|
MDNode* Range, Type* Ty) {
|
|
assert(Range &&
|
|
Range == I.getMetadata(LLVMContext::MD_range) &&
|
|
"precondition violation");
|
|
|
|
unsigned NumOperands = Range->getNumOperands();
|
|
Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
|
|
unsigned NumRanges = NumOperands / 2;
|
|
Assert(NumRanges >= 1, "It should have at least one range!", Range);
|
|
|
|
ConstantRange LastRange(1); // Dummy initial value
|
|
for (unsigned i = 0; i < NumRanges; ++i) {
|
|
ConstantInt *Low =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
|
|
Assert(Low, "The lower limit must be an integer!", Low);
|
|
ConstantInt *High =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
|
|
Assert(High, "The upper limit must be an integer!", High);
|
|
Assert(High->getType() == Low->getType() && High->getType() == Ty,
|
|
"Range types must match instruction type!", &I);
|
|
|
|
APInt HighV = High->getValue();
|
|
APInt LowV = Low->getValue();
|
|
ConstantRange CurRange(LowV, HighV);
|
|
Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
|
|
"Range must not be empty!", Range);
|
|
if (i != 0) {
|
|
Assert(CurRange.intersectWith(LastRange).isEmptySet(),
|
|
"Intervals are overlapping", Range);
|
|
Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
|
|
Range);
|
|
Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
|
|
Range);
|
|
}
|
|
LastRange = ConstantRange(LowV, HighV);
|
|
}
|
|
if (NumRanges > 2) {
|
|
APInt FirstLow =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
|
|
APInt FirstHigh =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
|
|
ConstantRange FirstRange(FirstLow, FirstHigh);
|
|
Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
|
|
"Intervals are overlapping", Range);
|
|
Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
|
|
Range);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitLoadInst(LoadInst &LI) {
|
|
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
|
|
Assert(PTy, "Load operand must be a pointer.", &LI);
|
|
Type *ElTy = LI.getType();
|
|
Assert(LI.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &LI);
|
|
if (LI.isAtomic()) {
|
|
Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
|
|
"Load cannot have Release ordering", &LI);
|
|
Assert(LI.getAlignment() != 0,
|
|
"Atomic load must specify explicit alignment", &LI);
|
|
if (!ElTy->isPointerTy()) {
|
|
Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
|
|
&LI, ElTy);
|
|
unsigned Size = ElTy->getPrimitiveSizeInBits();
|
|
Assert(Size >= 8 && !(Size & (Size - 1)),
|
|
"atomic load operand must be power-of-two byte-sized integer", &LI,
|
|
ElTy);
|
|
}
|
|
} else {
|
|
Assert(LI.getSynchScope() == CrossThread,
|
|
"Non-atomic load cannot have SynchronizationScope specified", &LI);
|
|
}
|
|
|
|
visitInstruction(LI);
|
|
}
|
|
|
|
void Verifier::visitStoreInst(StoreInst &SI) {
|
|
PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
|
|
Assert(PTy, "Store operand must be a pointer.", &SI);
|
|
Type *ElTy = PTy->getElementType();
|
|
Assert(ElTy == SI.getOperand(0)->getType(),
|
|
"Stored value type does not match pointer operand type!", &SI, ElTy);
|
|
Assert(SI.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &SI);
|
|
if (SI.isAtomic()) {
|
|
Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
|
|
"Store cannot have Acquire ordering", &SI);
|
|
Assert(SI.getAlignment() != 0,
|
|
"Atomic store must specify explicit alignment", &SI);
|
|
if (!ElTy->isPointerTy()) {
|
|
Assert(ElTy->isIntegerTy(),
|
|
"atomic store operand must have integer type!", &SI, ElTy);
|
|
unsigned Size = ElTy->getPrimitiveSizeInBits();
|
|
Assert(Size >= 8 && !(Size & (Size - 1)),
|
|
"atomic store operand must be power-of-two byte-sized integer",
|
|
&SI, ElTy);
|
|
}
|
|
} else {
|
|
Assert(SI.getSynchScope() == CrossThread,
|
|
"Non-atomic store cannot have SynchronizationScope specified", &SI);
|
|
}
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
void Verifier::visitAllocaInst(AllocaInst &AI) {
|
|
SmallPtrSet<const Type*, 4> Visited;
|
|
PointerType *PTy = AI.getType();
|
|
Assert(PTy->getAddressSpace() == 0,
|
|
"Allocation instruction pointer not in the generic address space!",
|
|
&AI);
|
|
Assert(AI.getAllocatedType()->isSized(&Visited),
|
|
"Cannot allocate unsized type", &AI);
|
|
Assert(AI.getArraySize()->getType()->isIntegerTy(),
|
|
"Alloca array size must have integer type", &AI);
|
|
Assert(AI.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &AI);
|
|
|
|
visitInstruction(AI);
|
|
}
|
|
|
|
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
|
|
|
|
// FIXME: more conditions???
