mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-07 12:07:17 +00:00
a555ac9d15
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102666 91177308-0d34-0410-b5e6-96231b3b80d8
2826 lines
110 KiB
C++
2826 lines
110 KiB
C++
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a simple register coalescing pass that attempts to
|
|
// aggressively coalesce every register copy that it can.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regcoalescing"
|
|
#include "SimpleRegisterCoalescing.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterCoalescer.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(numJoins , "Number of interval joins performed");
|
|
STATISTIC(numCrossRCs , "Number of cross class joins performed");
|
|
STATISTIC(numCommutes , "Number of instruction commuting performed");
|
|
STATISTIC(numExtends , "Number of copies extended");
|
|
STATISTIC(NumReMats , "Number of instructions re-materialized");
|
|
STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
|
|
STATISTIC(numAborts , "Number of times interval joining aborted");
|
|
STATISTIC(numDeadValNo, "Number of valno def marked dead");
|
|
|
|
char SimpleRegisterCoalescing::ID = 0;
|
|
static cl::opt<bool>
|
|
EnableJoining("join-liveintervals",
|
|
cl::desc("Coalesce copies (default=true)"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
DisableCrossClassJoin("disable-cross-class-join",
|
|
cl::desc("Avoid coalescing cross register class copies"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static RegisterPass<SimpleRegisterCoalescing>
|
|
X("simple-register-coalescing", "Simple Register Coalescing");
|
|
|
|
// Declare that we implement the RegisterCoalescer interface
|
|
static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
|
|
|
|
const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
|
|
|
|
void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
if (StrongPHIElim)
|
|
AU.addPreservedID(StrongPHIEliminationID);
|
|
else
|
|
AU.addPreservedID(PHIEliminationID);
|
|
AU.addPreservedID(TwoAddressInstructionPassID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
|
|
/// being the source and IntB being the dest, thus this defines a value number
|
|
/// in IntB. If the source value number (in IntA) is defined by a copy from B,
|
|
/// see if we can merge these two pieces of B into a single value number,
|
|
/// eliminating a copy. For example:
|
|
///
|
|
/// A3 = B0
|
|
/// ...
|
|
/// B1 = A3 <- this copy
|
|
///
|
|
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
|
|
/// value number to be replaced with B0 (which simplifies the B liveinterval).
|
|
///
|
|
/// This returns true if an interval was modified.
|
|
///
|
|
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
|
|
LiveInterval &IntB,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
|
|
|
|
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
|
|
// the example above.
|
|
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
|
|
assert(BLR != IntB.end() && "Live range not found!");
|
|
VNInfo *BValNo = BLR->valno;
|
|
|
|
// Get the location that B is defined at. Two options: either this value has
|
|
// an unknown definition point or it is defined at CopyIdx. If unknown, we
|
|
// can't process it.
|
|
if (!BValNo->getCopy()) return false;
|
|
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
|
|
|
|
// AValNo is the value number in A that defines the copy, A3 in the example.
|
|
SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
|
|
LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
|
|
assert(ALR != IntA.end() && "Live range not found!");
|
|
VNInfo *AValNo = ALR->valno;
|
|
// If it's re-defined by an early clobber somewhere in the live range, then
|
|
// it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
|
|
// See PR3149:
|
|
// 172 %ECX<def> = MOV32rr %reg1039<kill>
|
|
// 180 INLINEASM <es:subl $5,$1
|
|
// sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
|
|
// %EAX<kill>,
|
|
// 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
|
|
// 188 %EAX<def> = MOV32rr %EAX<kill>
|
|
// 196 %ECX<def> = MOV32rr %ECX<kill>
|
|
// 204 %ECX<def> = MOV32rr %ECX<kill>
|
|
// 212 %EAX<def> = MOV32rr %EAX<kill>
|
|
// 220 %EAX<def> = MOV32rr %EAX
|
|
// 228 %reg1039<def> = MOV32rr %ECX<kill>
|
|
// The early clobber operand ties ECX input to the ECX def.
|
|
//
|
|
// The live interval of ECX is represented as this:
|
|
// %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
|
|
// The coalescer has no idea there was a def in the middle of [174,230].
|
|
if (AValNo->hasRedefByEC())
|
|
return false;
|
|
|
|
// If AValNo is defined as a copy from IntB, we can potentially process this.
|
|
// Get the instruction that defines this value number.
|
|
unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
|
|
if (!SrcReg) return false; // Not defined by a copy.
|
|
|
|
// If the value number is not defined by a copy instruction, ignore it.
|
|
|
|
// If the source register comes from an interval other than IntB, we can't
|
|
// handle this.
|
|
if (SrcReg != IntB.reg) return false;
|
|
|
|
// Get the LiveRange in IntB that this value number starts with.
|
|
LiveInterval::iterator ValLR =
|
|
IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
|
|
assert(ValLR != IntB.end() && "Live range not found!");
|
|
|
|
// Make sure that the end of the live range is inside the same block as
|
|
// CopyMI.
|
|
MachineInstr *ValLREndInst =
|
|
li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
|
|
if (!ValLREndInst ||
|
|
ValLREndInst->getParent() != CopyMI->getParent()) return false;
|
|
|
|
// Okay, we now know that ValLR ends in the same block that the CopyMI
|
|
// live-range starts. If there are no intervening live ranges between them in
|
|
// IntB, we can merge them.
|
|
if (ValLR+1 != BLR) return false;
|
|
|
|
// If a live interval is a physical register, conservatively check if any
|
|
// of its sub-registers is overlapping the live interval of the virtual
|
|
// register. If so, do not coalesce.
|
|
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
|
|
*tri_->getSubRegisters(IntB.reg)) {
|
|
for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
|
|
if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterfere with sub-register ";
|
|
li_->getInterval(*SR).print(dbgs(), tri_);
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "Extending: ";
|
|
IntB.print(dbgs(), tri_);
|
|
});
|
|
|
|
SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
|
|
// We are about to delete CopyMI, so need to remove it as the 'instruction
|
|
// that defines this value #'. Update the valnum with the new defining
|
|
// instruction #.
|
|
BValNo->def = FillerStart;
|
|
BValNo->setCopy(0);
|
|
|
|
// Okay, we can merge them. We need to insert a new liverange:
|
|
// [ValLR.end, BLR.begin) of either value number, then we merge the
|
|
// two value numbers.
|
|
IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
|
|
|
|
// If the IntB live range is assigned to a physical register, and if that
|
|
// physreg has sub-registers, update their live intervals as well.
|
|
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
|
|
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
|
|
LiveInterval &SRLI = li_->getInterval(*SR);
|
|
SRLI.addRange(LiveRange(FillerStart, FillerEnd,
|
|
SRLI.getNextValue(FillerStart, 0, true,
|
|
li_->getVNInfoAllocator())));
|
|
}
|
|
}
|
|
|
|
// Okay, merge "B1" into the same value number as "B0".
|
|
if (BValNo != ValLR->valno) {
|
|
IntB.addKills(ValLR->valno, BValNo->kills);
|
|
IntB.MergeValueNumberInto(BValNo, ValLR->valno);
|
|
}
|
|
DEBUG({
|
|
dbgs() << " result = ";
|
|
IntB.print(dbgs(), tri_);
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// If the source instruction was killing the source register before the
|
|
// merge, unset the isKill marker given the live range has been extended.
|
|
int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
|
|
if (UIdx != -1) {
|
|
ValLREndInst->getOperand(UIdx).setIsKill(false);
|
|
ValLR->valno->removeKill(FillerStart);
|
|
}
|
|
|
|
// If the copy instruction was killing the destination register before the
|
|
// merge, find the last use and trim the live range. That will also add the
|
|
// isKill marker.
|
|
if (ALR->valno->isKill(CopyIdx))
|
|
TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
|
|
|
|
++numExtends;
|
|
return true;
|
|
}
|
|
|
|
/// HasOtherReachingDefs - Return true if there are definitions of IntB
|
|
/// other than BValNo val# that can reach uses of AValno val# of IntA.
|
|
bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
|
|
LiveInterval &IntB,
|
|
VNInfo *AValNo,
|
|
VNInfo *BValNo) {
|
|
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
|
|
AI != AE; ++AI) {
|
|
if (AI->valno != AValNo) continue;
|
|
LiveInterval::Ranges::iterator BI =
|
|
std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
|
|
if (BI != IntB.ranges.begin())
|
|
--BI;
|
|
for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
|
|
if (BI->valno == BValNo)
|
|
continue;
|
|
if (BI->start <= AI->start && BI->end > AI->start)
|
|
return true;
|
|
if (BI->start > AI->start && BI->start < AI->end)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) {
|
|
for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
|
|
i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isImplicit())
|
|
NewMI->addOperand(MO);
|
|
}
|
|
}
|
|
|
|
/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
|
|
/// IntA being the source and IntB being the dest, thus this defines a value
|
|
/// number in IntB. If the source value number (in IntA) is defined by a
|
|
/// commutable instruction and its other operand is coalesced to the copy dest
|
|
/// register, see if we can transform the copy into a noop by commuting the
|
|
/// definition. For example,
|
|
///
|
|
/// A3 = op A2 B0<kill>
|
|
/// ...
|
|
/// B1 = A3 <- this copy
|
|
/// ...
|
|
/// = op A3 <- more uses
|
|
///
|
|
/// ==>
|
|
///
|
|
/// B2 = op B0 A2<kill>
|
|
/// ...
|
|
/// B1 = B2 <- now an identify copy
|
|
/// ...
|
|
/// = op B2 <- more uses
|
|
///
|
|
/// This returns true if an interval was modified.
|
|
///
|
|
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
|
|
LiveInterval &IntB,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx =
|
|
li_->getInstructionIndex(CopyMI).getDefIndex();
|
|
|
|
// FIXME: For now, only eliminate the copy by commuting its def when the
|
|
// source register is a virtual register. We want to guard against cases
|
|
// where the copy is a back edge copy and commuting the def lengthen the
|
|
// live interval of the source register to the entire loop.
|
|
if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
|
|
return false;
|
|
|
|
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
|
|
// the example above.
