mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
bf9716b9c4
code. PrologEpilogInserter hasn't been updated yet though, so targets cannot use this info. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23536 91177308-0d34-0410-b5e6-96231b3b80d8
625 lines
25 KiB
C++
625 lines
25 KiB
C++
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the VirtRegMap class.
|
|
//
|
|
// It also contains implementations of the the Spiller interface, which, given a
|
|
// virtual register map and a machine function, eliminates all virtual
|
|
// references by replacing them with physical register references - adding spill
|
|
// code as necessary.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "spiller"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumSpills("spiller", "Number of register spills");
|
|
Statistic<> NumStores("spiller", "Number of stores added");
|
|
Statistic<> NumLoads ("spiller", "Number of loads added");
|
|
Statistic<> NumReused("spiller", "Number of values reused");
|
|
Statistic<> NumDSE ("spiller", "Number of dead stores elided");
|
|
|
|
enum SpillerName { simple, local };
|
|
|
|
cl::opt<SpillerName>
|
|
SpillerOpt("spiller",
|
|
cl::desc("Spiller to use: (default: local)"),
|
|
cl::Prefix,
|
|
cl::values(clEnumVal(simple, " simple spiller"),
|
|
clEnumVal(local, " local spiller"),
|
|
clEnumValEnd),
|
|
cl::init(local));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VirtRegMap implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void VirtRegMap::grow() {
|
|
Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
|
|
Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
|
|
}
|
|
|
|
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
|
|
assert(MRegisterInfo::isVirtualRegister(virtReg));
|
|
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
|
|
"attempt to assign stack slot to already spilled register");
|
|
const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
|
|
int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
|
|
RC->getAlignment());
|
|
Virt2StackSlotMap[virtReg] = frameIndex;
|
|
++NumSpills;
|
|
return frameIndex;
|
|
}
|
|
|
|
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
|
|
assert(MRegisterInfo::isVirtualRegister(virtReg));
|
|
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
|
|
"attempt to assign stack slot to already spilled register");
|
|
Virt2StackSlotMap[virtReg] = frameIndex;
|
|
}
|
|
|
|
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
|
|
unsigned OpNo, MachineInstr *NewMI) {
|
|
// Move previous memory references folded to new instruction.
|
|
MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
|
|
for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
|
|
E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
|
|
MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
|
|
MI2VirtMap.erase(I++);
|
|
}
|
|
|
|
ModRef MRInfo;
|
|
if (!OldMI->getOperand(OpNo).isDef()) {
|
|
assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
|
|
MRInfo = isRef;
|
|
} else {
|
|
MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
|
|
}
|
|
|
|
// add new memory reference
|
|
MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
|
|
}
|
|
|
|
void VirtRegMap::print(std::ostream &OS) const {
|
|
const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
|
|
|
|
OS << "********** REGISTER MAP **********\n";
|
|
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
|
|
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
|
|
if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
|
|
OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
|
|
|
|
}
|
|
|
|
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
|
|
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
|
|
if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
|
|
OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
|
|
OS << '\n';
|
|
}
|
|
|
|
void VirtRegMap::dump() const { print(std::cerr); }
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Simple Spiller Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Spiller::~Spiller() {}
|
|
|
|
namespace {
|
|
struct SimpleSpiller : public Spiller {
|
|
bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
|
|
};
|
|
}
|
|
|
|
bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF,
|
|
const VirtRegMap &VRM) {
|
|
DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
|
|
DEBUG(std::cerr << "********** Function: "
|
|
<< MF.getFunction()->getName() << '\n');
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const MRegisterInfo &MRI = *TM.getRegisterInfo();
|
|
bool *PhysRegsUsed = MF.getUsedPhysregs();
|
|
|
|
// LoadedRegs - Keep track of which vregs are loaded, so that we only load
|
|
// each vreg once (in the case where a spilled vreg is used by multiple
|
|
// operands). This is always smaller than the number of operands to the
|
|
// current machine instr, so it should be small.