|
|
Assert(CXI.getSuccessOrdering() != NotAtomic,
|
|
"cmpxchg instructions must be atomic.", &CXI);
|
|
Assert(CXI.getFailureOrdering() != NotAtomic,
|
|
"cmpxchg instructions must be atomic.", &CXI);
|
|
Assert(CXI.getSuccessOrdering() != Unordered,
|
|
"cmpxchg instructions cannot be unordered.", &CXI);
|
|
Assert(CXI.getFailureOrdering() != Unordered,
|
|
"cmpxchg instructions cannot be unordered.", &CXI);
|
|
Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
|
|
"cmpxchg instructions be at least as constrained on success as fail",
|
|
&CXI);
|
|
Assert(CXI.getFailureOrdering() != Release &&
|
|
CXI.getFailureOrdering() != AcquireRelease,
|
|
"cmpxchg failure ordering cannot include release semantics", &CXI);
|
|
|
|
PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
|
|
Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
|
|
Type *ElTy = PTy->getElementType();
|
|
Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
|
|
ElTy);
|
|
unsigned Size = ElTy->getPrimitiveSizeInBits();
|
|
Assert(Size >= 8 && !(Size & (Size - 1)),
|
|
"cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
|
|
Assert(ElTy == CXI.getOperand(1)->getType(),
|
|
"Expected value type does not match pointer operand type!", &CXI,
|
|
ElTy);
|
|
Assert(ElTy == CXI.getOperand(2)->getType(),
|
|
"Stored value type does not match pointer operand type!", &CXI, ElTy);
|
|
visitInstruction(CXI);
|
|
}
|
|
|
|
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
|
|
Assert(RMWI.getOrdering() != NotAtomic,
|
|
"atomicrmw instructions must be atomic.", &RMWI);
|
|
Assert(RMWI.getOrdering() != Unordered,
|
|
"atomicrmw instructions cannot be unordered.", &RMWI);
|
|
PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
|
|
Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
|
|
Type *ElTy = PTy->getElementType();
|
|
Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
|
|
&RMWI, ElTy);
|
|
unsigned Size = ElTy->getPrimitiveSizeInBits();
|
|
Assert(Size >= 8 && !(Size & (Size - 1)),
|
|
"atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
|
|
ElTy);
|
|
Assert(ElTy == RMWI.getOperand(1)->getType(),
|
|
"Argument value type does not match pointer operand type!", &RMWI,
|
|
ElTy);
|
|
Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
|
|
RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
|
|
"Invalid binary operation!", &RMWI);
|
|
visitInstruction(RMWI);
|
|
}
|
|
|
|
void Verifier::visitFenceInst(FenceInst &FI) {
|
|
const AtomicOrdering Ordering = FI.getOrdering();
|
|
Assert(Ordering == Acquire || Ordering == Release ||
|
|
Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
|
|
"fence instructions may only have "
|
|
"acquire, release, acq_rel, or seq_cst ordering.",
|
|
&FI);
|
|
visitInstruction(FI);
|
|
}
|
|
|
|
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
|
|
Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
|
|
EVI.getIndices()) == EVI.getType(),
|
|
"Invalid ExtractValueInst operands!", &EVI);
|
|
|
|
visitInstruction(EVI);
|
|
}
|
|
|
|
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
|
|
Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
|
|
IVI.getIndices()) ==
|
|
IVI.getOperand(1)->getType(),
|
|
"Invalid InsertValueInst operands!", &IVI);
|
|
|
|
visitInstruction(IVI);
|
|
}
|
|
|
|
void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
|
|
BasicBlock *BB = LPI.getParent();
|
|
|
|
// The landingpad instruction is ill-formed if it doesn't have any clauses and
|
|
// isn't a cleanup.
|
|
Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
|
|
"LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
|
|
|
|
// The landingpad instruction defines its parent as a landing pad block. The
|
|
// landing pad block may be branched to only by the unwind edge of an invoke.
|
|
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
|
|
const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
|
|
Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
|
|
"Block containing LandingPadInst must be jumped to "
|
|
"only by the unwind edge of an invoke.",
|
|
&LPI);
|
|
}
|
|
|
|
Function *F = LPI.getParent()->getParent();
|
|
Assert(F->hasPersonalityFn(),
|
|
"LandingPadInst needs to be in a function with a personality.", &LPI);
|
|
|
|
// The landingpad instruction must be the first non-PHI instruction in the
|
|
// block.
|
|
Assert(LPI.getParent()->getLandingPadInst() == &LPI,
|
|
"LandingPadInst not the first non-PHI instruction in the block.",
|
|
&LPI);
|
|
|
|
for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
|
|
Constant *Clause = LPI.getClause(i);
|
|
if (LPI.isCatch(i)) {
|
|
Assert(isa<PointerType>(Clause->getType()),
|
|
"Catch operand does not have pointer type!", &LPI);
|
|
} else {
|
|
Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
|
|
Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
|
|
"Filter operand is not an array of constants!", &LPI);
|
|
}
|
|
}
|
|
|
|
visitInstruction(LPI);
|
|
}
|
|
|
|
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
|
|
Instruction *Op = cast<Instruction>(I.getOperand(i));
|
|
// If the we have an invalid invoke, don't try to compute the dominance.
|
|
// We already reject it in the invoke specific checks and the dominance
|
|
// computation doesn't handle multiple edges.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
|
|
if (II->getNormalDest() == II->getUnwindDest())
|
|
return;
|
|
}
|
|
|
|
const Use &U = I.getOperandUse(i);
|
|
Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
|
|
/// verifyInstruction - Verify that an instruction is well formed.