|
|
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
|
|
assert(BLR != IntB.end() && "Live range not found!");
|
|
VNInfo *BValNo = BLR->valno;
|
|
|
|
// Get the location that B is defined at. Two options: either this value has
|
|
// an unknown definition point or it is defined at CopyIdx. If unknown, we
|
|
// can't process it.
|
|
if (!BValNo->getCopy()) return false;
|
|
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
|
|
|
|
// AValNo is the value number in A that defines the copy, A3 in the example.
|
|
LiveInterval::iterator ALR =
|
|
IntA.FindLiveRangeContaining(CopyIdx.getUseIndex()); //
|
|
|
|
assert(ALR != IntA.end() && "Live range not found!");
|
|
VNInfo *AValNo = ALR->valno;
|
|
// If other defs can reach uses of this def, then it's not safe to perform
|
|
// the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
|
|
// tested?
|
|
if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
|
|
AValNo->isUnused() || AValNo->hasPHIKill())
|
|
return false;
|
|
MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
if (!TID.isCommutable())
|
|
return false;
|
|
// If DefMI is a two-address instruction then commuting it will change the
|
|
// destination register.
|
|
int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
|
|
assert(DefIdx != -1);
|
|
unsigned UseOpIdx;
|
|
if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
|
|
return false;
|
|
unsigned Op1, Op2, NewDstIdx;
|
|
if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
|
|
return false;
|
|
if (Op1 == UseOpIdx)
|
|
NewDstIdx = Op2;
|
|
else if (Op2 == UseOpIdx)
|
|
NewDstIdx = Op1;
|
|
else
|
|
return false;
|
|
|
|
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
|
|
unsigned NewReg = NewDstMO.getReg();
|
|
if (NewReg != IntB.reg || !NewDstMO.isKill())
|
|
return false;
|
|
|
|
// Make sure there are no other definitions of IntB that would reach the
|
|
// uses which the new definition can reach.
|
|
if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
|
|
return false;
|
|
|
|
// If some of the uses of IntA.reg is already coalesced away, return false.
|
|
// It's not possible to determine whether it's safe to perform the coalescing.
|
|
for (MachineRegisterInfo::use_nodbg_iterator UI =
|
|
mri_->use_nodbg_begin(IntA.reg),
|
|
UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
|
|
MachineInstr *UseMI = &*UI;
|
|
SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
|
|
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
|
|
if (ULR == IntA.end())
|
|
continue;
|
|
if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
|
|
return false;
|
|
}
|
|
|
|
// At this point we have decided that it is legal to do this
|
|
// transformation. Start by commuting the instruction.
|
|
MachineBasicBlock *MBB = DefMI->getParent();
|
|
MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
|
|
if (!NewMI)
|
|
return false;
|
|
if (NewMI != DefMI) {
|
|
li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
|
|
MBB->insert(DefMI, NewMI);
|
|
MBB->erase(DefMI);
|
|
}
|
|
unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
|
|
NewMI->getOperand(OpIdx).setIsKill();
|
|
|
|
bool BHasPHIKill = BValNo->hasPHIKill();
|
|
SmallVector<VNInfo*, 4> BDeadValNos;
|
|
VNInfo::KillSet BKills;
|
|
std::map<SlotIndex, SlotIndex> BExtend;
|
|
|
|
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
|
|
// A = or A, B
|
|
// ...
|
|
// B = A
|
|
// ...
|
|
// C = A<kill>
|
|
// ...
|
|
// = B
|
|
//
|
|
// then do not add kills of A to the newly created B interval.
|
|
bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
|
|
if (Extended)
|
|
BExtend[ALR->end] = BLR->end;
|
|
|
|
// Update uses of IntA of the specific Val# with IntB.
|
|
bool BHasSubRegs = false;
|
|
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
|
|
BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
|
|
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
|
|
UE = mri_->use_end(); UI != UE;) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
MachineInstr *UseMI = &*UI;
|
|
++UI;
|
|
if (JoinedCopies.count(UseMI))
|
|
continue;
|
|
if (UseMI->isDebugValue()) {
|
|
// FIXME These don't have an instruction index. Not clear we have enough
|
|
// info to decide whether to do this replacement or not. For now do it.
|
|
UseMO.setReg(NewReg);
|
|
continue;
|
|
}
|
|
SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
|
|
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
|
|
if (ULR == IntA.end() || ULR->valno != AValNo)
|
|
continue;
|
|
UseMO.setReg(NewReg);
|
|
if (UseMI == CopyMI)
|
|
continue;
|
|
if (UseMO.isKill()) {
|
|
if (Extended)
|
|
UseMO.setIsKill(false);
|
|
else
|
|
BKills.push_back(UseIdx.getDefIndex());
|
|
}
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
|
|
continue;
|
|
if (DstReg == IntB.reg) {
|
|
// This copy will become a noop. If it's defining a new val#,
|
|
// remove that val# as well. However this live range is being
|
|
// extended to the end of the existing live range defined by the copy.
|
|
SlotIndex DefIdx = UseIdx.getDefIndex();
|
|
const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
|
|
BHasPHIKill |= DLR->valno->hasPHIKill();
|
|
assert(DLR->valno->def == DefIdx);
|
|
BDeadValNos.push_back(DLR->valno);
|
|
BExtend[DLR->start] = DLR->end;
|
|
JoinedCopies.insert(UseMI);
|
|
// If this is a kill but it's going to be removed, the last use
|
|
// of the same val# is the new kill.
|
|
if (UseMO.isKill())
|
|
BKills.pop_back();
|
|
}
|
|
}
|
|
|
|
// We need to insert a new liverange: [ALR.start, LastUse). It may be we can
|
|
// simply extend BLR if CopyMI doesn't end the range.
|
|
DEBUG({
|
|
dbgs() << "Extending: ";
|
|
IntB.print(dbgs(), tri_);
|
|
});
|
|
|
|
// Remove val#'s defined by copies that will be coalesced away.
|
|
for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
|
|
VNInfo *DeadVNI = BDeadValNos[i];
|
|
if (BHasSubRegs) {
|
|
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
|
|
LiveInterval &SRLI = li_->getInterval(*SR);
|
|
const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
|
|
SRLI.removeValNo(SRLR->valno);
|
|
}
|
|
}
|
|
IntB.removeValNo(BDeadValNos[i]);
|
|
}
|
|
|
|
// Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
|
|
// is updated. Kills are also updated.
|
|
VNInfo *ValNo = BValNo;
|
|
ValNo->def = AValNo->def;
|
|
ValNo->setCopy(0);
|
|
for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
|
|
if (ValNo->kills[j] != BLR->end)
|
|
BKills.push_back(ValNo->kills[j]);
|
|
}
|
|
ValNo->kills.clear();
|
|
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
|
|
AI != AE; ++AI) {
|
|
if (AI->valno != AValNo) continue;
|
|
SlotIndex End = AI->end;
|
|
std::map<SlotIndex, SlotIndex>::iterator
|
|
EI = BExtend.find(End);
|
|
if (EI != BExtend.end())
|
|
End = EI->second;
|
|
IntB.addRange(LiveRange(AI->start, End, ValNo));
|
|
|
|
// If the IntB live range is assigned to a physical register, and if that
|
|
// physreg has sub-registers, update their live intervals as well.
|
|
if (BHasSubRegs) {
|
|
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
|
|
LiveInterval &SRLI = li_->getInterval(*SR);
|
|
SRLI.MergeInClobberRange(*li_, AI->start, End,
|
|
li_->getVNInfoAllocator());
|
|
}
|
|
}
|
|
}
|
|
IntB.addKills(ValNo, BKills);
|
|
ValNo->setHasPHIKill(BHasPHIKill);
|
|
|
|
DEBUG({
|
|
dbgs() << " result = ";
|
|
IntB.print(dbgs(), tri_);
|
|
dbgs() << "\nShortening: ";
|
|
IntA.print(dbgs(), tri_);
|
|
});
|
|
|
|
IntA.removeValNo(AValNo);
|
|
|
|
DEBUG({
|
|
dbgs() << " result = ";
|
|
IntA.print(dbgs(), tri_);
|
|
dbgs() << '\n';
|
|
});
|
|
|
|
++numCommutes;
|
|
return true;
|
|
}
|
|
|
|
/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
|
|
/// fallthoughs to SuccMBB.
|
|
static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
|
|
MachineBasicBlock *SuccMBB,
|
|
const TargetInstrInfo *tii_) {
|
|
if (MBB == SuccMBB)
|
|
return true;
|
|
MachineBasicBlock *TBB = 0, *FBB = 0;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
|
|
MBB->isSuccessor(SuccMBB);
|
|
}
|
|
|
|
/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
|
|
/// from a physical register live interval as well as from the live intervals
|
|
/// of its sub-registers.
|
|
static void removeRange(LiveInterval &li,
|
|
SlotIndex Start, SlotIndex End,
|
|
LiveIntervals *li_, const TargetRegisterInfo *tri_) {
|
|
li.removeRange(Start, End, true);
|
|
if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
|
|
for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
|
|
if (!li_->hasInterval(*SR))
|
|
continue;
|
|
LiveInterval &sli = li_->getInterval(*SR);
|
|
SlotIndex RemoveStart = Start;
|
|
SlotIndex RemoveEnd = Start;
|
|
|
|
while (RemoveEnd != End) {
|
|
LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
|
|
if (LR == sli.end())
|
|
break;
|
|
RemoveEnd = (LR->end < End) ? LR->end : End;
|
|
sli.removeRange(RemoveStart, RemoveEnd, true);
|
|
RemoveStart = RemoveEnd;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
|
|
/// as the copy instruction, trim the live interval to the last use and return
|
|
/// true.
|
|
bool
|
|
SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
|
|
MachineBasicBlock *CopyMBB,
|
|
LiveInterval &li,
|
|
const LiveRange *LR) {
|
|
SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
|
|
SlotIndex LastUseIdx;
|
|
MachineOperand *LastUse =
|
|
lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
|
|
if (LastUse) {
|
|
MachineInstr *LastUseMI = LastUse->getParent();
|
|
if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
|
|
// r1024 = op
|
|
// ...
