llvm-6502/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
Rafael Espindola a3863ea2da Remove address spaces from MC.
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185436 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-02 15:49:13 +00:00

2198 lines
73 KiB
C++

//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the (GNU-style) assembly parser for the AArch64
// architecture.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace {
class AArch64Operand;
class AArch64AsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
MCAsmParser &Parser;
#define GET_ASSEMBLER_HEADER
#include "AArch64GenAsmMatcher.inc"
public:
enum AArch64MatchResultTy {
Match_FirstAArch64 = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "AArch64GenAsmMatcher.inc"
};
AArch64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
: MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
MCAsmParserExtension::Initialize(_Parser);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
// These are the public interface of the MCTargetAsmParser
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool ParseDirective(AsmToken DirectiveID);
bool ParseDirectiveTLSDescCall(SMLoc L);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer&Out, unsigned &ErrorInfo,
bool MatchingInlineAsm);
// The rest of the sub-parsers have more freedom over interface: they return
// an OperandMatchResultTy because it's less ambiguous than true/false or
// -1/0/1 even if it is more verbose
OperandMatchResultTy
ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic);
OperandMatchResultTy ParseImmediate(const MCExpr *&ExprVal);
OperandMatchResultTy ParseRelocPrefix(AArch64MCExpr::VariantKind &RefKind);
OperandMatchResultTy
ParseNEONLane(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
uint32_t NumLanes);
OperandMatchResultTy
ParseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
uint32_t &NumLanes);
OperandMatchResultTy
ParseImmWithLSLOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
ParseCondCodeOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
ParseCRxOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
ParseFPImmOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
template<typename SomeNamedImmMapper> OperandMatchResultTy
ParseNamedImmOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return ParseNamedImmOperand(SomeNamedImmMapper(), Operands);
}
OperandMatchResultTy
ParseNamedImmOperand(const NamedImmMapper &Mapper,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
ParseLSXAddressOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
ParseShiftExtend(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
ParseSysRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool validateInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands);
/// Scan the next token (which had better be an identifier) and determine
/// whether it represents a general-purpose or vector register. It returns
/// true if an identifier was found and populates its reference arguments. It
/// does not consume the token.
bool
IdentifyRegister(unsigned &RegNum, SMLoc &RegEndLoc, StringRef &LayoutSpec,
SMLoc &LayoutLoc) const;
};
}
namespace {
/// Instances of this class represent a parsed AArch64 machine instruction.
class AArch64Operand : public MCParsedAsmOperand {
private:
enum KindTy {
k_ImmWithLSL, // #uimm {, LSL #amt }
k_CondCode, // eq/ne/...
k_FPImmediate, // Limited-precision floating-point imm
k_Immediate, // Including expressions referencing symbols
k_Register,
k_ShiftExtend,
k_SysReg, // The register operand of MRS and MSR instructions
k_Token, // The mnemonic; other raw tokens the auto-generated
k_WrappedRegister // Load/store exclusive permit a wrapped register.
} Kind;
SMLoc StartLoc, EndLoc;
struct ImmWithLSLOp {
const MCExpr *Val;
unsigned ShiftAmount;
bool ImplicitAmount;
};
struct CondCodeOp {
A64CC::CondCodes Code;
};
struct FPImmOp {
double Val;
};
struct ImmOp {
const MCExpr *Val;
};
struct RegOp {
unsigned RegNum;
};
struct ShiftExtendOp {
A64SE::ShiftExtSpecifiers ShiftType;
unsigned Amount;
bool ImplicitAmount;
};
struct SysRegOp {
const char *Data;
unsigned Length;
};
struct TokOp {
const char *Data;
unsigned Length;
};
union {
struct ImmWithLSLOp ImmWithLSL;
struct CondCodeOp CondCode;
struct FPImmOp FPImm;
struct ImmOp Imm;
struct RegOp Reg;
struct ShiftExtendOp ShiftExtend;
struct SysRegOp SysReg;
struct TokOp Tok;
};
AArch64Operand(KindTy K, SMLoc S, SMLoc E)
: MCParsedAsmOperand(), Kind(K), StartLoc(S), EndLoc(E) {}
public:
AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand() {
}
SMLoc getStartLoc() const { return StartLoc; }
SMLoc getEndLoc() const { return EndLoc; }
void print(raw_ostream&) const;
void dump() const;
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == k_Register || Kind == k_WrappedRegister)
&& "Invalid access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == k_Immediate && "Invalid access!");
return Imm.Val;
}
A64CC::CondCodes getCondCode() const {
assert(Kind == k_CondCode && "Invalid access!");
return CondCode.Code;
}
static bool isNonConstantExpr(const MCExpr *E,
AArch64MCExpr::VariantKind &Variant) {
if (const AArch64MCExpr *A64E = dyn_cast<AArch64MCExpr>(E)) {
Variant = A64E->getKind();
return true;
} else if (!isa<MCConstantExpr>(E)) {
Variant = AArch64MCExpr::VK_AARCH64_None;
return true;
}
return false;
}
bool isCondCode() const { return Kind == k_CondCode; }
bool isToken() const { return Kind == k_Token; }
bool isReg() const { return Kind == k_Register; }
bool isImm() const { return Kind == k_Immediate; }
bool isMem() const { return false; }
bool isFPImm() const { return Kind == k_FPImmediate; }
bool isShiftOrExtend() const { return Kind == k_ShiftExtend; }
bool isSysReg() const { return Kind == k_SysReg; }
bool isImmWithLSL() const { return Kind == k_ImmWithLSL; }
bool isWrappedReg() const { return Kind == k_WrappedRegister; }
bool isAddSubImmLSL0() const {
if (!isImmWithLSL()) return false;
if (ImmWithLSL.ShiftAmount != 0) return false;
AArch64MCExpr::VariantKind Variant;
if (isNonConstantExpr(ImmWithLSL.Val, Variant)) {
return Variant == AArch64MCExpr::VK_AARCH64_LO12
|| Variant == AArch64MCExpr::VK_AARCH64_DTPREL_LO12
|| Variant == AArch64MCExpr::VK_AARCH64_DTPREL_LO12_NC
|| Variant == AArch64MCExpr::VK_AARCH64_TPREL_LO12
|| Variant == AArch64MCExpr::VK_AARCH64_TPREL_LO12_NC
|| Variant == AArch64MCExpr::VK_AARCH64_TLSDESC_LO12;
}
// Otherwise it should be a real immediate in range:
const MCConstantExpr *CE = cast<MCConstantExpr>(ImmWithLSL.Val);
return CE->getValue() >= 0 && CE->getValue() <= 0xfff;
}
bool isAddSubImmLSL12() const {
if (!isImmWithLSL()) return false;
if (ImmWithLSL.ShiftAmount != 12) return false;
AArch64MCExpr::VariantKind Variant;
if (isNonConstantExpr(ImmWithLSL.Val, Variant)) {
return Variant == AArch64MCExpr::VK_AARCH64_DTPREL_HI12
|| Variant == AArch64MCExpr::VK_AARCH64_TPREL_HI12;
}
// Otherwise it should be a real immediate in range:
const MCConstantExpr *CE = cast<MCConstantExpr>(ImmWithLSL.Val);
return CE->getValue() >= 0 && CE->getValue() <= 0xfff;
}
template<unsigned MemSize, unsigned RmSize> bool isAddrRegExtend() const {
if (!isShiftOrExtend()) return false;
A64SE::ShiftExtSpecifiers Ext = ShiftExtend.ShiftType;
if (RmSize == 32 && !(Ext == A64SE::UXTW || Ext == A64SE::SXTW))
return false;
if (RmSize == 64 && !(Ext == A64SE::LSL || Ext == A64SE::SXTX))
return false;
return ShiftExtend.Amount == Log2_32(MemSize) || ShiftExtend.Amount == 0;
}
bool isAdrpLabel() const {
if (!isImm()) return false;
AArch64MCExpr::VariantKind Variant;
if (isNonConstantExpr(getImm(), Variant)) {
return Variant == AArch64MCExpr::VK_AARCH64_None
|| Variant == AArch64MCExpr::VK_AARCH64_GOT
|| Variant == AArch64MCExpr::VK_AARCH64_GOTTPREL
|| Variant == AArch64MCExpr::VK_AARCH64_TLSDESC;
}
return isLabel<21, 4096>();
}
template<unsigned RegWidth> bool isBitfieldWidth() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
return CE->getValue() >= 1 && CE->getValue() <= RegWidth;
}
template<int RegWidth>
bool isCVTFixedPos() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
return CE->getValue() >= 1 && CE->getValue() <= RegWidth;
}
bool isFMOVImm() const {
if (!isFPImm()) return false;
APFloat RealVal(FPImm.Val);
uint32_t ImmVal;
return A64Imms::isFPImm(RealVal, ImmVal);
}
bool isFPZero() const {
if (!isFPImm()) return false;
APFloat RealVal(FPImm.Val);
return RealVal.isPosZero();
}
template<unsigned field_width, unsigned scale>
bool isLabel() const {
if (!isImm()) return false;
if (dyn_cast<MCSymbolRefExpr>(Imm.Val)) {
return true;
} else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Min = - (scale * (1LL << (field_width - 1)));
int64_t Max = scale * ((1LL << (field_width - 1)) - 1);
return (Val % scale) == 0 && Val >= Min && Val <= Max;
}
// N.b. this disallows explicit relocation specifications via an
// AArch64MCExpr. Users needing that behaviour
return false;
}
bool isLane1() const {
if (!isImm()) return false;
// Because it's come through custom assembly parsing, it must always be a
// constant expression.
