llvm-6502/lib/Target/SparcV9/SparcV9InstrInfo.cpp
2002-01-20 22:54:45 +00:00

282 lines
11 KiB
C++

// $Id$
//***************************************************************************
// File:
// SparcInstrInfo.cpp
//
// Purpose:
//
// History:
// 10/15/01 - Vikram Adve - Created
//**************************************************************************/
#include "SparcInternals.h"
#include "SparcInstrSelectionSupport.h"
#include "llvm/Target/Sparc.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Method.h"
#include "llvm/ConstantVals.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Type.h"
//************************ Internal Functions ******************************/
static inline MachineInstr*
CreateIntSetInstruction(int64_t C, Value* dest,
std::vector<TmpInstruction*>& tempVec)
{
MachineInstr* minstr;
uint64_t absC = (C >= 0)? C : -C;
if (absC > (unsigned int) ~0)
{ // C does not fit in 32 bits
TmpInstruction* tmpReg =
new TmpInstruction(Instruction::UserOp1, Type::IntTy, NULL, NULL);
tempVec.push_back(tmpReg);
minstr = new MachineInstr(SETX);
minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tmpReg,
/*isdef*/ true);
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,dest);
}
else
{
minstr = new MachineInstr(SETSW);
minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
}
return minstr;
}
static inline MachineInstr*
CreateUIntSetInstruction(uint64_t C, Value* dest,
std::vector<TmpInstruction*>& tempVec)
{
MachineInstr* minstr;
if (C > (unsigned int) ~0)
{ // C does not fit in 32 bits
TmpInstruction* tmpReg =
new TmpInstruction(Instruction::UserOp1, Type::IntTy, NULL, NULL);
tempVec.push_back(tmpReg);
minstr = new MachineInstr(SETX);
minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tmpReg,
/*isdef*/ true);
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,dest);
}
else
{
minstr = new MachineInstr(SETUW);
minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
}
return minstr;
}
//************************* External Classes *******************************/
//---------------------------------------------------------------------------
// class UltraSparcInstrInfo
//
// Purpose:
// Information about individual instructions.
// Most information is stored in the SparcMachineInstrDesc array above.
// Other information is computed on demand, and most such functions
// default to member functions in base class MachineInstrInfo.
//---------------------------------------------------------------------------
/*ctor*/
UltraSparcInstrInfo::UltraSparcInstrInfo(const TargetMachine& tgt)
: MachineInstrInfo(tgt, SparcMachineInstrDesc,
/*descSize = */ NUM_TOTAL_OPCODES,
/*numRealOpCodes = */ NUM_REAL_OPCODES)
{
}
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'. `val' may be a Constant or a
// GlobalValue, viz., the constant address of a global variable or function.
// The generated instructions are returned in `minstrVec'.
// Any temp. registers (TmpInstruction) created are returned in `tempVec'.
//
void
UltraSparcInstrInfo::CreateCodeToLoadConst(Value* val,
Instruction* dest,
std::vector<MachineInstr*>& minstrVec,
std::vector<TmpInstruction*>& tempVec) const
{
MachineInstr* minstr;
assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
"I only know about constant values and global addresses");
// Use a "set" instruction for known constants that can go in an integer reg.
// Use a "load" instruction for all other constants, in particular,
// floating point constants and addresses of globals.
//
const Type* valType = val->getType();
if (valType->isIntegral() || valType == Type::BoolTy)
{
if (ConstantUInt* uval = dyn_cast<ConstantUInt>(val))
{
uint64_t C = uval->getValue();
minstr = CreateUIntSetInstruction(C, dest, tempVec);
}
else
{
bool isValidConstant;
int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
assert(isValidConstant && "Unrecognized constant");
minstr = CreateIntSetInstruction(C, dest, tempVec);
}
minstrVec.push_back(minstr);
}
else
{
// Make an instruction sequence to load the constant, viz:
// SETX <addr-of-constant>, tmpReg, addrReg
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
// Only the SETX is needed if `val' is a GlobalValue, i.e,. it is
// itself a constant address. Otherwise, both are needed.