|
|
// BB1:
|
|
// = r1024
|
|
//
|
|
// BB2:
|
|
// r1025<dead> = r1024<kill>
|
|
if (MBBStart < LR->end)
|
|
removeRange(li, MBBStart, LR->end, li_, tri_);
|
|
return true;
|
|
}
|
|
|
|
// There are uses before the copy, just shorten the live range to the end
|
|
// of last use.
|
|
LastUse->setIsKill();
|
|
removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
|
|
LR->valno->addKill(LastUseIdx.getDefIndex());
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
|
|
DstReg == li.reg) {
|
|
// Last use is itself an identity code.
|
|
int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
|
|
LastUseMI->getOperand(DeadIdx).setIsDead();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Is it livein?
|
|
if (LR->start <= MBBStart && LR->end > MBBStart) {
|
|
if (LR->start == li_->getZeroIndex()) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
|
|
// Live-in to the function but dead. Remove it from entry live-in set.
|
|
mf_->begin()->removeLiveIn(li.reg);
|
|
}
|
|
// FIXME: Shorten intervals in BBs that reaches this BB.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
|
|
/// computation, replace the copy by rematerialize the definition.
|
|
bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
|
|
unsigned DstReg,
|
|
unsigned DstSubIdx,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
|
|
LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
|
|
assert(SrcLR != SrcInt.end() && "Live range not found!");
|
|
VNInfo *ValNo = SrcLR->valno;
|
|
// If other defs can reach uses of this def, then it's not safe to perform
|
|
// the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
|
|
// tested?
|
|
if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
|
|
ValNo->isUnused() || ValNo->hasPHIKill())
|
|
return false;
|
|
MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
if (!TID.isAsCheapAsAMove())
|
|
return false;
|
|
if (!tii_->isTriviallyReMaterializable(DefMI, AA))
|
|
return false;
|
|
bool SawStore = false;
|
|
if (!DefMI->isSafeToMove(tii_, AA, SawStore))
|
|
return false;
|
|
if (TID.getNumDefs() != 1)
|
|
return false;
|
|
if (!DefMI->isImplicitDef()) {
|
|
// Make sure the copy destination register class fits the instruction
|
|
// definition register class. The mismatch can happen as a result of earlier
|
|
// extract_subreg, insert_subreg, subreg_to_reg coalescing.
|
|
const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
|
|
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
|
|
if (mri_->getRegClass(DstReg) != RC)
|
|
return false;
|
|
} else if (!RC->contains(DstReg))
|
|
return false;
|
|
}
|
|
|
|
// If destination register has a sub-register index on it, make sure it mtches
|
|
// the instruction register class.
|
|
if (DstSubIdx) {
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
if (TID.getNumDefs() != 1)
|
|
return false;
|
|
const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
|
|
const TargetRegisterClass *DstSubRC =
|
|
DstRC->getSubRegisterRegClass(DstSubIdx);
|
|
const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
|
|
if (DefRC == DstRC)
|
|
DstSubIdx = 0;
|
|
else if (DefRC != DstSubRC)
|
|
return false;
|
|
}
|
|
|
|
SlotIndex DefIdx = CopyIdx.getDefIndex();
|
|
const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
|
|
DLR->valno->setCopy(0);
|
|
// Don't forget to update sub-register intervals.
|
|
if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
|
|
for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
|
|
if (!li_->hasInterval(*SR))
|
|
continue;
|
|
const LiveRange *DLR =
|
|
li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
|
|
if (DLR && DLR->valno->getCopy() == CopyMI)
|
|
DLR->valno->setCopy(0);
|
|
}
|
|
}
|
|
|
|
// If copy kills the source register, find the last use and propagate
|
|
// kill.
|
|
bool checkForDeadDef = false;
|
|
MachineBasicBlock *MBB = CopyMI->getParent();
|
|
if (SrcLR->valno->isKill(DefIdx))
|
|
if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
|
|
checkForDeadDef = true;
|
|
}
|
|
|
|
MachineBasicBlock::iterator MII =
|
|
llvm::next(MachineBasicBlock::iterator(CopyMI));
|
|
tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, tri_);
|
|
MachineInstr *NewMI = prior(MII);
|
|
|
|
if (checkForDeadDef) {
|
|
// PR4090 fix: Trim interval failed because there was no use of the
|
|
// source interval in this MBB. If the def is in this MBB too then we
|
|
// should mark it dead:
|
|
if (DefMI->getParent() == MBB) {
|
|
DefMI->addRegisterDead(SrcInt.reg, tri_);
|
|
SrcLR->end = SrcLR->start.getNextSlot();
|
|
}
|
|
}
|
|
|
|
// CopyMI may have implicit operands, transfer them over to the newly
|
|
// rematerialized instruction. And update implicit def interval valnos.
|
|
for (unsigned i = CopyMI->getDesc().getNumOperands(),
|
|
e = CopyMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = CopyMI->getOperand(i);
|
|
if (MO.isReg() && MO.isImplicit())
|
|
NewMI->addOperand(MO);
|
|
if (MO.isDef() && li_->hasInterval(MO.getReg())) {
|
|
unsigned Reg = MO.getReg();
|
|
const LiveRange *DLR =
|
|
li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
|
|
if (DLR && DLR->valno->getCopy() == CopyMI)
|
|
DLR->valno->setCopy(0);
|
|
// Handle subregs as well
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
for (const unsigned* SR = tri_->getSubRegisters(Reg); *SR; ++SR) {
|
|
if (!li_->hasInterval(*SR))
|
|
continue;
|
|
const LiveRange *DLR =
|
|
li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
|
|
if (DLR && DLR->valno->getCopy() == CopyMI)
|
|
DLR->valno->setCopy(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TransferImplicitOps(CopyMI, NewMI);
|
|
li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
|
|
CopyMI->eraseFromParent();
|
|
ReMatCopies.insert(CopyMI);
|
|
ReMatDefs.insert(DefMI);
|
|
DEBUG(dbgs() << "Remat: " << *NewMI);
|
|
++NumReMats;
|
|
return true;
|
|
}
|
|
|
|
/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
|
|
/// update the subregister number if it is not zero. If DstReg is a
|
|
/// physical register and the existing subregister number of the def / use
|
|
/// being updated is not zero, make sure to set it to the correct physical
|
|
/// subregister.
|
|
void
|
|
SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
|
|
unsigned SubIdx) {
|
|
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
|
|
if (DstIsPhys && SubIdx) {
|
|
// Figure out the real physical register we are updating with.
|
|
DstReg = tri_->getSubReg(DstReg, SubIdx);
|
|
SubIdx = 0;
|
|
}
|
|
|
|
// Copy the register use-list before traversing it. We may be adding operands
|
|
// and invalidating pointers.
|
|
SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
|
|
for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
|
|
E = mri_->reg_end(); I != E; ++I)
|
|
reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
|
|
|
|
for (unsigned N=0; N != reglist.size(); ++N) {
|
|
MachineInstr *UseMI = reglist[N].first;
|
|
MachineOperand &O = UseMI->getOperand(reglist[N].second);
|
|
unsigned OldSubIdx = O.getSubReg();
|
|
if (DstIsPhys) {
|
|
unsigned UseDstReg = DstReg;
|
|
if (OldSubIdx)
|
|
UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
|
|
|
|
unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
|
|
if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
|
|
CopySrcSubIdx, CopyDstSubIdx) &&
|
|
CopySrcReg != CopyDstReg &&
|
|
CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
|
|
// If the use is a copy and it won't be coalesced away, and its source
|
|
// is defined by a trivial computation, try to rematerialize it instead.
|
|
if (!JoinedCopies.count(UseMI) &&
|
|
ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
|
|
CopyDstSubIdx, UseMI))
|
|
continue;
|
|
}
|
|
|
|
O.setReg(UseDstReg);
|
|
O.setSubReg(0);
|
|
if (OldSubIdx) {
|
|
// Def and kill of subregister of a virtual register actually defs and
|
|
// kills the whole register. Add imp-defs and imp-kills as needed.
|
|
if (O.isDef()) {
|
|
if(O.isDead())
|
|
UseMI->addRegisterDead(DstReg, tri_, true);
|
|
else
|
|
UseMI->addRegisterDefined(DstReg, tri_);
|
|
} else if (!O.isUndef() &&
|
|
(O.isKill() ||
|
|
UseMI->isRegTiedToDefOperand(&O-&UseMI->getOperand(0))))
|
|
UseMI->addRegisterKilled(DstReg, tri_, true);
|
|
}
|
|
DEBUG(dbgs() << "\t\tupdated: " << li_->getInstructionIndex(UseMI)
|
|
<< "\t" << *UseMI);
|
|
continue;
|
|
}
|
|
|
|
// Sub-register indexes goes from small to large. e.g.
|
|
// RAX: 1 -> AL, 2 -> AX, 3 -> EAX
|
|
// EAX: 1 -> AL, 2 -> AX
|
|
// So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
|
|
// sub-register 2 is also AX.
|
|
if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
|
|
assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
|
|
else if (SubIdx)
|
|
O.setSubReg(SubIdx);
|
|
O.setReg(DstReg);
|
|
|
|
DEBUG(dbgs() << "\t\tupdated: " << li_->getInstructionIndex(UseMI)
|
|
<< "\t" << *UseMI);
|
|
|
|
// After updating the operand, check if the machine instruction has
|
|
// become a copy. If so, update its val# information.
|
|
if (JoinedCopies.count(UseMI))
|
|
continue;
|
|
|
|
const TargetInstrDesc &TID = UseMI->getDesc();
|
|
unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
|
|
if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
|
|
tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
|
|
CopySrcSubIdx, CopyDstSubIdx) &&
|
|
CopySrcReg != CopyDstReg &&
|
|
(TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
|
|
allocatableRegs_[CopyDstReg])) {
|
|
LiveInterval &LI = li_->getInterval(CopyDstReg);
|
|
SlotIndex DefIdx =
|
|
li_->getInstructionIndex(UseMI).getDefIndex();
|
|
if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
|
|
if (DLR->valno->def == DefIdx)
|
|
DLR->valno->setCopy(UseMI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// removeIntervalIfEmpty - Check if the live interval of a physical register
|
|
/// is empty, if so remove it and also remove the empty intervals of its
|
|
/// sub-registers. Return true if live interval is removed.