return cast<MCConstantExpr>(getImm())->getValue() == 1;
}
bool isLoadLitLabel() const {
if (!isImm()) return false;
AArch64MCExpr::VariantKind Variant;
if (isNonConstantExpr(getImm(), Variant)) {
return Variant == AArch64MCExpr::VK_AARCH64_None
|| Variant == AArch64MCExpr::VK_AARCH64_GOTTPREL;
}
return isLabel<19, 4>();
}
template<unsigned RegWidth> bool isLogicalImm() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
if (!CE) return false;
uint32_t Bits;
return A64Imms::isLogicalImm(RegWidth, CE->getValue(), Bits);
}
template<unsigned RegWidth> bool isLogicalImmMOV() const {
if (!isLogicalImm<RegWidth>()) return false;
const MCConstantExpr *CE = cast<MCConstantExpr>(Imm.Val);
// The move alias for ORR is only valid if the immediate cannot be
// represented with a move (immediate) instruction; they take priority.
int UImm16, Shift;
return !A64Imms::isMOVZImm(RegWidth, CE->getValue(), UImm16, Shift)
&& !A64Imms::isMOVNImm(RegWidth, CE->getValue(), UImm16, Shift);
}
template<int MemSize>
bool isOffsetUImm12() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Assume they know what they're doing for now if they've given us a
// non-constant expression. In principle we could check for ridiculous
// things that can't possibly work or relocations that would almost
// certainly break resulting code.
if (!CE)
return true;
int64_t Val = CE->getValue();
// Must be a multiple of the access size in bytes.
if ((Val & (MemSize - 1)) != 0) return false;
// Must be 12-bit unsigned
return Val >= 0 && Val <= 0xfff * MemSize;
}
template<A64SE::ShiftExtSpecifiers SHKind, bool is64Bit>
bool isShift() const {
if (!isShiftOrExtend()) return false;
if (ShiftExtend.ShiftType != SHKind)
return false;
return is64Bit ? ShiftExtend.Amount <= 63 : ShiftExtend.Amount <= 31;
}
bool isMOVN32Imm() const {
static AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_SABS_G0,
AArch64MCExpr::VK_AARCH64_SABS_G1,
AArch64MCExpr::VK_AARCH64_DTPREL_G1,
AArch64MCExpr::VK_AARCH64_DTPREL_G0,
AArch64MCExpr::VK_AARCH64_GOTTPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(32, PermittedModifiers, NumModifiers);
}
bool isMOVN64Imm() const {
static AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_SABS_G0,
AArch64MCExpr::VK_AARCH64_SABS_G1,
AArch64MCExpr::VK_AARCH64_SABS_G2,
AArch64MCExpr::VK_AARCH64_DTPREL_G2,
AArch64MCExpr::VK_AARCH64_DTPREL_G1,
AArch64MCExpr::VK_AARCH64_DTPREL_G0,
AArch64MCExpr::VK_AARCH64_GOTTPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G2,
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(64, PermittedModifiers, NumModifiers);
}
bool isMOVZ32Imm() const {
static AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0,
AArch64MCExpr::VK_AARCH64_ABS_G1,
AArch64MCExpr::VK_AARCH64_SABS_G0,
AArch64MCExpr::VK_AARCH64_SABS_G1,
AArch64MCExpr::VK_AARCH64_DTPREL_G1,
AArch64MCExpr::VK_AARCH64_DTPREL_G0,
AArch64MCExpr::VK_AARCH64_GOTTPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(32, PermittedModifiers, NumModifiers);
}
bool isMOVZ64Imm() const {
static AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0,
AArch64MCExpr::VK_AARCH64_ABS_G1,
AArch64MCExpr::VK_AARCH64_ABS_G2,
AArch64MCExpr::VK_AARCH64_ABS_G3,
AArch64MCExpr::VK_AARCH64_SABS_G0,
AArch64MCExpr::VK_AARCH64_SABS_G1,
AArch64MCExpr::VK_AARCH64_SABS_G2,
AArch64MCExpr::VK_AARCH64_DTPREL_G2,
AArch64MCExpr::VK_AARCH64_DTPREL_G1,
AArch64MCExpr::VK_AARCH64_DTPREL_G0,
AArch64MCExpr::VK_AARCH64_GOTTPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G2,
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(64, PermittedModifiers, NumModifiers);
}
bool isMOVK32Imm() const {
static AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0_NC,
AArch64MCExpr::VK_AARCH64_ABS_G1_NC,
AArch64MCExpr::VK_AARCH64_DTPREL_G1_NC,
AArch64MCExpr::VK_AARCH64_DTPREL_G0_NC,
AArch64MCExpr::VK_AARCH64_GOTTPREL_G0_NC,
AArch64MCExpr::VK_AARCH64_TPREL_G1_NC,
AArch64MCExpr::VK_AARCH64_TPREL_G0_NC,
};
unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(32, PermittedModifiers, NumModifiers);
}
bool isMOVK64Imm() const {
static AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0_NC,
AArch64MCExpr::VK_AARCH64_ABS_G1_NC,
AArch64MCExpr::VK_AARCH64_ABS_G2_NC,
AArch64MCExpr::VK_AARCH64_ABS_G3,
AArch64MCExpr::VK_AARCH64_DTPREL_G1_NC,
AArch64MCExpr::VK_AARCH64_DTPREL_G0_NC,
AArch64MCExpr::VK_AARCH64_GOTTPREL_G0_NC,
AArch64MCExpr::VK_AARCH64_TPREL_G1_NC,
AArch64MCExpr::VK_AARCH64_TPREL_G0_NC,
};
unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(64, PermittedModifiers, NumModifiers);
}
bool isMoveWideImm(unsigned RegWidth,
AArch64MCExpr::VariantKind *PermittedModifiers,
unsigned NumModifiers) const {
if (!isImmWithLSL()) return false;
if (ImmWithLSL.ShiftAmount % 16 != 0) return false;
if (ImmWithLSL.ShiftAmount >= RegWidth) return false;
AArch64MCExpr::VariantKind Modifier;
if (isNonConstantExpr(ImmWithLSL.Val, Modifier)) {
// E.g. "#:abs_g0:sym, lsl #16" makes no sense.