|
|
///
|
|
void Verifier::visitInstruction(Instruction &I) {
|
|
BasicBlock *BB = I.getParent();
|
|
Assert(BB, "Instruction not embedded in basic block!", &I);
|
|
|
|
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
|
|
for (User *U : I.users()) {
|
|
Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
|
|
"Only PHI nodes may reference their own value!", &I);
|
|
}
|
|
}
|
|
|
|
// Check that void typed values don't have names
|
|
Assert(!I.getType()->isVoidTy() || !I.hasName(),
|
|
"Instruction has a name, but provides a void value!", &I);
|
|
|
|
// Check that the return value of the instruction is either void or a legal
|
|
// value type.
|
|
Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
|
|
"Instruction returns a non-scalar type!", &I);
|
|
|
|
// Check that the instruction doesn't produce metadata. Calls are already
|
|
// checked against the callee type.
|
|
Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
|
|
"Invalid use of metadata!", &I);
|
|
|
|
// Check that all uses of the instruction, if they are instructions
|
|
// themselves, actually have parent basic blocks. If the use is not an
|
|
// instruction, it is an error!
|
|
for (Use &U : I.uses()) {
|
|
if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
|
|
Assert(Used->getParent() != nullptr,
|
|
"Instruction referencing"
|
|
" instruction not embedded in a basic block!",
|
|
&I, Used);
|
|
else {
|
|
CheckFailed("Use of instruction is not an instruction!", U);
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
|
|
|
|
// Check to make sure that only first-class-values are operands to
|
|
// instructions.
|
|
if (!I.getOperand(i)->getType()->isFirstClassType()) {
|
|
Assert(0, "Instruction operands must be first-class values!", &I);
|
|
}
|
|
|
|
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
|
|
// Check to make sure that the "address of" an intrinsic function is never
|
|
// taken.
|
|
Assert(
|
|
!F->isIntrinsic() ||
|
|
i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
|
|
"Cannot take the address of an intrinsic!", &I);
|
|
Assert(
|
|
!F->isIntrinsic() || isa<CallInst>(I) ||
|
|
F->getIntrinsicID() == Intrinsic::donothing ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
|
|
"Cannot invoke an intrinsinc other than"
|
|
" donothing or patchpoint",
|
|
&I);
|
|
Assert(F->getParent() == M, "Referencing function in another module!",
|
|
&I);
|
|
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
|
|
Assert(OpBB->getParent() == BB->getParent(),
|
|
"Referring to a basic block in another function!", &I);
|
|
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
|
|
Assert(OpArg->getParent() == BB->getParent(),
|
|
"Referring to an argument in another function!", &I);
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
|
|
Assert(GV->getParent() == M, "Referencing global in another module!", &I);
|
|
} else if (isa<Instruction>(I.getOperand(i))) {
|
|
verifyDominatesUse(I, i);
|
|
} else if (isa<InlineAsm>(I.getOperand(i))) {
|
|
Assert((i + 1 == e && isa<CallInst>(I)) ||
|
|
(i + 3 == e && isa<InvokeInst>(I)),
|
|
"Cannot take the address of an inline asm!", &I);
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
|
|
if (CE->getType()->isPtrOrPtrVectorTy()) {
|
|
// If we have a ConstantExpr pointer, we need to see if it came from an
|
|
// illegal bitcast (inttoptr <constant int> )
|
|
SmallVector<const ConstantExpr *, 4> Stack;
|
|
SmallPtrSet<const ConstantExpr *, 4> Visited;
|
|
Stack.push_back(CE);
|
|
|
|
while (!Stack.empty()) {
|
|
const ConstantExpr *V = Stack.pop_back_val();
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
|
|
VerifyConstantExprBitcastType(V);
|
|
|
|
for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
|
|
if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
|
|
Stack.push_back(Op);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
|
|
Assert(I.getType()->isFPOrFPVectorTy(),
|
|
"fpmath requires a floating point result!", &I);
|
|
Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
|
|
if (ConstantFP *CFP0 =
|
|
mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
|
|
APFloat Accuracy = CFP0->getValueAPF();
|
|
Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
|
|
"fpmath accuracy not a positive number!", &I);
|
|
} else {
|
|
Assert(false, "invalid fpmath accuracy!", &I);
|
|
}
|
|
}
|
|
|
|
if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
|
|
Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
|
|
"Ranges are only for loads, calls and invokes!", &I);
|
|
visitRangeMetadata(I, Range, I.getType());
|
|
}
|
|
|
|
if (I.getMetadata(LLVMContext::MD_nonnull)) {
|
|
Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
|
|
&I);
|
|
Assert(isa<LoadInst>(I),
|
|
"nonnull applies only to load instructions, use attributes"
|
|
" for calls or invokes",
|
|
&I);
|
|
}
|
|
|
|
if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
|
|
Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
|
|
visitMDNode(*N);
|
|
}
|
|
|
|
InstsInThisBlock.insert(&I);
|
|
}
|
|
|
|
/// VerifyIntrinsicType - Verify that the specified type (which comes from an
|
|
/// intrinsic argument or return value) matches the type constraints specified
|
|
/// by the .td file (e.g. an "any integer" argument really is an integer).