|
|
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
|
|
const TargetRegisterInfo *tri_) {
|
|
if (li.empty()) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(li.reg))
|
|
for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
|
|
if (!li_->hasInterval(*SR))
|
|
continue;
|
|
LiveInterval &sli = li_->getInterval(*SR);
|
|
if (sli.empty())
|
|
li_->removeInterval(*SR);
|
|
}
|
|
li_->removeInterval(li.reg);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
|
|
/// Return true if live interval is removed.
|
|
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
|
|
LiveInterval::iterator MLR =
|
|
li.FindLiveRangeContaining(CopyIdx.getDefIndex());
|
|
if (MLR == li.end())
|
|
return false; // Already removed by ShortenDeadCopySrcLiveRange.
|
|
SlotIndex RemoveStart = MLR->start;
|
|
SlotIndex RemoveEnd = MLR->end;
|
|
SlotIndex DefIdx = CopyIdx.getDefIndex();
|
|
// Remove the liverange that's defined by this.
|
|
if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
|
|
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
|
|
/// the val# it defines. If the live interval becomes empty, remove it as well.
|
|
bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
|
|
MachineInstr *DefMI) {
|
|
SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
|
|
LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
|
|
if (DefIdx != MLR->valno->def)
|
|
return false;
|
|
li.removeValNo(MLR->valno);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
|
|
/// PropagateDeadness - Propagate the dead marker to the instruction which
|
|
/// defines the val#.
|
|
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
|
|
SlotIndex &LRStart, LiveIntervals *li_,
|
|
const TargetRegisterInfo* tri_) {
|
|
MachineInstr *DefMI =
|
|
li_->getInstructionFromIndex(LRStart.getDefIndex());
|
|
if (DefMI && DefMI != CopyMI) {
|
|
int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false);
|
|
if (DeadIdx != -1)
|
|
DefMI->getOperand(DeadIdx).setIsDead();
|
|
else
|
|
DefMI->addOperand(MachineOperand::CreateReg(li.reg,
|
|
/*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
|
|
LRStart = LRStart.getNextSlot();
|
|
}
|
|
}
|
|
|
|
/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
|
|
/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
|
|
/// ends the live range there. If there isn't another use, then this live range
|
|
/// is dead. Return true if live interval is removed.
|
|
bool
|
|
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
|
|
MachineInstr *CopyMI) {
|
|
SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
|
|
if (CopyIdx == SlotIndex()) {
|
|
// FIXME: special case: function live in. It can be a general case if the
|
|
// first instruction index starts at > 0 value.
|
|
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
|
|
// Live-in to the function but dead. Remove it from entry live-in set.
|
|
if (mf_->begin()->isLiveIn(li.reg))
|
|
mf_->begin()->removeLiveIn(li.reg);
|
|
const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
|
|
removeRange(li, LR->start, LR->end, li_, tri_);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
|
|
LiveInterval::iterator LR =
|
|
li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
|
|
if (LR == li.end())
|
|
// Livein but defined by a phi.
|
|
return false;
|
|
|
|
SlotIndex RemoveStart = LR->start;
|
|
SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
|
|
if (LR->end > RemoveEnd)
|
|
// More uses past this copy? Nothing to do.
|
|
return false;
|
|
|
|
// If there is a last use in the same bb, we can't remove the live range.
|
|
// Shorten the live interval and return.
|
|
MachineBasicBlock *CopyMBB = CopyMI->getParent();
|
|
if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
|
|
return false;
|
|
|
|
// There are other kills of the val#. Nothing to do.
|
|
if (!li.isOnlyLROfValNo(LR))
|
|
return false;
|
|
|
|
MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
|
|
if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
|
|
// If the live range starts in another mbb and the copy mbb is not a fall
|
|
// through mbb, then we can only cut the range from the beginning of the
|
|
// copy mbb.
|
|
RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();
|
|
|
|
if (LR->valno->def == RemoveStart) {
|
|
// If the def MI defines the val# and this copy is the only kill of the
|
|
// val#, then propagate the dead marker.
|
|
PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
|
|
++numDeadValNo;
|
|
|
|
if (LR->valno->isKill(RemoveEnd))
|
|
LR->valno->removeKill(RemoveEnd);
|
|
}
|
|
|
|
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
|
|
return removeIntervalIfEmpty(li, li_, tri_);
|
|
}
|
|
|
|
/// CanCoalesceWithImpDef - Returns true if the specified copy instruction
|
|
/// from an implicit def to another register can be coalesced away.
|
|
bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
|
|
LiveInterval &li,
|
|
LiveInterval &ImpLi) const{
|
|
if (!CopyMI->killsRegister(ImpLi.reg))
|
|
return false;
|
|
// Make sure this is the only use.
|
|
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
|
|
UE = mri_->use_end(); UI != UE;) {
|
|
MachineInstr *UseMI = &*UI;
|
|
++UI;
|
|
if (CopyMI == UseMI || JoinedCopies.count(UseMI))
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
|
|
/// a virtual destination register with physical source register.
|
|
bool
|
|
SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
|
|
MachineBasicBlock *CopyMBB,
|
|
LiveInterval &DstInt,
|
|
LiveInterval &SrcInt) {
|
|
// If the virtual register live interval is long but it has low use desity,
|
|
// do not join them, instead mark the physical register as its allocation
|
|
// preference.
|
|
const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
|
|
unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
|
|
unsigned Length = li_->getApproximateInstructionCount(DstInt);
|
|
if (Length > Threshold &&
|
|
(((float)std::distance(mri_->use_nodbg_begin(DstInt.reg),
|
|
mri_->use_nodbg_end()) / Length) <
|
|
(1.0 / Threshold)))
|
|
return false;
|
|
|
|
// If the virtual register live interval extends into a loop, turn down
|
|
// aggressiveness.
|
|
SlotIndex CopyIdx =
|
|
li_->getInstructionIndex(CopyMI).getDefIndex();
|
|
const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
|
|
if (!L) {
|
|
// Let's see if the virtual register live interval extends into the loop.
|
|
LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
|
|
assert(DLR != DstInt.end() && "Live range not found!");
|
|
DLR = DstInt.FindLiveRangeContaining(DLR->end.getNextSlot());
|
|
if (DLR != DstInt.end()) {
|
|
CopyMBB = li_->getMBBFromIndex(DLR->start);
|
|
L = loopInfo->getLoopFor(CopyMBB);
|
|
}
|
|
}
|
|
|
|
if (!L || Length <= Threshold)
|
|
return true;
|
|
|
|
SlotIndex UseIdx = CopyIdx.getUseIndex();
|
|
LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
|
|
MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
|
|
if (loopInfo->getLoopFor(SMBB) != L) {
|
|
if (!loopInfo->isLoopHeader(CopyMBB))
|
|
return false;
|
|
// If vr's live interval extends pass the loop header, do not join.
|
|
for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
|
|
SE = CopyMBB->succ_end(); SI != SE; ++SI) {
|
|
MachineBasicBlock *SuccMBB = *SI;
|
|
if (SuccMBB == CopyMBB)
|
|
continue;
|
|
if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
|
|
li_->getMBBEndIdx(SuccMBB)))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
|
|
/// copy from a virtual source register to a physical destination register.
|
|
bool
|
|
SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
|
|
MachineBasicBlock *CopyMBB,
|
|
LiveInterval &DstInt,
|
|
LiveInterval &SrcInt) {
|
|
// If the virtual register live interval is long but it has low use density,
|
|
// do not join them, instead mark the physical register as its allocation
|
|
// preference.
|
|
const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
|
|
unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
|
|
unsigned Length = li_->getApproximateInstructionCount(SrcInt);
|
|
if (Length > Threshold &&
|
|
(((float)std::distance(mri_->use_nodbg_begin(SrcInt.reg),
|
|
mri_->use_nodbg_end()) / Length) <
|
|
(1.0 / Threshold)))
|
|
return false;
|
|
|
|
if (SrcInt.empty())
|
|
// Must be implicit_def.
|
|
return false;
|
|
|
|
// If the virtual register live interval is defined or cross a loop, turn
|
|
// down aggressiveness.
|
|
SlotIndex CopyIdx =
|
|
li_->getInstructionIndex(CopyMI).getDefIndex();
|
|
SlotIndex UseIdx = CopyIdx.getUseIndex();
|
|
LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
|
|
assert(SLR != SrcInt.end() && "Live range not found!");
|
|
SLR = SrcInt.FindLiveRangeContaining(SLR->start.getPrevSlot());
|
|
if (SLR == SrcInt.end())
|
|
return true;
|
|
MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
|
|
const MachineLoop *L = loopInfo->getLoopFor(SMBB);
|
|
|
|
if (!L || Length <= Threshold)
|
|
return true;
|
|
|
|
if (loopInfo->getLoopFor(CopyMBB) != L) {
|
|
if (SMBB != L->getLoopLatch())
|
|
return false;
|
|
// If vr's live interval is extended from before the loop latch, do not
|
|
// join.
|
|
for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
|
|
PE = SMBB->pred_end(); PI != PE; ++PI) {
|
|
MachineBasicBlock *PredMBB = *PI;
|
|
if (PredMBB == SMBB)
|
|
continue;
|
|
if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
|
|
li_->getMBBEndIdx(PredMBB)))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
|
|
/// two virtual registers from different register classes.
|
|
bool
|
|
SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
|
|
unsigned DstReg,
|
|
const TargetRegisterClass *SrcRC,
|
|
const TargetRegisterClass *DstRC,
|
|
const TargetRegisterClass *NewRC) {
|
|
unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
|
|
// This heuristics is good enough in practice, but it's obviously not *right*.
|
|
// 4 is a magic number that works well enough for x86, ARM, etc. It filter
|
|
// out all but the most restrictive register classes.
|
|
if (NewRCCount > 4 ||
|
|
// Early exit if the function is fairly small, coalesce aggressively if
|
|
// that's the case. For really special register classes with 3 or
|
|
// fewer registers, be a bit more careful.
|
|
(li_->getFuncInstructionCount() / NewRCCount) < 8)
|
|
return true;
|
|
LiveInterval &SrcInt = li_->getInterval(SrcReg);
|
|
LiveInterval &DstInt = li_->getInterval(DstReg);
|
|
unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
|
|
unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
|
|
if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
|
|
return true;
|
|
// Estimate *register use density*. If it doubles or more, abort.