if (!ImmWithLSL.ImplicitAmount) return false;
for (unsigned i = 0; i < NumModifiers; ++i)
if (PermittedModifiers[i] == Modifier) return true;
return false;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmWithLSL.Val);
return CE && CE->getValue() >= 0 && CE->getValue() <= 0xffff;
}
template<int RegWidth, bool (*isValidImm)(int, uint64_t, int&, int&)>
bool isMoveWideMovAlias() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int UImm16, Shift;
uint64_t Value = CE->getValue();
// If this is a 32-bit instruction then all bits above 32 should be the
// same: either of these is fine because signed/unsigned values should be
// permitted.
if (RegWidth == 32) {
if ((Value >> 32) != 0 && (Value >> 32) != 0xffffffff)
return false;
Value &= 0xffffffffULL;
}
return isValidImm(RegWidth, Value, UImm16, Shift);
}
bool isMSRWithReg() const {
if (!isSysReg()) return false;
bool IsKnownRegister;
StringRef Name(SysReg.Data, SysReg.Length);
A64SysReg::MSRMapper().fromString(Name, IsKnownRegister);
return IsKnownRegister;
}
bool isMSRPState() const {
if (!isSysReg()) return false;
bool IsKnownRegister;
StringRef Name(SysReg.Data, SysReg.Length);
A64PState::PStateMapper().fromString(Name, IsKnownRegister);
return IsKnownRegister;
}
bool isMRS() const {
if (!isSysReg()) return false;
// First check against specific MSR-only (write-only) registers
bool IsKnownRegister;
StringRef Name(SysReg.Data, SysReg.Length);
A64SysReg::MRSMapper().fromString(Name, IsKnownRegister);
return IsKnownRegister;
}
bool isPRFM() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return false;
return CE->getValue() >= 0 && CE->getValue() <= 31;
}
template<A64SE::ShiftExtSpecifiers SHKind> bool isRegExtend() const {
if (!isShiftOrExtend()) return false;
if (ShiftExtend.ShiftType != SHKind)
return false;
return ShiftExtend.Amount <= 4;
}
bool isRegExtendLSL() const {
if (!isShiftOrExtend()) return false;
if (ShiftExtend.ShiftType != A64SE::LSL)
return false;
return !ShiftExtend.ImplicitAmount && ShiftExtend.Amount <= 4;
}
template<int MemSize> bool isSImm7Scaled() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
if (Val % MemSize != 0) return false;
Val /= MemSize;
return Val >= -64 && Val < 64;
}
template<int BitWidth>
bool isSImm() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
return CE->getValue() >= -(1LL << (BitWidth - 1))
&& CE->getValue() < (1LL << (BitWidth - 1));
}
template<int bitWidth>
bool isUImm() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
return CE->getValue() >= 0 && CE->getValue() < (1LL << bitWidth);
}
bool isUImm() const {
if (!isImm()) return false;
return isa<MCConstantExpr>(getImm());
}
static AArch64Operand *CreateImmWithLSL(const MCExpr *Val,
unsigned ShiftAmount,
bool ImplicitAmount,
SMLoc S, SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_ImmWithLSL, S, E);
Op->ImmWithLSL.Val = Val;
Op->ImmWithLSL.ShiftAmount = ShiftAmount;
Op->ImmWithLSL.ImplicitAmount = ImplicitAmount;
return Op;
}
static AArch64Operand *CreateCondCode(A64CC::CondCodes Code,
SMLoc S, SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_CondCode, S, E);
Op->CondCode.Code = Code;
return Op;
}
static AArch64Operand *CreateFPImm(double Val,
SMLoc S, SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_FPImmediate, S, E);
Op->FPImm.Val = Val;
return Op;
}
static AArch64Operand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_Immediate, S, E);
Op->Imm.Val = Val;
return Op;
}
static AArch64Operand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_Register, S, E);
Op->Reg.RegNum = RegNum;
return Op;
}
static AArch64Operand *CreateWrappedReg(unsigned RegNum, SMLoc S, SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_WrappedRegister, S, E);
Op->Reg.RegNum = RegNum;
return Op;
}
static AArch64Operand *CreateShiftExtend(A64SE::ShiftExtSpecifiers ShiftTyp,
unsigned Amount,
bool ImplicitAmount,
SMLoc S, SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_ShiftExtend, S, E);
Op->ShiftExtend.ShiftType = ShiftTyp;
Op->ShiftExtend.Amount = Amount;
Op->ShiftExtend.ImplicitAmount = ImplicitAmount;
return Op;
}
static AArch64Operand *CreateSysReg(StringRef Str, SMLoc S) {
AArch64Operand *Op = new AArch64Operand(k_SysReg, S, S);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
return Op;
}
static AArch64Operand *CreateToken(StringRef Str, SMLoc S) {
AArch64Operand *Op = new AArch64Operand(k_Token, S, S);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
template<unsigned RegWidth>
void addBFILSBOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned EncodedVal = (RegWidth - CE->getValue()) % RegWidth;
Inst.addOperand(MCOperand::CreateImm(EncodedVal));
}
void addBFIWidthOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
}
void addBFXWidthOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
uint64_t LSB = Inst.getOperand(Inst.getNumOperands()-1).getImm();
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(LSB + CE->getValue() - 1));
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(getCondCode()));
}
void addCVTFixedPosOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::CreateImm(64 - CE->getValue()));
}
void addFMOVImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
APFloat RealVal(FPImm.Val);
uint32_t ImmVal;
A64Imms::isFPImm(RealVal, ImmVal);
Inst.addOperand(MCOperand::CreateImm(ImmVal));
}
void addFPZeroOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
Inst.addOperand(MCOperand::CreateImm(0));
}
void addInvCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
unsigned Encoded = A64InvertCondCode(getCondCode());
Inst.addOperand(MCOperand::CreateImm(Encoded));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
template<int MemSize>
void addSImm7ScaledOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Val = CE->getValue() / MemSize;
Inst.addOperand(MCOperand::CreateImm(Val & 0x7f));
}
template<int BitWidth>
void addSImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Val = CE->getValue();
Inst.addOperand(MCOperand::CreateImm(Val & ((1ULL << BitWidth) - 1)));
}
void addImmWithLSLOperands(MCInst &Inst, unsigned N) const {
assert (N == 1 && "Invalid number of operands!");
addExpr(Inst, ImmWithLSL.Val);
}
template<unsigned field_width, unsigned scale>
void addLabelOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
if (!CE) {
addExpr(Inst, Imm.Val);
return;
}
int64_t Val = CE->getValue();
assert(Val % scale == 0 && "Unaligned immediate in instruction");
Val /= scale;
Inst.addOperand(MCOperand::CreateImm(Val & ((1LL << field_width) - 1)));
}
template<int MemSize>