|
|
std::vector<unsigned> LoadedRegs;
|
|
|
|
for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
|
|
MBBI != E; ++MBBI) {
|
|
DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
|
|
MachineBasicBlock &MBB = *MBBI;
|
|
for (MachineBasicBlock::iterator MII = MBB.begin(),
|
|
E = MBB.end(); MII != E; ++MII) {
|
|
MachineInstr &MI = *MII;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isRegister() && MO.getReg())
|
|
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
unsigned VirtReg = MO.getReg();
|
|
unsigned PhysReg = VRM.getPhys(VirtReg);
|
|
if (VRM.hasStackSlot(VirtReg)) {
|
|
int StackSlot = VRM.getStackSlot(VirtReg);
|
|
const TargetRegisterClass* RC =
|
|
MF.getSSARegMap()->getRegClass(VirtReg);
|
|
|
|
if (MO.isUse() &&
|
|
std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
|
|
== LoadedRegs.end()) {
|
|
MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
|
|
LoadedRegs.push_back(VirtReg);
|
|
++NumLoads;
|
|
DEBUG(std::cerr << '\t' << *prior(MII));
|
|
}
|
|
|
|
if (MO.isDef()) {
|
|
MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
|
|
++NumStores;
|
|
}
|
|
}
|
|
PhysRegsUsed[PhysReg] = true;
|
|
MI.SetMachineOperandReg(i, PhysReg);
|
|
} else {
|
|
PhysRegsUsed[MO.getReg()] = true;
|
|
}
|
|
}
|
|
|
|
DEBUG(std::cerr << '\t' << MI);
|
|
LoadedRegs.clear();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local Spiller Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// LocalSpiller - This spiller does a simple pass over the machine basic
|
|
/// block to attempt to keep spills in registers as much as possible for
|
|
/// blocks that have low register pressure (the vreg may be spilled due to
|
|
/// register pressure in other blocks).
|
|
class LocalSpiller : public Spiller {
|
|
const MRegisterInfo *MRI;
|
|
const TargetInstrInfo *TII;
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
|
|
MRI = MF.getTarget().getRegisterInfo();
|
|
TII = MF.getTarget().getInstrInfo();
|
|
DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
|
|
<< MF.getFunction()->getName() << "':\n");
|
|
|
|
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
|
|
MBB != E; ++MBB)
|
|
RewriteMBB(*MBB, VRM);
|
|
return true;
|
|
}
|
|
private:
|
|
void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
|
|
void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
|
|
std::map<unsigned, int> &PhysRegs);
|
|
void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
|
|
std::map<unsigned, int> &PhysRegs);
|
|
};
|
|
}
|
|
|
|
void LocalSpiller::ClobberPhysRegOnly(unsigned PhysReg,
|
|
std::map<int, unsigned> &SpillSlots,
|
|
std::map<unsigned, int> &PhysRegs) {
|
|
std::map<unsigned, int>::iterator I = PhysRegs.find(PhysReg);
|
|
if (I != PhysRegs.end()) {
|
|
int Slot = I->second;
|
|
PhysRegs.erase(I);
|
|
assert(SpillSlots[Slot] == PhysReg && "Bidirectional map mismatch!");
|
|
SpillSlots.erase(Slot);
|
|
DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
|
|
<< " clobbered, invalidating SS#" << Slot << "\n");
|
|
|
|
}
|
|
}
|
|
|
|
void LocalSpiller::ClobberPhysReg(unsigned PhysReg,
|
|
std::map<int, unsigned> &SpillSlots,
|
|
std::map<unsigned, int> &PhysRegs) {
|
|
for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
|
|
ClobberPhysRegOnly(*AS, SpillSlots, PhysRegs);
|
|
ClobberPhysRegOnly(PhysReg, SpillSlots, PhysRegs);
|
|
}
|
|
|
|
|
|
// ReusedOp - For each reused operand, we keep track of a bit of information, in
|
|
// case we need to rollback upon processing a new operand. See comments below.