|
|
///
|
|
/// This return true on error but does not print a message.
|
|
bool Verifier::VerifyIntrinsicType(Type *Ty,
|
|
ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
SmallVectorImpl<Type*> &ArgTys) {
|
|
using namespace Intrinsic;
|
|
|
|
// If we ran out of descriptors, there are too many arguments.
|
|
if (Infos.empty()) return true;
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
|
|
switch (D.Kind) {
|
|
case IITDescriptor::Void: return !Ty->isVoidTy();
|
|
case IITDescriptor::VarArg: return true;
|
|
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
|
|
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
|
|
case IITDescriptor::Half: return !Ty->isHalfTy();
|
|
case IITDescriptor::Float: return !Ty->isFloatTy();
|
|
case IITDescriptor::Double: return !Ty->isDoubleTy();
|
|
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
|
|
case IITDescriptor::Vector: {
|
|
VectorType *VT = dyn_cast<VectorType>(Ty);
|
|
return !VT || VT->getNumElements() != D.Vector_Width ||
|
|
VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
|
|
}
|
|
case IITDescriptor::Pointer: {
|
|
PointerType *PT = dyn_cast<PointerType>(Ty);
|
|
return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
|
|
VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
|
|
}
|
|
|
|
case IITDescriptor::Struct: {
|
|
StructType *ST = dyn_cast<StructType>(Ty);
|
|
if (!ST || ST->getNumElements() != D.Struct_NumElements)
|
|
return true;
|
|
|
|
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
|
|
if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
case IITDescriptor::Argument:
|
|
// Two cases here - If this is the second occurrence of an argument, verify
|
|
// that the later instance matches the previous instance.
|
|
if (D.getArgumentNumber() < ArgTys.size())
|
|
return Ty != ArgTys[D.getArgumentNumber()];
|
|
|
|
// Otherwise, if this is the first instance of an argument, record it and
|
|
// verify the "Any" kind.
|
|
assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
|
|
ArgTys.push_back(Ty);
|
|
|
|
switch (D.getArgumentKind()) {
|
|
case IITDescriptor::AK_Any: return false; // Success
|
|
case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
|
|
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
|
|
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
|
|
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
|
|
}
|
|
llvm_unreachable("all argument kinds not covered");
|
|
|
|
case IITDescriptor::ExtendArgument: {
|
|
// This may only be used when referring to a previous vector argument.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return true;
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
|
|
NewTy = VectorType::getExtendedElementVectorType(VTy);
|
|
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
|
|
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
|
|
else
|
|
return true;
|
|
|
|
return Ty != NewTy;
|
|
}
|
|
case IITDescriptor::TruncArgument: {
|
|
// This may only be used when referring to a previous vector argument.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return true;
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
|
|
NewTy = VectorType::getTruncatedElementVectorType(VTy);
|
|
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
|
|
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
|
|
else
|
|
return true;
|
|
|
|
return Ty != NewTy;
|
|
}
|
|
case IITDescriptor::HalfVecArgument:
|
|
// This may only be used when referring to a previous vector argument.
|
|
return D.getArgumentNumber() >= ArgTys.size() ||
|
|
!isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
|
|
VectorType::getHalfElementsVectorType(
|
|
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
|
|
case IITDescriptor::SameVecWidthArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return true;
|
|
VectorType * ReferenceType =
|
|
dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
|
|
VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
|
|
if (!ThisArgType || !ReferenceType ||
|
|
(ReferenceType->getVectorNumElements() !=
|
|
ThisArgType->getVectorNumElements()))
|
|
return true;
|
|
return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
|
|
Infos, ArgTys);
|
|
}
|
|
case IITDescriptor::PtrToArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return true;
|
|
Type * ReferenceType = ArgTys[D.getArgumentNumber()];
|
|
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
|
|
return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
|
|
}
|
|
case IITDescriptor::VecOfPtrsToElt: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return true;
|
|
VectorType * ReferenceType =
|
|
dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
|
|
VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
|
|
if (!ThisArgVecTy || !ReferenceType ||
|
|
(ReferenceType->getVectorNumElements() !=
|
|
ThisArgVecTy->getVectorNumElements()))
|
|
return true;
|
|
PointerType *ThisArgEltTy =
|
|
dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
|
|
if (!ThisArgEltTy)
|
|
return true;
|
|
return ThisArgEltTy->getElementType() !=
|
|
ReferenceType->getVectorElementType();
|
|
}
|
|
}
|
|
llvm_unreachable("unhandled");
|
|
}
|
|
|
|
/// \brief Verify if the intrinsic has variable arguments.
|
|
/// This method is intended to be called after all the fixed arguments have been
|
|
/// verified first.
|
|
///
|
|
/// This method returns true on error and does not print an error message.
|
|
bool
|
|
Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
|
|
ArrayRef<Intrinsic::IITDescriptor> &Infos) {
|
|
using namespace Intrinsic;
|
|
|
|
// If there are no descriptors left, then it can't be a vararg.
|
|
if (Infos.empty())
|
|
return isVarArg;
|
|
|
|
// There should be only one descriptor remaining at this point.
|
|
if (Infos.size() != 1)
|
|
return true;
|
|
|
|
// Check and verify the descriptor.