void addOffsetUImm12Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / MemSize));
} else {
Inst.addOperand(MCOperand::CreateExpr(getImm()));
}
}
template<unsigned RegWidth>
void addLogicalImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
const MCConstantExpr *CE = cast<MCConstantExpr>(Imm.Val);
uint32_t Bits;
A64Imms::isLogicalImm(RegWidth, CE->getValue(), Bits);
Inst.addOperand(MCOperand::CreateImm(Bits));
}
void addMRSOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
bool Valid;
StringRef Name(SysReg.Data, SysReg.Length);
uint32_t Bits = A64SysReg::MRSMapper().fromString(Name, Valid);
Inst.addOperand(MCOperand::CreateImm(Bits));
}
void addMSRWithRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
bool Valid;
StringRef Name(SysReg.Data, SysReg.Length);
uint32_t Bits = A64SysReg::MSRMapper().fromString(Name, Valid);
Inst.addOperand(MCOperand::CreateImm(Bits));
}
void addMSRPStateOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
bool Valid;
StringRef Name(SysReg.Data, SysReg.Length);
uint32_t Bits = A64PState::PStateMapper().fromString(Name, Valid);
Inst.addOperand(MCOperand::CreateImm(Bits));
}
void addMoveWideImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
addExpr(Inst, ImmWithLSL.Val);
AArch64MCExpr::VariantKind Variant;
if (!isNonConstantExpr(ImmWithLSL.Val, Variant)) {
Inst.addOperand(MCOperand::CreateImm(ImmWithLSL.ShiftAmount / 16));
return;
}
// We know it's relocated
switch (Variant) {
case AArch64MCExpr::VK_AARCH64_ABS_G0:
case AArch64MCExpr::VK_AARCH64_ABS_G0_NC:
case AArch64MCExpr::VK_AARCH64_SABS_G0:
case AArch64MCExpr::VK_AARCH64_DTPREL_G0:
case AArch64MCExpr::VK_AARCH64_DTPREL_G0_NC:
case AArch64MCExpr::VK_AARCH64_GOTTPREL_G0_NC:
case AArch64MCExpr::VK_AARCH64_TPREL_G0:
case AArch64MCExpr::VK_AARCH64_TPREL_G0_NC:
Inst.addOperand(MCOperand::CreateImm(0));
break;
case AArch64MCExpr::VK_AARCH64_ABS_G1:
case AArch64MCExpr::VK_AARCH64_ABS_G1_NC:
case AArch64MCExpr::VK_AARCH64_SABS_G1:
case AArch64MCExpr::VK_AARCH64_DTPREL_G1:
case AArch64MCExpr::VK_AARCH64_DTPREL_G1_NC:
case AArch64MCExpr::VK_AARCH64_GOTTPREL_G1:
case AArch64MCExpr::VK_AARCH64_TPREL_G1:
case AArch64MCExpr::VK_AARCH64_TPREL_G1_NC:
Inst.addOperand(MCOperand::CreateImm(1));
break;
case AArch64MCExpr::VK_AARCH64_ABS_G2:
case AArch64MCExpr::VK_AARCH64_ABS_G2_NC:
case AArch64MCExpr::VK_AARCH64_SABS_G2:
case AArch64MCExpr::VK_AARCH64_DTPREL_G2:
case AArch64MCExpr::VK_AARCH64_TPREL_G2:
Inst.addOperand(MCOperand::CreateImm(2));
break;
case AArch64MCExpr::VK_AARCH64_ABS_G3:
Inst.addOperand(MCOperand::CreateImm(3));
break;
default: llvm_unreachable("Inappropriate move wide relocation");
}
}
template<int RegWidth, bool isValidImm(int, uint64_t, int&, int&)>
void addMoveWideMovAliasOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int UImm16, Shift;
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Value = CE->getValue();
if (RegWidth == 32) {
Value &= 0xffffffffULL;
}
bool Valid = isValidImm(RegWidth, Value, UImm16, Shift);
(void)Valid;
assert(Valid && "Invalid immediates should have been weeded out by now");
Inst.addOperand(MCOperand::CreateImm(UImm16));
Inst.addOperand(MCOperand::CreateImm(Shift));
}
void addPRFMOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
assert(CE->getValue() >= 0 && CE->getValue() <= 31
&& "PRFM operand should be 5-bits");
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
}
// For Add-sub (extended register) operands.
void addRegExtendOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(ShiftExtend.Amount));
}
// For the extend in load-store (register offset) instructions.
template<unsigned MemSize>
void addAddrRegExtendOperands(MCInst &Inst, unsigned N) const {
addAddrRegExtendOperands(Inst, N, MemSize);
}
void addAddrRegExtendOperands(MCInst &Inst, unsigned N,
unsigned MemSize) const {
assert(N == 1 && "Invalid number of operands!");
// First bit of Option is set in instruction classes, the high two bits are
// as follows:
unsigned OptionHi = 0;
switch (ShiftExtend.ShiftType) {
case A64SE::UXTW:
case A64SE::LSL:
OptionHi = 1;
break;
case A64SE::SXTW:
case A64SE::SXTX:
OptionHi = 3;
break;
default:
llvm_unreachable("Invalid extend type for register offset");
}
unsigned S = 0;
if (MemSize == 1 && !ShiftExtend.ImplicitAmount)
S = 1;
else if (MemSize != 1 && ShiftExtend.Amount != 0)
S = 1;
Inst.addOperand(MCOperand::CreateImm((OptionHi << 1) | S));
}
void addShiftOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(ShiftExtend.Amount));
}
};
} // end anonymous namespace.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic) {
// See if the operand has a custom parser
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
// It could either succeed, fail or just not care.
if (ResTy != MatchOperand_NoMatch)
return ResTy;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return MatchOperand_ParseFail;
case AsmToken::Identifier: {
// It might be in the LSL/UXTB family ...
OperandMatchResultTy GotShift = ParseShiftExtend(Operands);
// We can only continue if no tokens were eaten.
if (GotShift != MatchOperand_NoMatch)
return GotShift;
// ... or it might be a register ...
uint32_t NumLanes = 0;
OperandMatchResultTy GotReg = ParseRegister(Operands, NumLanes);
assert(GotReg != MatchOperand_ParseFail
&& "register parsing shouldn't partially succeed");
if (GotReg == MatchOperand_Success) {
if (Parser.getTok().is(AsmToken::LBrac))
return ParseNEONLane(Operands, NumLanes);
else
return MatchOperand_Success;
}
// ... or it might be a symbolish thing
}
// Fall through
case AsmToken::LParen: // E.g. (strcmp-4)
case AsmToken::Integer: // 1f, 2b labels
case AsmToken::String: // quoted labels
case AsmToken::Dot: // . is Current location
case AsmToken::Dollar: // $ is PC
case AsmToken::Colon: {
SMLoc StartLoc = Parser.getTok().getLoc();
SMLoc EndLoc;
const MCExpr *ImmVal = 0;
if (ParseImmediate(ImmVal) != MatchOperand_Success)
return MatchOperand_ParseFail;
EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(ImmVal, StartLoc, EndLoc));
return MatchOperand_Success;
}
case AsmToken::Hash: { // Immediates
SMLoc StartLoc = Parser.getTok().getLoc();
SMLoc EndLoc;
const MCExpr *ImmVal = 0;
Parser.Lex();
if (ParseImmediate(ImmVal) != MatchOperand_Success)
return MatchOperand_ParseFail;
EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(ImmVal, StartLoc, EndLoc));
return MatchOperand_Success;
}
case AsmToken::LBrac: {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateToken("[", Loc));
Parser.Lex(); // Eat '['
// There's no comma after a '[', so we can parse the next operand
// immediately.