|
|
namespace {
|
|
struct ReusedOp {
|
|
// The MachineInstr operand that reused an available value.
|
|
unsigned Operand;
|
|
|
|
// StackSlot - The spill slot of the value being reused.
|
|
unsigned StackSlot;
|
|
|
|
// PhysRegReused - The physical register the value was available in.
|
|
unsigned PhysRegReused;
|
|
|
|
// AssignedPhysReg - The physreg that was assigned for use by the reload.
|
|
unsigned AssignedPhysReg;
|
|
|
|
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr)
|
|
: Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr) {}
|
|
};
|
|
}
|
|
|
|
|
|
/// rewriteMBB - Keep track of which spills are available even after the
|
|
/// register allocator is done with them. If possible, avoid reloading vregs.
|
|
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {
|
|
|
|
// SpillSlotsAvailable - This map keeps track of all of the spilled virtual
|
|
// register values that are still available, due to being loaded to stored to,
|
|
// but not invalidated yet.
|
|
std::map<int, unsigned> SpillSlotsAvailable;
|
|
|
|
// PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
|
|
// which physregs are in use holding a stack slot value.
|
|
std::map<unsigned, int> PhysRegsAvailable;
|
|
|
|
DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
|
|
|
|
std::vector<ReusedOp> ReusedOperands;
|
|
|
|
// DefAndUseVReg - When we see a def&use operand that is spilled, keep track
|
|
// of it. ".first" is the machine operand index (should always be 0 for now),
|
|
// and ".second" is the virtual register that is spilled.
|
|
std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
|
|
|
|
// MaybeDeadStores - When we need to write a value back into a stack slot,
|
|
// keep track of the inserted store. If the stack slot value is never read
|
|
// (because the value was used from some available register, for example), and
|
|
// subsequently stored to, the original store is dead. This map keeps track
|
|
// of inserted stores that are not used. If we see a subsequent store to the
|
|
// same stack slot, the original store is deleted.
|
|
std::map<int, MachineInstr*> MaybeDeadStores;
|
|
|
|
bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
|
|
|
|
for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
|
|
MII != E; ) {
|
|
MachineInstr &MI = *MII;
|
|
MachineBasicBlock::iterator NextMII = MII; ++NextMII;
|
|
|
|
ReusedOperands.clear();
|
|
DefAndUseVReg.clear();
|
|
|
|
// Process all of the spilled uses and all non spilled reg references.
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isRegister() || MO.getReg() == 0)
|
|
continue; // Ignore non-register operands.
|
|
|
|
if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
|
|
// Ignore physregs for spilling, but remember that it is used by this
|
|
// function.
|
|
PhysRegsUsed[MO.getReg()] = true;
|
|
continue;
|
|
}
|
|
|
|
assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
|
|
"Not a virtual or a physical register?");
|
|
|
|
unsigned VirtReg = MO.getReg();
|
|
if (!VRM.hasStackSlot(VirtReg)) {
|
|
// This virtual register was assigned a physreg!
|
|
unsigned Phys = VRM.getPhys(VirtReg);
|
|
PhysRegsUsed[Phys] = true;
|
|
MI.SetMachineOperandReg(i, Phys);
|
|
continue;
|
|
}
|
|
|
|
// This virtual register is now known to be a spilled value.
|
|
if (!MO.isUse())
|
|
continue; // Handle defs in the loop below (handle use&def here though)
|
|
|
|
// If this is both a def and a use, we need to emit a store to the
|
|
// stack slot after the instruction. Keep track of D&U operands
|
|
// because we are about to change it to a physreg here.
|
|
if (MO.isDef()) {
|
|
// Remember that this was a def-and-use operand, and that the
|
|
// stack slot is live after this instruction executes.
|
|
DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
|
|
}
|
|
|
|
int StackSlot = VRM.getStackSlot(VirtReg);
|
|
unsigned PhysReg;
|
|
|
|
// Check to see if this stack slot is available.