|
|
unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
|
|
mri_->use_nodbg_end());
|
|
unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
|
|
mri_->use_nodbg_end());
|
|
float NewDensity = ((float)(SrcUses + DstUses) / (SrcSize + DstSize)) /
|
|
NewRCCount;
|
|
if (SrcRC != NewRC && SrcSize > NewRCCount) {
|
|
unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
|
|
float Density = ((float)SrcUses / SrcSize) / SrcRCCount;
|
|
if (NewDensity > Density * 2.0f)
|
|
return false;
|
|
}
|
|
if (DstRC != NewRC && DstSize > NewRCCount) {
|
|
unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
|
|
float Density = ((float)DstUses / DstSize) / DstRCCount;
|
|
if (NewDensity > Density * 2.0f)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
|
|
/// register with a physical register, check if any of the virtual register
|
|
/// operand is a sub-register use or def. If so, make sure it won't result
|
|
/// in an illegal extract_subreg or insert_subreg instruction. e.g.
|
|
/// vr1024 = extract_subreg vr1025, 1
|
|
/// ...
|
|
/// vr1024 = mov8rr AH
|
|
/// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
|
|
/// AH does not have a super-reg whose sub-register 1 is AH.
|
|
bool
|
|
SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
|
|
unsigned VirtReg,
|
|
unsigned PhysReg) {
|
|
for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
|
|
E = mri_->reg_end(); I != E; ++I) {
|
|
MachineOperand &O = I.getOperand();
|
|
if (O.isDebug())
|
|
continue;
|
|
MachineInstr *MI = &*I;
|
|
if (MI == CopyMI || JoinedCopies.count(MI))
|
|
continue;
|
|
unsigned SubIdx = O.getSubReg();
|
|
if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
|
|
return true;
|
|
if (MI->isExtractSubreg()) {
|
|
SubIdx = MI->getOperand(2).getImm();
|
|
if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
|
|
return true;
|
|
if (O.isDef()) {
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
const TargetRegisterClass *RC =
|
|
TargetRegisterInfo::isPhysicalRegister(SrcReg)
|
|
? tri_->getPhysicalRegisterRegClass(SrcReg)
|
|
: mri_->getRegClass(SrcReg);
|
|
if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
|
|
return true;
|
|
}
|
|
}
|
|
if (MI->isInsertSubreg() || MI->isSubregToReg()) {
|
|
SubIdx = MI->getOperand(3).getImm();
|
|
if (VirtReg == MI->getOperand(0).getReg()) {
|
|
if (!tri_->getSubReg(PhysReg, SubIdx))
|
|
return true;
|
|
} else {
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
const TargetRegisterClass *RC =
|
|
TargetRegisterInfo::isPhysicalRegister(DstReg)
|
|
? tri_->getPhysicalRegisterRegClass(DstReg)
|
|
: mri_->getRegClass(DstReg);
|
|
if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
|
|
/// an extract_subreg where dst is a physical register, e.g.
|
|
/// cl = EXTRACT_SUBREG reg1024, 1
|
|
bool
|
|
SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
|
|
unsigned SrcReg, unsigned SubIdx,
|
|
unsigned &RealDstReg) {
|
|
const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
|
|
RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
|
|
assert(RealDstReg && "Invalid extract_subreg instruction!");
|
|
|
|
LiveInterval &RHS = li_->getInterval(SrcReg);
|
|
// For this type of EXTRACT_SUBREG, conservatively
|
|
// check if the live interval of the source register interfere with the
|
|
// actual super physical register we are trying to coalesce with.
|
|
if (li_->hasInterval(RealDstReg) &&
|
|
RHS.overlaps(li_->getInterval(RealDstReg))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterfere with register ";
|
|
li_->getInterval(RealDstReg).print(dbgs(), tri_);
|
|
});
|
|
return false; // Not coalescable
|
|
}
|
|
for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
|
|
// Do not check DstReg or its sub-register. JoinIntervals() will take care
|
|
// of that.
|
|
if (*SR != DstReg &&
|
|
!tri_->isSubRegister(DstReg, *SR) &&
|
|
li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterfere with sub-register ";
|
|
li_->getInterval(*SR).print(dbgs(), tri_);
|
|
});
|
|
return false; // Not coalescable
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
|
|
/// an insert_subreg where src is a physical register, e.g.
|
|
/// reg1024 = INSERT_SUBREG reg1024, c1, 0
|
|
bool
|
|
SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
|
|
unsigned SrcReg, unsigned SubIdx,
|
|
unsigned &RealSrcReg) {
|
|
const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
|
|
RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
|
|
assert(RealSrcReg && "Invalid extract_subreg instruction!");
|
|
|
|
LiveInterval &LHS = li_->getInterval(DstReg);
|
|
if (li_->hasInterval(RealSrcReg) &&
|
|
LHS.overlaps(li_->getInterval(RealSrcReg))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterfere with register ";
|
|
li_->getInterval(RealSrcReg).print(dbgs(), tri_);
|
|
});
|
|
return false; // Not coalescable
|
|
}
|
|
for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
|
|
// Do not check SrcReg or its sub-register. JoinIntervals() will take care
|
|
// of that.
|
|
if (*SR != SrcReg &&
|
|
!tri_->isSubRegister(SrcReg, *SR) &&
|
|
li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
|
|
DEBUG({
|
|
dbgs() << "\t\tInterfere with sub-register ";
|
|
li_->getInterval(*SR).print(dbgs(), tri_);
|
|
});
|
|
return false; // Not coalescable
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// getRegAllocPreference - Return register allocation preference register.
|
|
///
|
|
static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
|
|
MachineRegisterInfo *MRI,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return 0;
|
|
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
|
|
return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
|
|
}
|
|
|
|
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
|
|
/// which are the src/dst of the copy instruction CopyMI. This returns true
|
|
/// if the copy was successfully coalesced away. If it is not currently
|
|
/// possible to coalesce this interval, but it may be possible if other
|
|
/// things get coalesced, then it returns true by reference in 'Again'.
|
|
bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
|
|
MachineInstr *CopyMI = TheCopy.MI;
|
|
|
|
Again = false;
|
|
if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
|
|
return false; // Already done.
|
|
|
|
DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
|
|
|
|
unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
|
|
bool isExtSubReg = CopyMI->isExtractSubreg();
|
|
bool isInsSubReg = CopyMI->isInsertSubreg();
|
|
bool isSubRegToReg = CopyMI->isSubregToReg();
|
|
unsigned SubIdx = 0;
|
|
if (isExtSubReg) {
|
|
DstReg = CopyMI->getOperand(0).getReg();
|
|
DstSubIdx = CopyMI->getOperand(0).getSubReg();
|
|
SrcReg = CopyMI->getOperand(1).getReg();
|
|
SrcSubIdx = CopyMI->getOperand(2).getImm();
|
|
} else if (isInsSubReg || isSubRegToReg) {
|
|
DstReg = CopyMI->getOperand(0).getReg();
|
|
DstSubIdx = CopyMI->getOperand(3).getImm();
|
|
SrcReg = CopyMI->getOperand(2).getReg();
|
|
SrcSubIdx = CopyMI->getOperand(2).getSubReg();
|
|
if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
|
|
// r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
|
|
// coalesced to a larger register so the subreg indices cancel out.
|
|
DEBUG(dbgs() << "\tSource of insert_subreg or subreg_to_reg is already "
|
|
"coalesced to another register.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
} else if (tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
|
|
if (SrcSubIdx && DstSubIdx && SrcSubIdx != DstSubIdx) {
|
|
// e.g. %reg16404:1<def> = MOV8rr %reg16412:2<kill>
|
|
Again = true;
|
|
return false; // Not coalescable.
|
|
}
|
|
} else {
|
|
llvm_unreachable("Unrecognized copy instruction!");
|
|
}
|
|
|
|
// If they are already joined we continue.
|
|
if (SrcReg == DstReg) {
|
|
DEBUG(dbgs() << "\tCopy already coalesced.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
|
|
bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
|
|
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
|
|
|
|
// If they are both physical registers, we cannot join them.
|
|
if (SrcIsPhys && DstIsPhys) {
|
|
DEBUG(dbgs() << "\tCan not coalesce physregs.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
|
|
// We only join virtual registers with allocatable physical registers.
|
|
if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
|
|
DEBUG(dbgs() << "\tSrc reg is unallocatable physreg.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
if (DstIsPhys && !allocatableRegs_[DstReg]) {
|
|
DEBUG(dbgs() << "\tDst reg is unallocatable physreg.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
|
|
// Check that a physical source register is compatible with dst regclass
|
|
if (SrcIsPhys) {
|
|
unsigned SrcSubReg = SrcSubIdx ?
|
|
tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
|
|
const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
|
|
const TargetRegisterClass *DstSubRC = DstRC;
|
|
if (DstSubIdx)
|
|
DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
|
|
assert(DstSubRC && "Illegal subregister index");
|
|
if (!DstSubRC->contains(SrcSubReg)) {
|
|
DEBUG(dbgs() << "\tIncompatible destination regclass: "
|
|
<< tri_->getName(SrcSubReg) << " not in "
|
|
<< DstSubRC->getName() << ".\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
}
|
|
|
|
// Check that a physical dst register is compatible with source regclass
|
|
if (DstIsPhys) {
|
|
unsigned DstSubReg = DstSubIdx ?
|
|
tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
|
|
const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
|
|
const TargetRegisterClass *SrcSubRC = SrcRC;
|
|
if (SrcSubIdx)
|
|
SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
|
|
assert(SrcSubRC && "Illegal subregister index");
|
|
if (!SrcSubRC->contains(DstSubReg)) {
|
|
DEBUG(dbgs() << "\tIncompatible source regclass: "
|
|
<< tri_->getName(DstSubReg) << " not in "
|
|
<< SrcSubRC->getName() << ".\n");
|
|
(void)DstSubReg;
|
|
return false; // Not coalescable.
|
|
}
|
|
}
|
|
|
|
// Should be non-null only when coalescing to a sub-register class.