return ParseOperand(Operands, Mnemonic);
}
// The following will likely be useful later, but not in very early cases
case AsmToken::LCurly: // Weird SIMD lists
llvm_unreachable("Don't know how to deal with '{' in operand");
return MatchOperand_ParseFail;
}
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseImmediate(const MCExpr *&ExprVal) {
if (getLexer().is(AsmToken::Colon)) {
AArch64MCExpr::VariantKind RefKind;
OperandMatchResultTy ResTy = ParseRelocPrefix(RefKind);
if (ResTy != MatchOperand_Success)
return ResTy;
const MCExpr *SubExprVal;
if (getParser().parseExpression(SubExprVal))
return MatchOperand_ParseFail;
ExprVal = AArch64MCExpr::Create(RefKind, SubExprVal, getContext());
return MatchOperand_Success;
}
// No weird AArch64MCExpr prefix
return getParser().parseExpression(ExprVal)
? MatchOperand_ParseFail : MatchOperand_Success;
}
// A lane attached to a NEON register. "[N]", which should yield three tokens:
// '[', N, ']'. A hash is not allowed to precede the immediate here.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseNEONLane(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
uint32_t NumLanes) {
SMLoc Loc = Parser.getTok().getLoc();
assert(Parser.getTok().is(AsmToken::LBrac) && "inappropriate operand");
Operands.push_back(AArch64Operand::CreateToken("[", Loc));
Parser.Lex(); // Eat '['
if (Parser.getTok().isNot(AsmToken::Integer)) {
Error(Parser.getTok().getLoc(), "expected lane number");
return MatchOperand_ParseFail;
}
if (Parser.getTok().getIntVal() >= NumLanes) {
Error(Parser.getTok().getLoc(), "lane number incompatible with layout");
return MatchOperand_ParseFail;
}
const MCExpr *Lane = MCConstantExpr::Create(Parser.getTok().getIntVal(),
getContext());
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat actual lane
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateImm(Lane, S, E));
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(Parser.getTok().getLoc(), "expected ']' after lane");
return MatchOperand_ParseFail;
}
Operands.push_back(AArch64Operand::CreateToken("]", Loc));
Parser.Lex(); // Eat ']'
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseRelocPrefix(AArch64MCExpr::VariantKind &RefKind) {
assert(getLexer().is(AsmToken::Colon) && "expected a ':'");
Parser.Lex();
if (getLexer().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(),
"expected relocation specifier in operand after ':'");
return MatchOperand_ParseFail;
}
std::string LowerCase = Parser.getTok().getIdentifier().lower();
RefKind = StringSwitch<AArch64MCExpr::VariantKind>(LowerCase)
.Case("got", AArch64MCExpr::VK_AARCH64_GOT)
.Case("got_lo12", AArch64MCExpr::VK_AARCH64_GOT_LO12)
.Case("lo12", AArch64MCExpr::VK_AARCH64_LO12)
.Case("abs_g0", AArch64MCExpr::VK_AARCH64_ABS_G0)
.Case("abs_g0_nc", AArch64MCExpr::VK_AARCH64_ABS_G0_NC)
.Case("abs_g1", AArch64MCExpr::VK_AARCH64_ABS_G1)
.Case("abs_g1_nc", AArch64MCExpr::VK_AARCH64_ABS_G1_NC)
.Case("abs_g2", AArch64MCExpr::VK_AARCH64_ABS_G2)
.Case("abs_g2_nc", AArch64MCExpr::VK_AARCH64_ABS_G2_NC)
.Case("abs_g3", AArch64MCExpr::VK_AARCH64_ABS_G3)
.Case("abs_g0_s", AArch64MCExpr::VK_AARCH64_SABS_G0)
.Case("abs_g1_s", AArch64MCExpr::VK_AARCH64_SABS_G1)
.Case("abs_g2_s", AArch64MCExpr::VK_AARCH64_SABS_G2)
.Case("dtprel_g2", AArch64MCExpr::VK_AARCH64_DTPREL_G2)
.Case("dtprel_g1", AArch64MCExpr::VK_AARCH64_DTPREL_G1)
.Case("dtprel_g1_nc", AArch64MCExpr::VK_AARCH64_DTPREL_G1_NC)
.Case("dtprel_g0", AArch64MCExpr::VK_AARCH64_DTPREL_G0)
.Case("dtprel_g0_nc", AArch64MCExpr::VK_AARCH64_DTPREL_G0_NC)
.Case("dtprel_hi12", AArch64MCExpr::VK_AARCH64_DTPREL_HI12)
.Case("dtprel_lo12", AArch64MCExpr::VK_AARCH64_DTPREL_LO12)
.Case("dtprel_lo12_nc", AArch64MCExpr::VK_AARCH64_DTPREL_LO12_NC)
.Case("gottprel_g1", AArch64MCExpr::VK_AARCH64_GOTTPREL_G1)
.Case("gottprel_g0_nc", AArch64MCExpr::VK_AARCH64_GOTTPREL_G0_NC)
.Case("gottprel", AArch64MCExpr::VK_AARCH64_GOTTPREL)
.Case("gottprel_lo12", AArch64MCExpr::VK_AARCH64_GOTTPREL_LO12)
.Case("tprel_g2", AArch64MCExpr::VK_AARCH64_TPREL_G2)
.Case("tprel_g1", AArch64MCExpr::VK_AARCH64_TPREL_G1)
.Case("tprel_g1_nc", AArch64MCExpr::VK_AARCH64_TPREL_G1_NC)
.Case("tprel_g0", AArch64MCExpr::VK_AARCH64_TPREL_G0)
.Case("tprel_g0_nc", AArch64MCExpr::VK_AARCH64_TPREL_G0_NC)
.Case("tprel_hi12", AArch64MCExpr::VK_AARCH64_TPREL_HI12)
.Case("tprel_lo12", AArch64MCExpr::VK_AARCH64_TPREL_LO12)
.Case("tprel_lo12_nc", AArch64MCExpr::VK_AARCH64_TPREL_LO12_NC)
.Case("tlsdesc", AArch64MCExpr::VK_AARCH64_TLSDESC)
.Case("tlsdesc_lo12", AArch64MCExpr::VK_AARCH64_TLSDESC_LO12)
.Default(AArch64MCExpr::VK_AARCH64_None);
if (RefKind == AArch64MCExpr::VK_AARCH64_None) {
Error(Parser.getTok().getLoc(),
"expected relocation specifier in operand after ':'");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier
if (getLexer().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(),
"expected ':' after relocation specifier");
return MatchOperand_ParseFail;
}
Parser.Lex();
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseImmWithLSLOperand(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// FIXME?: I want to live in a world where immediates must start with
// #. Please don't dash my hopes (well, do if you have a good reason).
if (Parser.getTok().isNot(AsmToken::Hash)) return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat '#'
const MCExpr *Imm;
if (ParseImmediate(Imm) != MatchOperand_Success)
return MatchOperand_ParseFail;
else if (Parser.getTok().isNot(AsmToken::Comma)) {
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateImmWithLSL(Imm, 0, true, S, E));
return MatchOperand_Success;
}
// Eat ','
Parser.Lex();
// The optional operand must be "lsl #N" where N is non-negative.