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
if (D.Kind == IITDescriptor::VarArg)
|
|
return !isVarArg;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Allow intrinsics to be verified in different ways.
|
|
void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
|
|
Function *IF = CS.getCalledFunction();
|
|
Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
|
|
IF);
|
|
|
|
// Verify that the intrinsic prototype lines up with what the .td files
|
|
// describe.
|
|
FunctionType *IFTy = IF->getFunctionType();
|
|
bool IsVarArg = IFTy->isVarArg();
|
|
|
|
SmallVector<Intrinsic::IITDescriptor, 8> Table;
|
|
getIntrinsicInfoTableEntries(ID, Table);
|
|
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
|
|
|
|
SmallVector<Type *, 4> ArgTys;
|
|
Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
|
|
"Intrinsic has incorrect return type!", IF);
|
|
for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
|
|
Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
|
|
"Intrinsic has incorrect argument type!", IF);
|
|
|
|
// Verify if the intrinsic call matches the vararg property.
|
|
if (IsVarArg)
|
|
Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
|
|
"Intrinsic was not defined with variable arguments!", IF);
|
|
else
|
|
Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
|
|
"Callsite was not defined with variable arguments!", IF);
|
|
|
|
// All descriptors should be absorbed by now.
|
|
Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
|
|
|
|
// Now that we have the intrinsic ID and the actual argument types (and we
|
|
// know they are legal for the intrinsic!) get the intrinsic name through the
|
|
// usual means. This allows us to verify the mangling of argument types into
|
|
// the name.
|
|
const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
|
|
Assert(ExpectedName == IF->getName(),
|
|
"Intrinsic name not mangled correctly for type arguments! "
|
|
"Should be: " +
|
|
ExpectedName,
|
|
IF);
|
|
|
|
// If the intrinsic takes MDNode arguments, verify that they are either global
|
|
// or are local to *this* function.
|
|
for (Value *V : CS.args())
|
|
if (auto *MD = dyn_cast<MetadataAsValue>(V))
|
|
visitMetadataAsValue(*MD, CS.getCaller());
|
|
|
|
switch (ID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::ctlz: // llvm.ctlz
|
|
case Intrinsic::cttz: // llvm.cttz
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(1)),
|
|
"is_zero_undef argument of bit counting intrinsics must be a "
|
|
"constant int",
|
|
CS);
|
|
break;
|
|
case Intrinsic::dbg_declare: // llvm.dbg.declare
|
|
Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
|
|
"invalid llvm.dbg.declare intrinsic call 1", CS);
|
|
visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
|
|
break;
|
|
case Intrinsic::dbg_value: // llvm.dbg.value
|
|
visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
|
|
break;
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memset: {
|
|
ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
|
|
Assert(AlignCI,
|
|
"alignment argument of memory intrinsics must be a constant int",
|
|
CS);
|
|
const APInt &AlignVal = AlignCI->getValue();
|
|
Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
|
|
"alignment argument of memory intrinsics must be a power of 2", CS);
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(4)),
|
|
"isvolatile argument of memory intrinsics must be a constant int",
|
|
CS);
|
|
break;
|
|
}
|
|
case Intrinsic::gcroot:
|
|
case Intrinsic::gcwrite:
|
|
case Intrinsic::gcread:
|
|
if (ID == Intrinsic::gcroot) {
|
|
AllocaInst *AI =
|
|
dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
|
|
Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
|
|
Assert(isa<Constant>(CS.getArgOperand(1)),
|
|
"llvm.gcroot parameter #2 must be a constant.", CS);
|
|
if (!AI->getAllocatedType()->isPointerTy()) {
|
|
Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
|
|
"llvm.gcroot parameter #1 must either be a pointer alloca, "
|
|
"or argument #2 must be a non-null constant.",
|
|
CS);
|
|
}
|
|
}
|
|
|
|
Assert(CS.getParent()->getParent()->hasGC(),
|
|
"Enclosing function does not use GC.", CS);
|
|
break;
|
|
case Intrinsic::init_trampoline:
|
|
Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
|
|
"llvm.init_trampoline parameter #2 must resolve to a function.",
|
|
CS);
|
|
break;
|
|
case Intrinsic::prefetch:
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
|
|
isa<ConstantInt>(CS.getArgOperand(2)) &&
|
|
cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
|
|
cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
|
|
"invalid arguments to llvm.prefetch", CS);
|
|
break;
|
|
case Intrinsic::stackprotector:
|
|
Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
|
|
"llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
|
|
break;
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::invariant_start:
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(0)),
|
|
"size argument of memory use markers must be a constant integer",
|
|
CS);
|
|
break;
|
|
case Intrinsic::invariant_end:
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(1)),
|
|
"llvm.invariant.end parameter #2 must be a constant integer", CS);
|
|
break;
|
|
|
|
case Intrinsic::localescape: {
|
|
BasicBlock *BB = CS.getParent();
|
|
Assert(BB == &BB->getParent()->front(),
|
|
"llvm.localescape used outside of entry block", CS);
|
|
Assert(!SawFrameEscape,
|
|
"multiple calls to llvm.localescape in one function", CS);
|
|
for (Value *Arg : CS.args()) {
|
|
if (isa<ConstantPointerNull>(Arg))
|
|
continue; // Null values are allowed as placeholders.