|
|
bool CrossRC = false;
|
|
const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
|
|
const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
|
|
const TargetRegisterClass *NewRC = NULL;
|
|
unsigned RealDstReg = 0;
|
|
unsigned RealSrcReg = 0;
|
|
if (isExtSubReg || isInsSubReg || isSubRegToReg) {
|
|
SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
|
|
if (SrcIsPhys && isExtSubReg) {
|
|
// r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
|
|
// coalesced with AX.
|
|
unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
|
|
if (DstSubIdx) {
|
|
// r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
|
|
// coalesced to a larger register so the subreg indices cancel out.
|
|
if (DstSubIdx != SubIdx) {
|
|
DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
} else
|
|
SrcReg = tri_->getSubReg(SrcReg, SubIdx);
|
|
SubIdx = 0;
|
|
} else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
|
|
// EAX = INSERT_SUBREG EAX, r1024, 0
|
|
unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
|
|
if (SrcSubIdx) {
|
|
// EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
|
|
// coalesced to a larger register so the subreg indices cancel out.
|
|
if (SrcSubIdx != SubIdx) {
|
|
DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
} else
|
|
DstReg = tri_->getSubReg(DstReg, SubIdx);
|
|
SubIdx = 0;
|
|
} else if ((DstIsPhys && isExtSubReg) ||
|
|
(SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
|
|
if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
|
|
DEBUG(dbgs() << "\tSrc of extract_subreg already coalesced with reg"
|
|
<< " of a super-class.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
|
|
// FIXME: The following checks are somewhat conservative. Perhaps a better
|
|
// way to implement this is to treat this as coalescing a vr with the
|
|
// super physical register.
|
|
if (isExtSubReg) {
|
|
if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
|
|
return false; // Not coalescable
|
|
} else {
|
|
if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
|
|
return false; // Not coalescable
|
|
}
|
|
SubIdx = 0;
|
|
} else {
|
|
unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
|
|
: CopyMI->getOperand(2).getSubReg();
|
|
if (OldSubIdx) {
|
|
if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
|
|
// r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
|
|
// coalesced to a larger register so the subreg indices cancel out.
|
|
// Also check if the other larger register is of the same register
|
|
// class as the would be resulting register.
|
|
SubIdx = 0;
|
|
else {
|
|
DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
}
|
|
if (SubIdx) {
|
|
if (!DstIsPhys && !SrcIsPhys) {
|
|
if (isInsSubReg || isSubRegToReg) {
|
|
NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
|
|
} else // extract_subreg {
|
|
NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
|
|
}
|
|
if (!NewRC) {
|
|
DEBUG(dbgs() << "\t Conflicting sub-register indices.\n");
|
|
return false; // Not coalescable
|
|
}
|
|
|
|
if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) {
|
|
DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
|
|
<< SrcRC->getName() << "/"
|
|
<< DstRC->getName() << " -> "
|
|
<< NewRC->getName() << ".\n");
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} else if (differingRegisterClasses(SrcReg, DstReg)) {
|
|
if (DisableCrossClassJoin)
|
|
return false;
|
|
CrossRC = true;
|
|
|
|
// FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
|
|
// with another? If it's the resulting destination register, then
|
|
// the subidx must be propagated to uses (but only those defined
|
|
// by the EXTRACT_SUBREG). If it's being coalesced into another
|
|
// register, it should be safe because register is assumed to have
|
|
// the register class of the super-register.
|
|
|
|
// Process moves where one of the registers have a sub-register index.
|
|
MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
|
|
MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
|
|
SubIdx = DstMO->getSubReg();
|
|
if (SubIdx) {
|
|
if (SrcMO->getSubReg())
|
|
// FIXME: can we handle this?
|
|
return false;
|
|
// This is not an insert_subreg but it looks like one.
|
|
// e.g. %reg1024:4 = MOV32rr %EAX
|
|
isInsSubReg = true;
|
|
if (SrcIsPhys) {
|
|
if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
|
|
return false; // Not coalescable
|
|
SubIdx = 0;
|
|
}
|
|
} else {
|
|
SubIdx = SrcMO->getSubReg();
|
|
if (SubIdx) {
|
|
// This is not a extract_subreg but it looks like one.
|
|
// e.g. %cl = MOV16rr %reg1024:1
|
|
isExtSubReg = true;
|
|
if (DstIsPhys) {
|
|
if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
|
|
return false; // Not coalescable
|
|
SubIdx = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now determine the register class of the joined register.
|
|
if (!SrcIsPhys && !DstIsPhys) {
|
|
if (isExtSubReg) {
|
|
NewRC =
|
|
SubIdx ? tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx) : SrcRC;
|
|
} else if (isInsSubReg) {
|
|
NewRC =
|
|
SubIdx ? tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx) : DstRC;
|
|
} else {
|
|
NewRC = getCommonSubClass(SrcRC, DstRC);
|
|
}
|
|
|
|
if (!NewRC) {
|
|
DEBUG(dbgs() << "\tDisjoint regclasses: "
|
|
<< SrcRC->getName() << ", "
|
|
<< DstRC->getName() << ".\n");
|
|
return false; // Not coalescable.
|
|
}
|
|
|
|
// If we are joining two virtual registers and the resulting register
|
|
// class is more restrictive (fewer register, smaller size). Check if it's
|
|
// worth doing the merge.
|
|
if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) {
|
|
DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
|
|
<< SrcRC->getName() << "/"
|
|
<< DstRC->getName() << " -> "
|
|
<< NewRC->getName() << ".\n");
|
|
// Allow the coalescer to try again in case either side gets coalesced to
|
|
// a physical register that's compatible with the other side. e.g.
|
|
// r1024 = MOV32to32_ r1025
|
|
// But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Will it create illegal extract_subreg / insert_subreg?
|
|
if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
|
|
return false;
|
|
if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
|
|
return false;
|
|
|
|
LiveInterval &SrcInt = li_->getInterval(SrcReg);
|
|
LiveInterval &DstInt = li_->getInterval(DstReg);
|
|
assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
|
|
"Register mapping is horribly broken!");
|
|
|
|
DEBUG({
|
|
dbgs() << "\t\tInspecting ";
|
|
if (SrcRC) dbgs() << SrcRC->getName() << ": ";
|
|
SrcInt.print(dbgs(), tri_);
|
|
dbgs() << "\n\t\t and ";
|
|
if (DstRC) dbgs() << DstRC->getName() << ": ";
|
|
DstInt.print(dbgs(), tri_);
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// Save a copy of the virtual register live interval. We'll manually
|
|
// merge this into the "real" physical register live interval this is
|
|
// coalesced with.
|
|
OwningPtr<LiveInterval> SavedLI;
|
|
if (RealDstReg)
|
|
SavedLI.reset(li_->dupInterval(&SrcInt));
|
|
else if (RealSrcReg)
|
|
SavedLI.reset(li_->dupInterval(&DstInt));
|
|
|
|
if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
|
|
// Check if it is necessary to propagate "isDead" property.
|
|
MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
|
|
bool isDead = mopd->isDead();
|
|
|
|
// We need to be careful about coalescing a source physical register with a
|
|
// virtual register. Once the coalescing is done, it cannot be broken and
|
|
// these are not spillable! If the destination interval uses are far away,
|
|
// think twice about coalescing them!
|
|
if (!isDead && (SrcIsPhys || DstIsPhys)) {
|
|
// If the virtual register live interval is long but it has low use
|
|
// density, do not join them, instead mark the physical register as its
|
|
// allocation preference.
|
|
LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
|
|
LiveInterval &JoinPInt = SrcIsPhys ? SrcInt : DstInt;
|
|
unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
|
|
unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
|
|
|
|
// Don't join with physregs that have a ridiculous number of live
|
|
// ranges. The data structure performance is really bad when that
|
|
// happens.
|
|
if (JoinPInt.ranges.size() > 1000) {
|
|
mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
|
|
++numAborts;
|
|
DEBUG(dbgs()
|
|
<< "\tPhysical register live interval too complicated, abort!\n");
|
|
return false;
|
|
}
|
|
|
|
const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
|
|
unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
|
|
unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
|
|
float Ratio = 1.0 / Threshold;
|
|
if (Length > Threshold &&
|
|
(((float)std::distance(mri_->use_nodbg_begin(JoinVReg),
|
|
mri_->use_nodbg_end()) / Length) < Ratio)) {
|
|
// Before giving up coalescing, if definition of source is defined by
|
|
// trivial computation, try rematerializing it.
|
|
if (ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
|
|
return true;
|
|
|
|
mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
|
|
++numAborts;
|
|
DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Okay, attempt to join these two intervals. On failure, this returns false.
|
|
// Otherwise, if one of the intervals being joined is a physreg, this method
|
|
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
|
|
// been modified, so we can use this information below to update aliases.
|
|
bool Swapped = false;
|
|
// If SrcInt is implicitly defined, it's safe to coalesce.
|
|
if (SrcInt.empty()) {
|
|
if (!CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
|
|
// Only coalesce an empty interval (defined by implicit_def) with
|
|
// another interval which has a valno defined by the CopyMI and the CopyMI
|
|
// is a kill of the implicit def.
|
|
DEBUG(dbgs() << "\tNot profitable!\n");
|
|
return false;
|
|
}
|
|
} else if (!JoinIntervals(DstInt, SrcInt, Swapped)) {
|
|
// Coalescing failed.
|
|
|
|
// If definition of source is defined by trivial computation, try
|
|
// rematerializing it.
|
|
if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
|
|
ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
|
|
return true;
|
|
|
|
// If we can eliminate the copy without merging the live ranges, do so now.
|
|
if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
|
|
(AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
|
|
RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
|
|
JoinedCopies.insert(CopyMI);
|
|
DEBUG(dbgs() << "\tTrivial!\n");
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we are unable to join the intervals.
|
|
DEBUG(dbgs() << "\tInterference!\n");
|
|
Again = true; // May be possible to coalesce later.
|
|
return false;
|
|
}
|
|
|
|
LiveInterval *ResSrcInt = &SrcInt;
|
|
LiveInterval *ResDstInt = &DstInt;
|
|
if (Swapped) {
|
|
std::swap(SrcReg, DstReg);
|
|
std::swap(ResSrcInt, ResDstInt);
|
|
}
|
|
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
|
|
"LiveInterval::join didn't work right!");
|
|
|
|
// If we're about to merge live ranges into a physical register live interval,
|
|
// we have to update any aliased register's live ranges to indicate that they
|
|
// have clobbered values for this range.