if (Parser.getTok().is(AsmToken::Identifier)
&& Parser.getTok().getIdentifier().lower() == "lsl") {
Parser.Lex();
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Integer)) {
Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
return MatchOperand_ParseFail;
}
}
}
int64_t ShiftAmount = Parser.getTok().getIntVal();
if (ShiftAmount < 0) {
Error(Parser.getTok().getLoc(), "positive shift amount required");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the number
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateImmWithLSL(Imm, ShiftAmount,
false, S, E));
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseCondCodeOperand(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
if (Parser.getTok().isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
StringRef Tok = Parser.getTok().getIdentifier();
A64CC::CondCodes CondCode = A64StringToCondCode(Tok);
if (CondCode == A64CC::Invalid)
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat condition code
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateCondCode(CondCode, S, E));
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseCRxOperand(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
std::string LowerTok = Parser.getTok().getIdentifier().lower();
StringRef Tok(LowerTok);
if (Tok[0] != 'c') {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
uint32_t CRNum;
bool BadNum = Tok.drop_front().getAsInteger(10, CRNum);
if (BadNum || CRNum > 15) {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
const MCExpr *CRImm = MCConstantExpr::Create(CRNum, getContext());
Parser.Lex();
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateImm(CRImm, S, E));
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseFPImmOperand(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// FIXME?: I want to live in a world where immediates must start with
// #. Please don't dash my hopes (well, do if you have a good reason).
if (Parser.getTok().isNot(AsmToken::Hash)) return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat '#'
bool Negative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
Negative = true;
Parser.Lex(); // Eat '-'
} else if (Parser.getTok().is(AsmToken::Plus)) {
Parser.Lex(); // Eat '+'
}
if (Parser.getTok().isNot(AsmToken::Real)) {
Error(S, "Expected floating-point immediate");
return MatchOperand_ParseFail;
}
APFloat RealVal(APFloat::IEEEdouble, Parser.getTok().getString());
if (Negative) RealVal.changeSign();
double DblVal = RealVal.convertToDouble();
Parser.Lex(); // Eat real number
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateFPImm(DblVal, S, E));
return MatchOperand_Success;
}
// Automatically generated
static unsigned MatchRegisterName(StringRef Name);
bool
AArch64AsmParser::IdentifyRegister(unsigned &RegNum, SMLoc &RegEndLoc,
StringRef &Layout,
SMLoc &LayoutLoc) const {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return false;
std::string LowerReg = Tok.getString().lower();
size_t DotPos = LowerReg.find('.');
RegNum = MatchRegisterName(LowerReg.substr(0, DotPos));
if (RegNum == AArch64::NoRegister) {
RegNum = StringSwitch<unsigned>(LowerReg.substr(0, DotPos))
.Case("ip0", AArch64::X16)
.Case("ip1", AArch64::X17)
.Case("fp", AArch64::X29)
.Case("lr", AArch64::X30)
.Default(AArch64::NoRegister);
}
if (RegNum == AArch64::NoRegister)
return false;
SMLoc S = Tok.getLoc();
RegEndLoc = SMLoc::getFromPointer(S.getPointer() + DotPos);
if (DotPos == StringRef::npos) {
Layout = StringRef();
} else {
// Everything afterwards needs to be a literal token, expected to be
// '.2d','.b' etc for vector registers.
// This StringSwitch validates the input and (perhaps more importantly)
// gives us a permanent string to use in the token (a pointer into LowerReg
// would go out of scope when we return).
LayoutLoc = SMLoc::getFromPointer(S.getPointer() + DotPos + 1);
std::string LayoutText = LowerReg.substr(DotPos, StringRef::npos);
Layout = StringSwitch<const char *>(LayoutText)
.Case(".d", ".d").Case(".1d", ".1d").Case(".2d", ".2d")
.Case(".s", ".s").Case(".2s", ".2s").Case(".4s", ".4s")
.Case(".h", ".h").Case(".4h", ".4h").Case(".8h", ".8h")
.Case(".b", ".b").Case(".8b", ".8b").Case(".16b", ".16b")
.Default("");
if (Layout.size() == 0) {
// Malformed register
return false;
}
}
return true;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
uint32_t &NumLanes) {
unsigned RegNum;
StringRef Layout;
SMLoc RegEndLoc, LayoutLoc;
SMLoc S = Parser.getTok().getLoc();
if (!IdentifyRegister(RegNum, RegEndLoc, Layout, LayoutLoc))
return MatchOperand_NoMatch;
Operands.push_back(AArch64Operand::CreateReg(RegNum, S, RegEndLoc));
if (Layout.size() != 0) {
unsigned long long TmpLanes = 0;
llvm::getAsUnsignedInteger(Layout.substr(1), 10, TmpLanes);
if (TmpLanes != 0) {
NumLanes = TmpLanes;
} else {
// If the number of lanes isn't specified explicitly, a valid instruction
// will have an element specifier and be capable of acting on the entire
// vector register.
switch (Layout.back()) {
default: llvm_unreachable("Invalid layout specifier");
case 'b': NumLanes = 16; break;
case 'h': NumLanes = 8; break;
case 's': NumLanes = 4; break;
case 'd': NumLanes = 2; break;
}
}
Operands.push_back(AArch64Operand::CreateToken(Layout, LayoutLoc));
}
Parser.Lex();
return MatchOperand_Success;
}
bool
AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
// This callback is used for things like DWARF frame directives in
// assembly. They don't care about things like NEON layouts or lanes, they
// just want to be able to produce the DWARF register number.
StringRef LayoutSpec;
SMLoc RegEndLoc, LayoutLoc;
StartLoc = Parser.getTok().getLoc();
if (!IdentifyRegister(RegNo, RegEndLoc, LayoutSpec, LayoutLoc))
return true;
Parser.Lex();
EndLoc = Parser.getTok().getLoc();
return false;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseNamedImmOperand(const NamedImmMapper &Mapper,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Since these operands occur in very limited circumstances, without
// alternatives, we actually signal an error if there is no match. If relaxing
// this, beware of unintended consequences: an immediate will be accepted
// during matching, no matter how it gets into the AArch64Operand.
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.is(AsmToken::Identifier)) {
bool ValidName;
uint32_t Code = Mapper.fromString(Tok.getString().lower(), ValidName);
if (!ValidName) {
Error(S, "operand specifier not recognised");
return MatchOperand_ParseFail;
}
Parser.Lex(); // We're done with the identifier. Eat it
SMLoc E = Parser.getTok().getLoc();
const MCExpr *Imm = MCConstantExpr::Create(Code, getContext());
Operands.push_back(AArch64Operand::CreateImm(Imm, S, E));
return MatchOperand_Success;
} else if (Tok.is(AsmToken::Hash)) {
Parser.Lex();
const MCExpr *ImmVal;
if (ParseImmediate(ImmVal) != MatchOperand_Success)
return MatchOperand_ParseFail;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
if (!CE || CE->getValue() < 0 || !Mapper.validImm(CE->getValue())) {
Error(S, "Invalid immediate for instruction");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E));
return MatchOperand_Success;
}
Error(S, "unexpected operand for instruction");
return MatchOperand_ParseFail;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseSysRegOperand(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
const AsmToken &Tok = Parser.getTok();
// Any MSR/MRS operand will be an identifier, and we want to store it as some
// kind of string: SPSel is valid for two different forms of MSR with two
// different encodings. There's no collision at the moment, but the potential
// is there.
if (!Tok.is(AsmToken::Identifier)) {
return MatchOperand_NoMatch;
}
SMLoc S = Tok.getLoc();
Operands.push_back(AArch64Operand::CreateSysReg(Tok.getString(), S));
Parser.Lex(); // Eat identifier
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseLSXAddressOperand(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
unsigned RegNum;
SMLoc RegEndLoc, LayoutLoc;
StringRef Layout;
if(!IdentifyRegister(RegNum, RegEndLoc, Layout, LayoutLoc)
|| !AArch64MCRegisterClasses[AArch64::GPR64xspRegClassID].contains(RegNum)
|| Layout.size() != 0) {
// Check Layout.size because we don't want to let "x3.4s" or similar
// through.