|
|
std::map<int, unsigned>::iterator SSI =
|
|
SpillSlotsAvailable.find(StackSlot);
|
|
if (SSI != SpillSlotsAvailable.end()) {
|
|
DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
|
|
<< MRI->getName(SSI->second) << " for vreg"
|
|
<< VirtReg <<" instead of reloading into physreg "
|
|
<< MRI->getName(VRM.getPhys(VirtReg)) << "\n");
|
|
// If this stack slot value is already available, reuse it!
|
|
PhysReg = SSI->second;
|
|
MI.SetMachineOperandReg(i, PhysReg);
|
|
|
|
// The only technical detail we have is that we don't know that
|
|
// PhysReg won't be clobbered by a reloaded stack slot that occurs
|
|
// later in the instruction. In particular, consider 'op V1, V2'.
|
|
// If V1 is available in physreg R0, we would choose to reuse it
|
|
// here, instead of reloading it into the register the allocator
|
|
// indicated (say R1). However, V2 might have to be reloaded
|
|
// later, and it might indicate that it needs to live in R0. When
|
|
// this occurs, we need to have information available that
|
|
// indicates it is safe to use R1 for the reload instead of R0.
|
|
//
|
|
// To further complicate matters, we might conflict with an alias,
|
|
// or R0 and R1 might not be compatible with each other. In this
|
|
// case, we actually insert a reload for V1 in R1, ensuring that
|
|
// we can get at R0 or its alias.
|
|
ReusedOperands.push_back(ReusedOp(i, StackSlot, PhysReg,
|
|
VRM.getPhys(VirtReg)));
|
|
++NumReused;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, reload it and remember that we have it.
|
|
PhysReg = VRM.getPhys(VirtReg);
|
|
const TargetRegisterClass* RC =
|
|
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
|
|
|
|
RecheckRegister:
|
|
// Note that, if we reused a register for a previous operand, the
|
|
// register we want to reload into might not actually be
|
|
// available. If this occurs, use the register indicated by the
|
|
// reuser.
|
|
if (!ReusedOperands.empty()) // This is most often empty.
|
|
for (unsigned ro = 0, e = ReusedOperands.size(); ro != e; ++ro)
|
|
if (ReusedOperands[ro].PhysRegReused == PhysReg) {
|
|
// Yup, use the reload register that we didn't use before.
|
|
PhysReg = ReusedOperands[ro].AssignedPhysReg;
|
|
goto RecheckRegister;
|
|
} else {
|
|
ReusedOp &Op = ReusedOperands[ro];
|
|
unsigned PRRU = Op.PhysRegReused;
|
|
if (MRI->areAliases(PRRU, PhysReg)) {
|
|
// Okay, we found out that an alias of a reused register
|
|
// was used. This isn't good because it means we have
|
|
// to undo a previous reuse.
|
|
MRI->loadRegFromStackSlot(MBB, &MI, Op.AssignedPhysReg,
|
|
Op.StackSlot, RC);
|
|
ClobberPhysReg(Op.AssignedPhysReg, SpillSlotsAvailable,
|
|
PhysRegsAvailable);
|
|
|
|
// Any stores to this stack slot are not dead anymore.
|
|
MaybeDeadStores.erase(Op.StackSlot);
|
|
|
|
MI.SetMachineOperandReg(Op.Operand, Op.AssignedPhysReg);
|
|
PhysRegsAvailable[Op.AssignedPhysReg] = Op.StackSlot;
|
|
SpillSlotsAvailable[Op.StackSlot] = Op.AssignedPhysReg;
|
|
PhysRegsAvailable.erase(Op.PhysRegReused);
|
|
DEBUG(std::cerr << "Remembering SS#" << Op.StackSlot
|
|
<< " in physreg "
|
|
<< MRI->getName(Op.AssignedPhysReg) << "\n");
|
|
++NumLoads;
|
|
DEBUG(std::cerr << '\t' << *prior(MII));
|
|
|
|
DEBUG(std::cerr << "Reuse undone!\n");
|
|
ReusedOperands.erase(ReusedOperands.begin()+ro);
|
|
--NumReused;
|
|
goto ContinueReload;
|
|
}
|
|
}
|
|
ContinueReload:
|
|
PhysRegsUsed[PhysReg] = true;
|
|
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
|
|
// This invalidates PhysReg.