|
|
if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
|
|
// If this is a extract_subreg where dst is a physical register, e.g.
|
|
// cl = EXTRACT_SUBREG reg1024, 1
|
|
// then create and update the actual physical register allocated to RHS.
|
|
if (RealDstReg || RealSrcReg) {
|
|
LiveInterval &RealInt =
|
|
li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
|
|
for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
|
|
E = SavedLI->vni_end(); I != E; ++I) {
|
|
const VNInfo *ValNo = *I;
|
|
VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
|
|
false, // updated at *
|
|
li_->getVNInfoAllocator());
|
|
NewValNo->setFlags(ValNo->getFlags()); // * updated here.
|
|
RealInt.addKills(NewValNo, ValNo->kills);
|
|
RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
|
|
}
|
|
RealInt.weight += SavedLI->weight;
|
|
DstReg = RealDstReg ? RealDstReg : RealSrcReg;
|
|
}
|
|
|
|
// Update the liveintervals of sub-registers.
|
|
for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
|
|
li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, *ResSrcInt,
|
|
li_->getVNInfoAllocator());
|
|
}
|
|
|
|
// If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
|
|
// larger super-register.
|
|
if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
|
|
!SrcIsPhys && !DstIsPhys) {
|
|
if ((isExtSubReg && !Swapped) ||
|
|
((isInsSubReg || isSubRegToReg) && Swapped)) {
|
|
ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
|
|
std::swap(SrcReg, DstReg);
|
|
std::swap(ResSrcInt, ResDstInt);
|
|
}
|
|
}
|
|
|
|
// Coalescing to a virtual register that is of a sub-register class of the
|
|
// other. Make sure the resulting register is set to the right register class.
|
|
if (CrossRC)
|
|
++numCrossRCs;
|
|
|
|
// This may happen even if it's cross-rc coalescing. e.g.
|
|
// %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
|
|
// reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
|
|
// be allocate a register from GR64_ABCD.
|
|
if (NewRC)
|
|
mri_->setRegClass(DstReg, NewRC);
|
|
|
|
// Remember to delete the copy instruction.
|
|
JoinedCopies.insert(CopyMI);
|
|
|
|
UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
|
|
|
|
// If we have extended the live range of a physical register, make sure we
|
|
// update live-in lists as well.
|
|
if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
|
|
const LiveInterval &VRegInterval = li_->getInterval(SrcReg);
|
|
SmallVector<MachineBasicBlock*, 16> BlockSeq;
|
|
for (LiveInterval::const_iterator I = VRegInterval.begin(),
|
|
E = VRegInterval.end(); I != E; ++I ) {
|
|
li_->findLiveInMBBs(I->start, I->end, BlockSeq);
|
|
for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
|
|
MachineBasicBlock &block = *BlockSeq[idx];
|
|
if (!block.isLiveIn(DstReg))
|
|
block.addLiveIn(DstReg);
|
|
}
|
|
BlockSeq.clear();
|
|
}
|
|
}
|
|
|
|
// SrcReg is guarateed to be the register whose live interval that is
|
|
// being merged.
|
|
li_->removeInterval(SrcReg);
|
|
|
|
// Update regalloc hint.
|
|
tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);
|
|
|
|
// Manually deleted the live interval copy.
|
|
if (SavedLI) {
|
|
SavedLI->clear();
|
|
SavedLI.reset();
|
|
}
|
|
|
|
// If resulting interval has a preference that no longer fits because of subreg
|
|
// coalescing, just clear the preference.
|
|
unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
|
|
if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
|
|
TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
|
|
const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
|
|
if (!RC->contains(Preference))
|
|
mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "\t\tJoined. Result = ";
|
|
ResDstInt->print(dbgs(), tri_);
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
++numJoins;
|
|
return true;
|
|
}
|
|
|
|
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
|
|
/// compute what the resultant value numbers for each value in the input two
|
|
/// ranges will be. This is complicated by copies between the two which can
|
|
/// and will commonly cause multiple value numbers to be merged into one.
|
|
///
|
|
/// VN is the value number that we're trying to resolve. InstDefiningValue
|
|
/// keeps track of the new InstDefiningValue assignment for the result
|
|
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
|
|
/// whether a value in this or other is a copy from the opposite set.
|
|
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
|
|
/// already been assigned.
|
|
///
|
|
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
|
|
/// contains the value number the copy is from.
|
|
///
|
|
static unsigned ComputeUltimateVN(VNInfo *VNI,
|
|
SmallVector<VNInfo*, 16> &NewVNInfo,
|
|
DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
|
|
DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
|
|
SmallVector<int, 16> &ThisValNoAssignments,
|
|
SmallVector<int, 16> &OtherValNoAssignments) {
|
|
unsigned VN = VNI->id;
|
|
|
|
// If the VN has already been computed, just return it.
|
|
if (ThisValNoAssignments[VN] >= 0)
|
|
return ThisValNoAssignments[VN];
|
|
assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
|
|
|
|
// If this val is not a copy from the other val, then it must be a new value
|
|
// number in the destination.
|
|
DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
|
|
if (I == ThisFromOther.end()) {
|
|
NewVNInfo.push_back(VNI);
|
|
return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
|
|
}
|
|
VNInfo *OtherValNo = I->second;
|
|
|
|
// Otherwise, this *is* a copy from the RHS. If the other side has already
|
|
// been computed, return it.
|
|
if (OtherValNoAssignments[OtherValNo->id] >= 0)
|
|
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
|
|
|
|
// Mark this value number as currently being computed, then ask what the
|
|
// ultimate value # of the other value is.
|
|
ThisValNoAssignments[VN] = -2;
|
|
unsigned UltimateVN =
|
|
ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
|
|
OtherValNoAssignments, ThisValNoAssignments);
|
|
return ThisValNoAssignments[VN] = UltimateVN;
|
|
}
|
|
|
|
static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
|
|
return std::find(V.begin(), V.end(), Val) != V.end();
|
|
}
|
|
|
|
static bool isValNoDefMove(const MachineInstr *MI, unsigned DR, unsigned SR,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) {
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
|
|
;
|
|
else if (MI->isExtractSubreg()) {
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
} else if (MI->isSubregToReg() ||
|
|
MI->isInsertSubreg()) {
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(2).getReg();
|
|
} else
|
|
return false;
|
|
return (SrcReg == SR || TRI->isSuperRegister(SR, SrcReg)) &&
|
|
(DstReg == DR || TRI->isSuperRegister(DR, DstReg));
|
|
}
|
|
|
|
/// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
|
|
/// the specified live interval is defined by a copy from the specified
|
|
/// register.
|
|
bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
|
|
LiveRange *LR,
|
|
unsigned Reg) {
|
|
unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
|
|
if (SrcReg == Reg)
|
|
return true;
|
|
// FIXME: Do isPHIDef and isDefAccurate both need to be tested?
|
|
if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
|
|
TargetRegisterInfo::isPhysicalRegister(li.reg) &&
|
|
*tri_->getSuperRegisters(li.reg)) {
|
|
// It's a sub-register live interval, we may not have precise information.
|
|
// Re-compute it.
|
|
MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
|
|
if (DefMI && isValNoDefMove(DefMI, li.reg, Reg, tii_, tri_)) {
|
|
// Cache computed info.
|
|
LR->valno->def = LR->start;
|
|
LR->valno->setCopy(DefMI);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// ValueLiveAt - Return true if the LiveRange pointed to by the given
|
|
/// iterator, or any subsequent range with the same value number,
|
|
/// is live at the given point.
|
|
bool SimpleRegisterCoalescing::ValueLiveAt(LiveInterval::iterator LRItr,
|
|
LiveInterval::iterator LREnd,
|
|
SlotIndex defPoint) const {
|
|
for (const VNInfo *valno = LRItr->valno;
|
|
(LRItr != LREnd) && (LRItr->valno == valno); ++LRItr) {
|
|
if (LRItr->contains(defPoint))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SimpleJoin - Attempt to joint the specified interval into this one. The
|
|
/// caller of this method must guarantee that the RHS only contains a single
|
|
/// value number and that the RHS is not defined by a copy from this
|
|
/// interval. This returns false if the intervals are not joinable, or it
|
|
/// joins them and returns true.
|
|
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
|
|
assert(RHS.containsOneValue());
|
|
|
|
// Some number (potentially more than one) value numbers in the current
|
|
// interval may be defined as copies from the RHS. Scan the overlapping
|
|
// portions of the LHS and RHS, keeping track of this and looking for
|
|
// overlapping live ranges that are NOT defined as copies. If these exist, we
|
|
// cannot coalesce.
|
|
|
|
LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
|
|
LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
|
|
|
|
if (LHSIt->start < RHSIt->start) {
|
|
LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
|
|
if (LHSIt != LHS.begin()) --LHSIt;
|
|
} else if (RHSIt->start < LHSIt->start) {
|
|
RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
|
|
if (RHSIt != RHS.begin()) --RHSIt;
|
|
}
|
|
|
|
SmallVector<VNInfo*, 8> EliminatedLHSVals;
|
|
|
|
while (1) {
|
|
// Determine if these live intervals overlap.
|
|
bool Overlaps = false;
|
|
if (LHSIt->start <= RHSIt->start)
|
|
Overlaps = LHSIt->end > RHSIt->start;
|
|
else
|
|
Overlaps = RHSIt->end > LHSIt->start;
|
|
|
|
// If the live intervals overlap, there are two interesting cases: if the
|
|
// LHS interval is defined by a copy from the RHS, it's ok and we record
|
|
// that the LHS value # is the same as the RHS. If it's not, then we cannot
|
|
// coalesce these live ranges and we bail out.
|
|
if (Overlaps) {
|
|
// If we haven't already recorded that this value # is safe, check it.
|
|
if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
|
|
// If it's re-defined by an early clobber somewhere in the live range,
|
|
// then conservatively abort coalescing.
|
|
if (LHSIt->valno->hasRedefByEC())
|
|
return false;
|
|
// Copy from the RHS?