return MatchOperand_NoMatch;
}
Parser.Lex(); // Eat register
if (Parser.getTok().is(AsmToken::RBrac)) {
// We're done
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateWrappedReg(RegNum, S, E));
return MatchOperand_Success;
}
// Otherwise, only ", #0" is valid
if (Parser.getTok().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(), "expected ',' or ']' after register");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat ','
if (Parser.getTok().isNot(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(), "expected '#0'");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat '#'
if (Parser.getTok().isNot(AsmToken::Integer)
|| Parser.getTok().getIntVal() != 0 ) {
Error(Parser.getTok().getLoc(), "expected '#0'");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat '0'
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateWrappedReg(RegNum, S, E));
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::ParseShiftExtend(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
StringRef IDVal = Parser.getTok().getIdentifier();
std::string LowerID = IDVal.lower();
A64SE::ShiftExtSpecifiers Spec =
StringSwitch<A64SE::ShiftExtSpecifiers>(LowerID)
.Case("lsl", A64SE::LSL)
.Case("lsr", A64SE::LSR)
.Case("asr", A64SE::ASR)
.Case("ror", A64SE::ROR)
.Case("uxtb", A64SE::UXTB)
.Case("uxth", A64SE::UXTH)
.Case("uxtw", A64SE::UXTW)
.Case("uxtx", A64SE::UXTX)
.Case("sxtb", A64SE::SXTB)
.Case("sxth", A64SE::SXTH)
.Case("sxtw", A64SE::SXTW)
.Case("sxtx", A64SE::SXTX)
.Default(A64SE::Invalid);
if (Spec == A64SE::Invalid)
return MatchOperand_NoMatch;
// Eat the shift
SMLoc S, E;
S = Parser.getTok().getLoc();
Parser.Lex();
if (Spec != A64SE::LSL && Spec != A64SE::LSR &&
Spec != A64SE::ASR && Spec != A64SE::ROR) {
// The shift amount can be omitted for the extending versions, but not real
// shifts:
// add x0, x0, x0, uxtb
// is valid, and equivalent to
// add x0, x0, x0, uxtb #0
if (Parser.getTok().is(AsmToken::Comma) ||
Parser.getTok().is(AsmToken::EndOfStatement) ||
Parser.getTok().is(AsmToken::RBrac)) {
Operands.push_back(AArch64Operand::CreateShiftExtend(Spec, 0, true,
S, E));
return MatchOperand_Success;
}
}
// Eat # at beginning of immediate
if (!Parser.getTok().is(AsmToken::Hash)) {
Error(Parser.getTok().getLoc(),
"expected #imm after shift specifier");
return MatchOperand_ParseFail;
}
Parser.Lex();
// Make sure we do actually have a number
if (!Parser.getTok().is(AsmToken::Integer)) {
Error(Parser.getTok().getLoc(),
"expected integer shift amount");
return MatchOperand_ParseFail;
}
unsigned Amount = Parser.getTok().getIntVal();
Parser.Lex();
E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateShiftExtend(Spec, Amount, false,
S, E));
return MatchOperand_Success;
}
// FIXME: We would really like to be able to tablegen'erate this.
bool AArch64AsmParser::
validateInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
switch (Inst.getOpcode()) {
case AArch64::BFIwwii:
case AArch64::BFIxxii:
case AArch64::SBFIZwwii:
case AArch64::SBFIZxxii:
case AArch64::UBFIZwwii:
case AArch64::UBFIZxxii: {
unsigned ImmOps = Inst.getNumOperands() - 2;
int64_t ImmR = Inst.getOperand(ImmOps).getImm();
int64_t ImmS = Inst.getOperand(ImmOps+1).getImm();
if (ImmR != 0 && ImmS >= ImmR) {
return Error(Operands[4]->getStartLoc(),
"requested insert overflows register");
}
return false;
}
case AArch64::BFXILwwii:
case AArch64::BFXILxxii:
case AArch64::SBFXwwii:
case AArch64::SBFXxxii:
case AArch64::UBFXwwii:
case AArch64::UBFXxxii: {
unsigned ImmOps = Inst.getNumOperands() - 2;
int64_t ImmR = Inst.getOperand(ImmOps).getImm();
int64_t ImmS = Inst.getOperand(ImmOps+1).getImm();
int64_t RegWidth = 0;
switch (Inst.getOpcode()) {
case AArch64::SBFXxxii: case AArch64::UBFXxxii: case AArch64::BFXILxxii:
RegWidth = 64;
break;
case AArch64::SBFXwwii: case AArch64::UBFXwwii: case AArch64::BFXILwwii:
RegWidth = 32;
break;
}
if (ImmS >= RegWidth || ImmS < ImmR) {
return Error(Operands[4]->getStartLoc(),
"requested extract overflows register");
}
return false;
}
case AArch64::ICix: {
int64_t ImmVal = Inst.getOperand(0).getImm();
A64IC::ICValues ICOp = static_cast<A64IC::ICValues>(ImmVal);
if (!A64IC::NeedsRegister(ICOp)) {
return Error(Operands[1]->getStartLoc(),
"specified IC op does not use a register");
}
return false;
}
case AArch64::ICi: {
int64_t ImmVal = Inst.getOperand(0).getImm();
A64IC::ICValues ICOp = static_cast<A64IC::ICValues>(ImmVal);
if (A64IC::NeedsRegister(ICOp)) {
return Error(Operands[1]->getStartLoc(),
"specified IC op requires a register");
}
return false;
}
case AArch64::TLBIix: {
int64_t ImmVal = Inst.getOperand(0).getImm();
A64TLBI::TLBIValues TLBIOp = static_cast<A64TLBI::TLBIValues>(ImmVal);
if (!A64TLBI::NeedsRegister(TLBIOp)) {
return Error(Operands[1]->getStartLoc(),
"specified TLBI op does not use a register");
}
return false;
}
case AArch64::TLBIi: {
int64_t ImmVal = Inst.getOperand(0).getImm();
A64TLBI::TLBIValues TLBIOp = static_cast<A64TLBI::TLBIValues>(ImmVal);
if (A64TLBI::NeedsRegister(TLBIOp)) {
return Error(Operands[1]->getStartLoc(),
"specified TLBI op requires a register");
}
return false;
}
}
return false;
}
// Parses the instruction *together with* all operands, appending each parsed
// operand to the "Operands" list
bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
size_t CondCodePos = Name.find('.');
StringRef Mnemonic = Name.substr(0, CondCodePos);
Operands.push_back(AArch64Operand::CreateToken(Mnemonic, NameLoc));
if (CondCodePos != StringRef::npos) {
// We have a condition code
SMLoc S = SMLoc::getFromPointer(NameLoc.getPointer() + CondCodePos + 1);
StringRef CondStr = Name.substr(CondCodePos + 1, StringRef::npos);
A64CC::CondCodes Code;
Code = A64StringToCondCode(CondStr);
if (Code == A64CC::Invalid) {
Error(S, "invalid condition code");
Parser.eatToEndOfStatement();
return true;
}
SMLoc DotL = SMLoc::getFromPointer(NameLoc.getPointer() + CondCodePos);
Operands.push_back(AArch64Operand::CreateToken(".", DotL));
SMLoc E = SMLoc::getFromPointer(NameLoc.getPointer() + CondCodePos + 3);
Operands.push_back(AArch64Operand::CreateCondCode(Code, S, E));
}
// Now we parse the operands of this instruction
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands, Mnemonic)) {
Parser.eatToEndOfStatement();
return true;
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ParseOperand(Operands, Mnemonic)) {
Parser.eatToEndOfStatement();
return true;
}
// After successfully parsing some operands there are two special cases to
// consider (i.e. notional operands not separated by commas). Both are due
// to memory specifiers:
// + An RBrac will end an address for load/store/prefetch
// + An '!' will indicate a pre-indexed operation.