|
|
auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
|
|
Assert(AI && AI->isStaticAlloca(),
|
|
"llvm.localescape only accepts static allocas", CS);
|
|
}
|
|
FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
|
|
SawFrameEscape = true;
|
|
break;
|
|
}
|
|
case Intrinsic::localrecover: {
|
|
Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
|
|
Function *Fn = dyn_cast<Function>(FnArg);
|
|
Assert(Fn && !Fn->isDeclaration(),
|
|
"llvm.localrecover first "
|
|
"argument must be function defined in this module",
|
|
CS);
|
|
auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
|
|
Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
|
|
CS);
|
|
auto &Entry = FrameEscapeInfo[Fn];
|
|
Entry.second = unsigned(
|
|
std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
Assert(!CS.isInlineAsm(),
|
|
"gc.statepoint support for inline assembly unimplemented", CS);
|
|
Assert(CS.getParent()->getParent()->hasGC(),
|
|
"Enclosing function does not use GC.", CS);
|
|
|
|
VerifyStatepoint(CS);
|
|
break;
|
|
case Intrinsic::experimental_gc_result_int:
|
|
case Intrinsic::experimental_gc_result_float:
|
|
case Intrinsic::experimental_gc_result_ptr:
|
|
case Intrinsic::experimental_gc_result: {
|
|
Assert(CS.getParent()->getParent()->hasGC(),
|
|
"Enclosing function does not use GC.", CS);
|
|
// Are we tied to a statepoint properly?
|
|
CallSite StatepointCS(CS.getArgOperand(0));
|
|
const Function *StatepointFn =
|
|
StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
|
|
Assert(StatepointFn && StatepointFn->isDeclaration() &&
|
|
StatepointFn->getIntrinsicID() ==
|
|
Intrinsic::experimental_gc_statepoint,
|
|
"gc.result operand #1 must be from a statepoint", CS,
|
|
CS.getArgOperand(0));
|
|
|
|
// Assert that result type matches wrapped callee.
|
|
const Value *Target = StatepointCS.getArgument(2);
|
|
const PointerType *PT = cast<PointerType>(Target->getType());
|
|
const FunctionType *TargetFuncType =
|
|
cast<FunctionType>(PT->getElementType());
|
|
Assert(CS.getType() == TargetFuncType->getReturnType(),
|
|
"gc.result result type does not match wrapped callee", CS);
|
|
break;
|
|
}
|
|
case Intrinsic::experimental_gc_relocate: {
|
|
Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
|
|
|
|
// Check that this relocate is correctly tied to the statepoint
|
|
|
|
// This is case for relocate on the unwinding path of an invoke statepoint
|
|
if (ExtractValueInst *ExtractValue =
|
|
dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
|
|
Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
|
|
"gc relocate on unwind path incorrectly linked to the statepoint",
|
|
CS);
|
|
|
|
const BasicBlock *InvokeBB =
|
|
ExtractValue->getParent()->getUniquePredecessor();
|
|
|
|
// Landingpad relocates should have only one predecessor with invoke
|
|
// statepoint terminator
|
|
Assert(InvokeBB, "safepoints should have unique landingpads",
|
|
ExtractValue->getParent());
|
|
Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
|
|
InvokeBB);
|
|
Assert(isStatepoint(InvokeBB->getTerminator()),
|
|
"gc relocate should be linked to a statepoint", InvokeBB);
|
|
}
|
|
else {
|
|
// In all other cases relocate should be tied to the statepoint directly.
|
|
// This covers relocates on a normal return path of invoke statepoint and
|
|
// relocates of a call statepoint
|
|
auto Token = CS.getArgOperand(0);
|
|
Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
|
|
"gc relocate is incorrectly tied to the statepoint", CS, Token);
|
|
}
|
|
|
|
// Verify rest of the relocate arguments
|
|
|
|
GCRelocateOperands Ops(CS);
|
|
ImmutableCallSite StatepointCS(Ops.getStatepoint());
|
|
|
|
// Both the base and derived must be piped through the safepoint
|
|
Value* Base = CS.getArgOperand(1);
|
|
Assert(isa<ConstantInt>(Base),
|
|
"gc.relocate operand #2 must be integer offset", CS);
|
|
|
|
Value* Derived = CS.getArgOperand(2);
|
|
Assert(isa<ConstantInt>(Derived),
|
|
"gc.relocate operand #3 must be integer offset", CS);
|
|
|
|
const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
|
|
const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
|
|
// Check the bounds
|
|
Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
|
|
"gc.relocate: statepoint base index out of bounds", CS);
|
|
Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
|
|
"gc.relocate: statepoint derived index out of bounds", CS);
|
|
|
|
// Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
|
|
// section of the statepoint's argument
|
|
Assert(StatepointCS.arg_size() > 0,
|
|
"gc.statepoint: insufficient arguments");
|
|
Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
|
|
"gc.statement: number of call arguments must be constant integer");
|
|
const unsigned NumCallArgs =
|
|
cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
|
|
Assert(StatepointCS.arg_size() > NumCallArgs + 5,
|
|
"gc.statepoint: mismatch in number of call arguments");
|
|
Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
|
|
"gc.statepoint: number of transition arguments must be "
|
|
"a constant integer");
|
|
const int NumTransitionArgs =
|
|
cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
|
|
->getZExtValue();
|
|
const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
|
|
Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
|
|
"gc.statepoint: number of deoptimization arguments must be "
|
|
"a constant integer");
|
|
const int NumDeoptArgs =
|
|
cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
|
|
const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
|
|
const int GCParamArgsEnd = StatepointCS.arg_size();
|
|
Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
|
|
"gc.relocate: statepoint base index doesn't fall within the "
|
|
"'gc parameters' section of the statepoint call",
|
|
CS);
|
|
Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
|
|
"gc.relocate: statepoint derived index doesn't fall within the "
|
|
"'gc parameters' section of the statepoint call",
|
|
CS);
|
|
|
|
// Relocated value must be a pointer type, but gc_relocate does not need to return the
|
|
// same pointer type as the relocated pointer. It can be casted to the correct type later
|
|
// if it's desired. However, they must have the same address space.