Value* addrVal;
int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
TmpInstruction* tmpReg =
new TmpInstruction(Instruction::UserOp1,
PointerType::get(val->getType()), val, NULL);
tempVec.push_back(tmpReg);
if (isa<Constant>(val))
{
// Create another TmpInstruction for the hidden integer register
TmpInstruction* addrReg =
new TmpInstruction(Instruction::UserOp1,
PointerType::get(val->getType()), val, NULL);
tempVec.push_back(addrReg);
addrVal = addrReg;
}
else
addrVal = dest;
minstr = new MachineInstr(SETX);
minstr->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, val);
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tmpReg,
/*isdef*/ true);
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,addrVal);
minstrVec.push_back(minstr);
if (isa<Constant>(val))
{
// addrVal->addMachineInstruction(minstr);
minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
addrVal);
minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
zeroOffset);
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
dest);
minstrVec.push_back(minstr);
}
}
}
// Create an instruction sequence to copy an integer value `val'
// to a floating point value `dest' by copying to memory and back.
// val must be an integral type. dest must be a Float or Double.
// The generated instructions are returned in `minstrVec'.
// Any temp. registers (TmpInstruction) created are returned in `tempVec'.
//
void
UltraSparcInstrInfo::CreateCodeToCopyIntToFloat(Method* method,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& minstrVec,
std::vector<TmpInstruction*>& tempVec,
TargetMachine& target) const
{
assert((val->getType()->isIntegral() || val->getType()->isPointerType())
&& "Source type must be integral");
assert((dest->getType() ==Type::FloatTy || dest->getType() ==Type::DoubleTy)
&& "Dest type must be float/double");
MachineCodeForMethod& mcinfo = MachineCodeForMethod::get(method);
int offset = mcinfo.allocateLocalVar(target, val);
// Store instruction stores `val' to [%fp+offset].
// The store and load opCodes are based on the value being copied, and
// they use integer and float types that accomodate the
// larger of the source type and the destination type:
// On SparcV9: int for float, long for double.
//
Type* tmpType = (dest->getType() == Type::FloatTy)? Type::IntTy
: Type::LongTy;
MachineInstr* store = new MachineInstr(ChooseStoreInstruction(tmpType));
store->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, val);
store->SetMachineOperand(1, target.getRegInfo().getFramePointer());
store->SetMachineOperand(2, MachineOperand::MO_SignExtendedImmed, offset);
minstrVec.push_back(store);
// Load instruction loads [%fp+offset] to `dest'.
//
MachineInstr* load =new MachineInstr(ChooseLoadInstruction(dest->getType()));
load->SetMachineOperand(0, target.getRegInfo().getFramePointer());
load->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, offset);
load->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
minstrVec.push_back(load);
}
// Similarly, create an instruction sequence to copy an FP value
// `val' to an integer value `dest' by copying to memory and back.
// See the previous function for information about return values.
//
void
UltraSparcInstrInfo::CreateCodeToCopyFloatToInt(Method* method,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& minstrVec,
std::vector<TmpInstruction*>& tempVec,
TargetMachine& target) const
{
assert((val->getType() ==Type::FloatTy || val->getType() ==Type::DoubleTy)
&& "Source type must be float/double");
assert((dest->getType()->isIntegral() || dest->getType()->isPointerType())
&& "Dest type must be integral");
MachineCodeForMethod& mcinfo = MachineCodeForMethod::get(method);
int offset = mcinfo.allocateLocalVar(target, val);
// Store instruction stores `val' to [%fp+offset].
// The store and load opCodes are based on the value being copied, and
// they use the integer type that matches the source type in size:
// On SparcV9: int for float, long for double.
//
Type* tmpType = (val->getType() == Type::FloatTy)? Type::IntTy
: Type::LongTy;
MachineInstr* store=new MachineInstr(ChooseStoreInstruction(val->getType()));
store->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, val);
store->SetMachineOperand(1, target.getRegInfo().getFramePointer());
store->SetMachineOperand(2, MachineOperand::MO_SignExtendedImmed, offset);
minstrVec.push_back(store);
// Load instruction loads [%fp+offset] to `dest'.
//
MachineInstr* load = new MachineInstr(ChooseLoadInstruction(tmpType));
load->SetMachineOperand(0, target.getRegInfo().getFramePointer());
load->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, offset);
load->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
minstrVec.push_back(load);
}