//
// It's someone else's responsibility to make sure these tokens are sane
// in the given context!
if (Parser.getTok().is(AsmToken::RBrac)) {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateToken("]", Loc));
Parser.Lex();
}
if (Parser.getTok().is(AsmToken::Exclaim)) {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateToken("!", Loc));
Parser.Lex();
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "expected comma before next operand");
}
// Eat the EndOfStatement
Parser.Lex();
return false;
}
bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".hword")
return ParseDirectiveWord(2, DirectiveID.getLoc());
else if (IDVal == ".word")
return ParseDirectiveWord(4, DirectiveID.getLoc());
else if (IDVal == ".xword")
return ParseDirectiveWord(8, DirectiveID.getLoc());
else if (IDVal == ".tlsdesccall")
return ParseDirectiveTLSDescCall(DirectiveID.getLoc());
return true;
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool AArch64AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
// parseDirectiveTLSDescCall:
// ::= .tlsdesccall symbol
bool AArch64AsmParser::ParseDirectiveTLSDescCall(SMLoc L) {
StringRef Name;
if (getParser().parseIdentifier(Name))
return Error(L, "expected symbol after directive");
MCSymbol *Sym = getContext().GetOrCreateSymbol(Name);
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::Create(Sym, getContext());
MCInst Inst;
Inst.setOpcode(AArch64::TLSDESCCALL);
Inst.addOperand(MCOperand::CreateExpr(Expr));
getParser().getStreamer().EmitInstruction(Inst);
return false;
}
bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
switch (MatchResult) {
default: break;
case Match_Success:
if (validateInstruction(Inst, Operands))
return true;
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
ErrorLoc = ((AArch64Operand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
case Match_AddSubRegExtendSmall:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected '[su]xt[bhw]' or 'lsl' with optional integer in range [0, 4]");
case Match_AddSubRegExtendLarge:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]");
case Match_AddSubRegShift32:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]");
case Match_AddSubRegShift64:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]");
case Match_AddSubSecondSource:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected compatible register, symbol or integer in range [0, 4095]");
case Match_CVTFixedPos32:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [1, 32]");
case Match_CVTFixedPos64:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [1, 64]");
case Match_CondCode:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected AArch64 condition code");
case Match_FPImm:
// Any situation which allows a nontrivial floating-point constant also
// allows a register.
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected compatible register or floating-point constant");
case Match_FPZero:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected floating-point constant #0.0");
case Match_Label:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected label or encodable integer pc offset");
case Match_Lane1:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected lane specifier '[1]'");
case Match_LoadStoreExtend32_1:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'uxtw' or 'sxtw' with optional shift of #0");
case Match_LoadStoreExtend32_2:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #1");
case Match_LoadStoreExtend32_4:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #2");
case Match_LoadStoreExtend32_8:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #3");
case Match_LoadStoreExtend32_16:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl' or 'sxtw' with optional shift of #0 or #4");
case Match_LoadStoreExtend64_1:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl' or 'sxtx' with optional shift of #0");
case Match_LoadStoreExtend64_2:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl' or 'sxtx' with optional shift of #0 or #1");
case Match_LoadStoreExtend64_4:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl' or 'sxtx' with optional shift of #0 or #2");
case Match_LoadStoreExtend64_8:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl' or 'sxtx' with optional shift of #0 or #3");
case Match_LoadStoreExtend64_16:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'lsl' or 'sxtx' with optional shift of #0 or #4");
case Match_LoadStoreSImm7_4:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer multiple of 4 in range [-256, 252]");
case Match_LoadStoreSImm7_8:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer multiple of 8 in range [-512, 508]");
case Match_LoadStoreSImm7_16:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer multiple of 16 in range [-1024, 1016]");
case Match_LoadStoreSImm9:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [-256, 255]");
case Match_LoadStoreUImm12_1:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected symbolic reference or integer in range [0, 4095]");
case Match_LoadStoreUImm12_2:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected symbolic reference or integer in range [0, 8190]");
case Match_LoadStoreUImm12_4:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected symbolic reference or integer in range [0, 16380]");
case Match_LoadStoreUImm12_8:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected symbolic reference or integer in range [0, 32760]");
case Match_LoadStoreUImm12_16:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected symbolic reference or integer in range [0, 65520]");
case Match_LogicalSecondSource:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected compatible register or logical immediate");
case Match_MOVWUImm16:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected relocated symbol or integer in range [0, 65535]");
case Match_MRS:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected readable system register");
case Match_MSR:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected writable system register or pstate");
case Match_NamedImm_at:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected symbolic 'at' operand: s1e[0-3][rw] or s12e[01][rw]");
case Match_NamedImm_dbarrier:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 15] or symbolic barrier operand");
case Match_NamedImm_dc:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected symbolic 'dc' operand");
case Match_NamedImm_ic:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected 'ic' operand: 'ialluis', 'iallu' or 'ivau'");
case Match_NamedImm_isb:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 15] or 'sy'");
case Match_NamedImm_prefetch:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected prefetch hint: p(ld|st|i)l[123](strm|keep)");
case Match_NamedImm_tlbi:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected translation buffer invalidation operand");
case Match_UImm16:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 65535]");
case Match_UImm3:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 7]");
case Match_UImm4:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 15]");
case Match_UImm5:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 31]");
case Match_UImm6:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 63]");
case Match_UImm7:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [0, 127]");
case Match_Width32:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [<lsb>, 31]");
case Match_Width64:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [<lsb>, 63]");
}
llvm_unreachable("Implement any new match types added!");
return true;
}
void AArch64Operand::print(raw_ostream &OS) const {
switch (Kind) {
case k_CondCode:
OS << "<CondCode: " << CondCode.Code << ">";
break;
case k_FPImmediate:
OS << "<fpimm: " << FPImm.Val << ">";
break;
case k_ImmWithLSL:
OS << "<immwithlsl: imm=" << ImmWithLSL.Val
<< ", shift=" << ImmWithLSL.ShiftAmount << ">";
break;
case k_Immediate:
getImm()->print(OS);
break;
case k_Register:
OS << "<register " << getReg() << '>';
break;
case k_Token:
OS << '\'' << getToken() << '\'';
break;
case k_ShiftExtend:
OS << "<shift: type=" << ShiftExtend.ShiftType
<< ", amount=" << ShiftExtend.Amount << ">";
break;
case k_SysReg: {
StringRef Name(SysReg.Data, SysReg.Length);
OS << "<sysreg: " << Name << '>';
break;
}
default:
llvm_unreachable("No idea how to print this kind of operand");
break;
}
}
void AArch64Operand::dump() const {
print(errs());
}
/// Force static initialization.
extern "C" void LLVMInitializeAArch64AsmParser() {
RegisterMCAsmParser<AArch64AsmParser> X(TheAArch64Target);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "AArch64GenAsmMatcher.inc"