|
|
GCRelocateOperands Operands(CS);
|
|
Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
|
|
"gc.relocate: relocated value must be a gc pointer", CS);
|
|
|
|
// gc_relocate return type must be a pointer type, and is verified earlier in
|
|
// VerifyIntrinsicType().
|
|
Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
|
|
cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
|
|
"gc.relocate: relocating a pointer shouldn't change its address space", CS);
|
|
break;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Carefully grab the subprogram from a local scope.
|
|
///
|
|
/// This carefully grabs the subprogram from a local scope, avoiding the
|
|
/// built-in assertions that would typically fire.
|
|
static DISubprogram *getSubprogram(Metadata *LocalScope) {
|
|
if (!LocalScope)
|
|
return nullptr;
|
|
|
|
if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
|
|
return SP;
|
|
|
|
if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
|
|
return getSubprogram(LB->getRawScope());
|
|
|
|
// Just return null; broken scope chains are checked elsewhere.
|
|
assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
|
|
return nullptr;
|
|
}
|
|
|
|
template <class DbgIntrinsicTy>
|
|
void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
|
|
auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
|
|
Assert(isa<ValueAsMetadata>(MD) ||
|
|
(isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
|
|
"invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
|
|
Assert(isa<DILocalVariable>(DII.getRawVariable()),
|
|
"invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
|
|
DII.getRawVariable());
|
|
Assert(isa<DIExpression>(DII.getRawExpression()),
|
|
"invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
|
|
DII.getRawExpression());
|
|
|
|
// Ignore broken !dbg attachments; they're checked elsewhere.
|
|
if (MDNode *N = DII.getDebugLoc().getAsMDNode())
|
|
if (!isa<DILocation>(N))
|
|
return;
|
|
|
|
BasicBlock *BB = DII.getParent();
|
|
Function *F = BB ? BB->getParent() : nullptr;
|
|
|
|
// The scopes for variables and !dbg attachments must agree.
|
|
DILocalVariable *Var = DII.getVariable();
|
|
DILocation *Loc = DII.getDebugLoc();
|
|
Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
|
|
&DII, BB, F);
|
|
|
|
DISubprogram *VarSP = getSubprogram(Var->getRawScope());
|
|
DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
|
|
if (!VarSP || !LocSP)
|
|
return; // Broken scope chains are checked elsewhere.
|
|
|
|
Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
|
|
" variable and !dbg attachment",
|
|
&DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
|
|
Loc->getScope()->getSubprogram());
|
|
}
|
|
|
|
template <class MapTy>
|
|
static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
|
|
// Be careful of broken types (checked elsewhere).
|
|
const Metadata *RawType = V.getRawType();
|
|
while (RawType) {
|
|
// Try to get the size directly.
|
|
if (auto *T = dyn_cast<DIType>(RawType))
|
|
if (uint64_t Size = T->getSizeInBits())
|
|
return Size;
|
|
|
|
if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
|
|
// Look at the base type.
|
|
RawType = DT->getRawBaseType();
|
|
continue;
|
|
}
|
|
|
|
if (auto *S = dyn_cast<MDString>(RawType)) {
|
|
// Don't error on missing types (checked elsewhere).
|
|
RawType = Map.lookup(S);
|
|
continue;
|
|
}
|
|
|
|
// Missing type or size.
|
|
break;
|
|
}
|
|
|
|
// Fail gracefully.
|
|
return 0;
|
|
}
|
|
|
|
template <class MapTy>
|
|
void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
|
|
const MapTy &TypeRefs) {
|
|
DILocalVariable *V;
|
|
DIExpression *E;
|
|
if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
|
|
V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
|
|
E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
|
|
} else {
|
|
auto *DDI = cast<DbgDeclareInst>(&I);
|
|
V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
|
|
E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
|
|
}
|
|
|
|
// We don't know whether this intrinsic verified correctly.
|
|
if (!V || !E || !E->isValid())
|
|
return;
|
|
|
|
// Nothing to do if this isn't a bit piece expression.