|
|
ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
|
|
|
|
// Any stores to this stack slot are not dead anymore.
|
|
MaybeDeadStores.erase(StackSlot);
|
|
|
|
MI.SetMachineOperandReg(i, PhysReg);
|
|
PhysRegsAvailable[PhysReg] = StackSlot;
|
|
SpillSlotsAvailable[StackSlot] = PhysReg;
|
|
DEBUG(std::cerr << "Remembering SS#" << StackSlot <<" in physreg "
|
|
<< MRI->getName(PhysReg) << "\n");
|
|
++NumLoads;
|
|
DEBUG(std::cerr << '\t' << *prior(MII));
|
|
}
|
|
|
|
// Loop over all of the implicit defs, clearing them from our available
|
|
// sets.
|
|
for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
|
|
*ImpDef; ++ImpDef) {
|
|
PhysRegsUsed[*ImpDef] = true;
|
|
ClobberPhysReg(*ImpDef, SpillSlotsAvailable, PhysRegsAvailable);
|
|
}
|
|
|
|
DEBUG(std::cerr << '\t' << MI);
|
|
|
|
// If we have folded references to memory operands, make sure we clear all
|
|
// physical registers that may contain the value of the spilled virtual
|
|
// register
|
|
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
|
|
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
|
|
DEBUG(std::cerr << "Folded vreg: " << I->second.first << " MR: "
|
|
<< I->second.second);
|
|
unsigned VirtReg = I->second.first;
|
|
VirtRegMap::ModRef MR = I->second.second;
|
|
if (!VRM.hasStackSlot(VirtReg)) {
|
|
DEBUG(std::cerr << ": No stack slot!\n");
|
|
continue;
|
|
}
|
|
int SS = VRM.getStackSlot(VirtReg);
|
|
DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
|
|
|
|
// If this folded instruction is just a use, check to see if it's a
|
|
// straight load from the virt reg slot.
|
|
if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
|
|
int FrameIdx;
|
|
if (unsigned DestReg = MRI->isLoadFromStackSlot(&MI, FrameIdx)) {
|
|
// If this spill slot is available, insert a copy for it!
|
|
std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
|
|
if (FrameIdx == SS && It != SpillSlotsAvailable.end()) {
|
|
DEBUG(std::cerr << "Promoted Load To Copy: " << MI);
|
|
MachineFunction &MF = *MBB.getParent();
|
|
if (DestReg != It->second) {
|
|
MRI->copyRegToReg(MBB, &MI, DestReg, It->second,
|
|
MF.getSSARegMap()->getRegClass(VirtReg));
|
|
// Revisit the copy if the destination is a vreg.
|
|
if (MRegisterInfo::isVirtualRegister(DestReg)) {
|
|
NextMII = &MI;
|
|
--NextMII; // backtrack to the copy.
|
|
}
|
|
}
|
|
MBB.erase(&MI);
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this reference is not a use, any previous store is now dead.
|
|
// Otherwise, the store to this stack slot is not dead anymore.
|
|
std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
|
|
if (MDSI != MaybeDeadStores.end()) {
|
|
if (MR & VirtRegMap::isRef) // Previous store is not dead.
|
|
MaybeDeadStores.erase(MDSI);
|
|
else {
|
|
// If we get here, the store is dead, nuke it now.
|
|
assert(MR == VirtRegMap::isMod && "Can't be modref!");
|
|
MBB.erase(MDSI->second);
|
|
MaybeDeadStores.erase(MDSI);
|
|
++NumDSE;
|
|
}
|
|
}
|
|
|
|
// If the spill slot value is available, and this is a new definition of
|
|
// the value, the value is not available anymore.
|
|
if (MR & VirtRegMap::isMod) {
|
|
std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
|
|
if (It != SpillSlotsAvailable.end()) {
|
|
PhysRegsAvailable.erase(It->second);
|
|
SpillSlotsAvailable.erase(It);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process all of the spilled defs.
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isRegister() && MO.getReg() && MO.isDef()) {
|
|
unsigned VirtReg = MO.getReg();
|
|
|
|
bool TakenCareOf = false;
|
|
if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
|
|
// Check to see if this is a def-and-use vreg operand that we do need
|
|
// to insert a store for.
|
|
bool OpTakenCareOf = false;
|
|
if (MO.isUse() && !DefAndUseVReg.empty()) {
|
|
for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
|
|
if (DefAndUseVReg[dau].first == i) {
|
|
VirtReg = DefAndUseVReg[dau].second;
|
|
OpTakenCareOf = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!OpTakenCareOf) {
|
|
ClobberPhysReg(VirtReg, SpillSlotsAvailable, PhysRegsAvailable);
|
|
TakenCareOf = true;
|
|
}
|
|
}
|
|
|
|
if (!TakenCareOf) {
|
|
// The only vregs left are stack slot definitions.
|
|
int StackSlot = VRM.getStackSlot(VirtReg);
|
|
const TargetRegisterClass *RC =
|
|
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
|
|
unsigned PhysReg;
|
|
|
|
// If this is a def&use operand, and we used a different physreg for
|
|
// it than the one assigned, make sure to execute the store from the
|
|
// correct physical register.
|
|
if (MO.getReg() == VirtReg)
|
|
PhysReg = VRM.getPhys(VirtReg);
|
|
else
|
|
PhysReg = MO.getReg();
|
|
|
|
PhysRegsUsed[PhysReg] = true;
|
|
MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
|
|
DEBUG(std::cerr << "Store:\t" << *next(MII));
|
|
MI.SetMachineOperandReg(i, PhysReg);
|
|
|
|
// If there is a dead store to this stack slot, nuke it now.
|
|
MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
|
|
if (LastStore) {
|
|
DEBUG(std::cerr << " Killed store:\t" << *LastStore);
|
|
++NumDSE;
|
|
MBB.erase(LastStore);
|
|
}
|
|
LastStore = next(MII);
|
|
|
|
// If the stack slot value was previously available in some other
|
|
// register, change it now. Otherwise, make the register available,
|
|
// in PhysReg.
|
|
std::map<int, unsigned>::iterator SSA =
|
|
SpillSlotsAvailable.find(StackSlot);
|
|
if (SSA != SpillSlotsAvailable.end()) {
|
|
// Remove the record for physreg.
|
|
PhysRegsAvailable.erase(SSA->second);
|
|
SpillSlotsAvailable.erase(SSA);
|
|
}
|
|
ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
|
|
|
|
PhysRegsAvailable[PhysReg] = StackSlot;
|
|
SpillSlotsAvailable[StackSlot] = PhysReg;
|
|
DEBUG(std::cerr << "Updating SS#" << StackSlot <<" in physreg "
|
|
<< MRI->getName(PhysReg) << " for virtreg #"
|
|
<< VirtReg << "\n");
|
|
|
|
++NumStores;
|
|
VirtReg = PhysReg;
|
|
}
|
|
}
|
|
}
|
|
ProcessNextInst:
|
|
MII = NextMII;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
llvm::Spiller* llvm::createSpiller() {
|
|
switch (SpillerOpt) {
|
|
default: assert(0 && "Unreachable!");
|
|
case local:
|
|
return new LocalSpiller();
|
|
case simple:
|
|
return new SimpleSpiller();
|
|
}
|
|
}
|