|
|
if (!E->isBitPiece())
|
|
return;
|
|
|
|
// The frontend helps out GDB by emitting the members of local anonymous
|
|
// unions as artificial local variables with shared storage. When SROA splits
|
|
// the storage for artificial local variables that are smaller than the entire
|
|
// union, the overhang piece will be outside of the allotted space for the
|
|
// variable and this check fails.
|
|
// FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
|
|
if (V->isArtificial())
|
|
return;
|
|
|
|
// If there's no size, the type is broken, but that should be checked
|
|
// elsewhere.
|
|
uint64_t VarSize = getVariableSize(*V, TypeRefs);
|
|
if (!VarSize)
|
|
return;
|
|
|
|
unsigned PieceSize = E->getBitPieceSize();
|
|
unsigned PieceOffset = E->getBitPieceOffset();
|
|
Assert(PieceSize + PieceOffset <= VarSize,
|
|
"piece is larger than or outside of variable", &I, V, E);
|
|
Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
|
|
}
|
|
|
|
void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
|
|
// This is in its own function so we get an error for each bad type ref (not
|
|
// just the first).
|
|
Assert(false, "unresolved type ref", S, N);
|
|
}
|
|
|
|
void Verifier::verifyTypeRefs() {
|
|
auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
|
|
if (!CUs)
|
|
return;
|
|
|
|
// Visit all the compile units again to map the type references.
|
|
SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
|
|
for (auto *CU : CUs->operands())
|
|
if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
|
|
for (DIType *Op : Ts)
|
|
if (auto *T = dyn_cast<DICompositeType>(Op))
|
|
if (auto *S = T->getRawIdentifier()) {
|
|
UnresolvedTypeRefs.erase(S);
|
|
TypeRefs.insert(std::make_pair(S, T));
|
|
}
|
|
|
|
// Verify debug info intrinsic bit piece expressions. This needs a second
|
|
// pass through the intructions, since we haven't built TypeRefs yet when
|
|
// verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
|
|
// later/now would queue up some that could be later deleted.
|
|
for (const Function &F : *M)
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB)
|
|
if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
|
|
verifyBitPieceExpression(*DII, TypeRefs);
|
|
|
|
// Return early if all typerefs were resolved.
|
|
if (UnresolvedTypeRefs.empty())
|
|
return;
|
|
|
|
// Sort the unresolved references by name so the output is deterministic.
|
|
typedef std::pair<const MDString *, const MDNode *> TypeRef;
|
|
SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
|
|
UnresolvedTypeRefs.end());
|
|
std::sort(Unresolved.begin(), Unresolved.end(),
|
|
[](const TypeRef &LHS, const TypeRef &RHS) {
|
|
return LHS.first->getString() < RHS.first->getString();
|
|
});
|
|
|
|
// Visit the unresolved refs (printing out the errors).
|
|
for (const TypeRef &TR : Unresolved)
|
|
visitUnresolvedTypeRef(TR.first, TR.second);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implement the public interfaces to this file...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
|
|
Function &F = const_cast<Function &>(f);
|
|
assert(!F.isDeclaration() && "Cannot verify external functions");
|
|
|
|
raw_null_ostream NullStr;
|
|
Verifier V(OS ? *OS : NullStr);
|
|
|
|
// Note that this function's return value is inverted from what you would
|
|
// expect of a function called "verify".
|
|
return !V.verify(F);
|
|
}
|
|
|
|
bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
|
|
raw_null_ostream NullStr;
|
|
Verifier V(OS ? *OS : NullStr);
|
|
|
|
bool Broken = false;
|
|
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
if (!I->isDeclaration() && !I->isMaterializable())
|
|
Broken |= !V.verify(*I);
|
|
|
|
// Note that this function's return value is inverted from what you would
|
|
// expect of a function called "verify".
|
|
return !V.verify(M) || Broken;
|
|
}
|
|
|
|
namespace {
|
|
struct VerifierLegacyPass : public FunctionPass {
|
|
static char ID;
|
|
|
|
Verifier V;
|
|
bool FatalErrors;
|
|
|
|
VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
|
|
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
explicit VerifierLegacyPass(bool FatalErrors)
|
|
: FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
|
|
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (!V.verify(F) && FatalErrors)
|
|
report_fatal_error("Broken function found, compilation aborted!");
|
|
|
|
return false;
|
|
}
|
|
|
|
bool doFinalization(Module &M) override {
|
|
if (!V.verify(M) && FatalErrors)
|
|
report_fatal_error("Broken module found, compilation aborted!");
|
|
|
|
return false;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
}
|
|
|
|
char VerifierLegacyPass::ID = 0;
|
|
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
|
|
|
|
FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
|
|
return new VerifierLegacyPass(FatalErrors);
|
|
}
|
|
|
|
PreservedAnalyses VerifierPass::run(Module &M) {
|
|
if (verifyModule(M, &dbgs()) && FatalErrors)
|
|
report_fatal_error("Broken module found, compilation aborted!");
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses VerifierPass::run(Function &F) {
|
|
if (verifyFunction(F, &dbgs()) && FatalErrors)
|
|
report_fatal_error("Broken function found, compilation aborted!");
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|