|
|
if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
|
|
return false; // Nope, bail out.
|
|
|
|
if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def))
|
|
// Here is an interesting situation:
|
|
// BB1:
|
|
// vr1025 = copy vr1024
|
|
// ..
|
|
// BB2:
|
|
// vr1024 = op
|
|
// = vr1025
|
|
// Even though vr1025 is copied from vr1024, it's not safe to
|
|
// coalesce them since the live range of vr1025 intersects the
|
|
// def of vr1024. This happens because vr1025 is assigned the
|
|
// value of the previous iteration of vr1024.
|
|
return false;
|
|
EliminatedLHSVals.push_back(LHSIt->valno);
|
|
}
|
|
|
|
// We know this entire LHS live range is okay, so skip it now.
|
|
if (++LHSIt == LHSEnd) break;
|
|
continue;
|
|
}
|
|
|
|
if (LHSIt->end < RHSIt->end) {
|
|
if (++LHSIt == LHSEnd) break;
|
|
} else {
|
|
// One interesting case to check here. It's possible that we have
|
|
// something like "X3 = Y" which defines a new value number in the LHS,
|
|
// and is the last use of this liverange of the RHS. In this case, we
|
|
// want to notice this copy (so that it gets coalesced away) even though
|
|
// the live ranges don't actually overlap.
|
|
if (LHSIt->start == RHSIt->end) {
|
|
if (InVector(LHSIt->valno, EliminatedLHSVals)) {
|
|
// We already know that this value number is going to be merged in
|
|
// if coalescing succeeds. Just skip the liverange.
|
|
if (++LHSIt == LHSEnd) break;
|
|
} else {
|
|
// If it's re-defined by an early clobber somewhere in the live range,
|
|
// then conservatively abort coalescing.
|
|
if (LHSIt->valno->hasRedefByEC())
|
|
return false;
|
|
// Otherwise, if this is a copy from the RHS, mark it as being merged
|
|
// in.
|
|
if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
|
|
if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def))
|
|
// Here is an interesting situation:
|
|
// BB1:
|
|
// vr1025 = copy vr1024
|
|
// ..
|
|
// BB2:
|
|
// vr1024 = op
|
|
// = vr1025
|
|
// Even though vr1025 is copied from vr1024, it's not safe to
|
|
// coalesced them since live range of vr1025 intersects the
|
|
// def of vr1024. This happens because vr1025 is assigned the
|
|
// value of the previous iteration of vr1024.
|
|
return false;
|
|
EliminatedLHSVals.push_back(LHSIt->valno);
|
|
|
|
// We know this entire LHS live range is okay, so skip it now.
|
|
if (++LHSIt == LHSEnd) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (++RHSIt == RHSEnd) break;
|
|
}
|
|
}
|
|
|
|
// If we got here, we know that the coalescing will be successful and that
|
|
// the value numbers in EliminatedLHSVals will all be merged together. Since
|
|
// the most common case is that EliminatedLHSVals has a single number, we
|
|
// optimize for it: if there is more than one value, we merge them all into
|
|
// the lowest numbered one, then handle the interval as if we were merging
|
|
// with one value number.
|
|
VNInfo *LHSValNo = NULL;
|
|
if (EliminatedLHSVals.size() > 1) {
|
|
// Loop through all the equal value numbers merging them into the smallest
|
|
// one.
|
|
VNInfo *Smallest = EliminatedLHSVals[0];
|
|
for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
|
|
if (EliminatedLHSVals[i]->id < Smallest->id) {
|
|
// Merge the current notion of the smallest into the smaller one.
|
|
LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
|
|
Smallest = EliminatedLHSVals[i];
|
|
} else {
|
|
// Merge into the smallest.
|
|
LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
|
|
}
|
|
}
|
|
LHSValNo = Smallest;
|
|
} else if (EliminatedLHSVals.empty()) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
|
|
*tri_->getSuperRegisters(LHS.reg))
|
|
// Imprecise sub-register information. Can't handle it.
|
|
return false;
|
|
llvm_unreachable("No copies from the RHS?");
|
|
} else {
|
|
LHSValNo = EliminatedLHSVals[0];
|
|
}
|
|
|
|
// Okay, now that there is a single LHS value number that we're merging the
|
|
// RHS into, update the value number info for the LHS to indicate that the
|
|
// value number is defined where the RHS value number was.
|
|
const VNInfo *VNI = RHS.getValNumInfo(0);
|
|
LHSValNo->def = VNI->def;
|
|
LHSValNo->setCopy(VNI->getCopy());
|
|
|
|
// Okay, the final step is to loop over the RHS live intervals, adding them to
|
|
// the LHS.
|
|
if (VNI->hasPHIKill())
|
|
LHSValNo->setHasPHIKill(true);
|
|
LHS.addKills(LHSValNo, VNI->kills);
|
|
LHS.MergeRangesInAsValue(RHS, LHSValNo);
|
|
|
|
LHS.ComputeJoinedWeight(RHS);
|
|
|
|
// Update regalloc hint if both are virtual registers.
|
|
if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
|
|
TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
|
|
std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
|
|
std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
|
|
if (RHSPref != LHSPref)
|
|
mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
|
|
}
|
|
|
|
// Update the liveintervals of sub-registers.
|
|
if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
|
|
for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
|
|
li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, LHS,
|
|
li_->getVNInfoAllocator());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// JoinIntervals - Attempt to join these two intervals. On failure, this
|
|
/// returns false. Otherwise, if one of the intervals being joined is a
|
|
/// physreg, this method always canonicalizes LHS to be it. The output
|
|
/// "RHS" will not have been modified, so we can use this information
|
|
/// below to update aliases.
|
|
bool
|
|
SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
|
|
bool &Swapped) {
|
|
// Compute the final value assignment, assuming that the live ranges can be
|
|
// coalesced.
|
|
SmallVector<int, 16> LHSValNoAssignments;
|
|
SmallVector<int, 16> RHSValNoAssignments;
|
|
DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
|
|
DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
|
|
SmallVector<VNInfo*, 16> NewVNInfo;
|
|
|
|
// If a live interval is a physical register, conservatively check if any
|
|
// of its sub-registers is overlapping the live interval of the virtual
|
|
// register. If so, do not coalesce.
|
|
if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
|
|
*tri_->getSubRegisters(LHS.reg)) {
|
|
// If it's coalescing a virtual register to a physical register, estimate
|
|
// its live interval length. This is the *cost* of scanning an entire live
|
|
// interval. If the cost is low, we'll do an exhaustive check instead.
|
|
|
|
// If this is something like this:
|
|
// BB1:
|
|
// v1024 = op
|
|
// ...
|
|
// BB2:
|
|
// ...
|
|
// RAX = v1024
|
|
//
|
|
// That is, the live interval of v1024 crosses a bb. Then we can't rely on
|
|
// less conservative check. It's possible a sub-register is defined before
|
|
// v1024 (or live in) and live out of BB1.
|
|
if (RHS.containsOneValue() &&
|
|
li_->intervalIsInOneMBB(RHS) &&
|
|
li_->getApproximateInstructionCount(RHS) <= 10) {
|
|
// Perform a more exhaustive check for some common cases.
|
|
if (li_->conflictsWithSubPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
|
|
return false;
|
|
} else {
|
|
for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
|
|
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
|
|
DEBUG({
|
|
dbgs() << "\tInterfere with sub-register ";
|
|
li_->getInterval(*SR).print(dbgs(), tri_);
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
} else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
|
|
*tri_->getSubRegisters(RHS.reg)) {
|
|
if (LHS.containsOneValue() &&
|
|
li_->getApproximateInstructionCount(LHS) <= 10) {
|
|
// Perform a more exhaustive check for some common cases.
|
|
if (li_->conflictsWithSubPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
|
|
return false;
|
|
} else {
|
|
for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
|
|
if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
|
|
DEBUG({
|
|
dbgs() << "\tInterfere with sub-register ";
|
|
li_->getInterval(*SR).print(dbgs(), tri_);
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute ultimate value numbers for the LHS and RHS values.
|
|
if (RHS.containsOneValue()) {
|
|
// Copies from a liveinterval with a single value are simple to handle and
|
|
// very common, handle the special case here. This is important, because
|
|
// often RHS is small and LHS is large (e.g. a physreg).
|
|
|
|
// Find out if the RHS is defined as a copy from some value in the LHS.
|
|
int RHSVal0DefinedFromLHS = -1;
|
|
int RHSValID = -1;
|
|
VNInfo *RHSValNoInfo = NULL;
|
|
VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
|
|
unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
|
|
if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
|
|
// If RHS is not defined as a copy from the LHS, we can use simpler and
|
|
// faster checks to see if the live ranges are coalescable. This joiner
|
|
// can't swap the LHS/RHS intervals though.
|
|
if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
|
|
return SimpleJoin(LHS, RHS);
|
|
} else {
|
|
RHSValNoInfo = RHSValNoInfo0;
|
|
}
|
|
} else {
|
|
// It was defined as a copy from the LHS, find out what value # it is.
|
|
RHSValNoInfo =
|
|
LHS.getLiveRangeContaining(RHSValNoInfo0->def.getPrevSlot())->valno;
|
|
RHSValID = RHSValNoInfo->id;
|
|
RHSVal0DefinedFromLHS = RHSValID;
|
|
}
|
|
|
|
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
|
|
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
|
|
NewVNInfo.resize(LHS.getNumValNums(), NULL);
|
|
|
|
// Okay, *all* of the values in LHS that are defined as a copy from RHS
|
|
// should now get updated.
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
|
|
if (LHSSrcReg != RHS.reg) {
|
|
// If this is not a copy from the RHS, its value number will be
|
|
// unmodified by the coalescing.
|
|
NewVNInfo[VN] = VNI;
|
|
LHSValNoAssignments[VN] = VN;
|
|
} else if (RHSValID == -1) {
|
|
// Otherwise, it is a copy from the RHS, and we don't already have a
|
|
// value# for it. Keep the current value number, but remember it.
|
|
LHSValNoAssignments[VN] = RHSValID = VN;
|
|
NewVNInfo[VN] = RHSValNoInfo;
|
|
LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
|
|
} else {
|
|
// Otherwise, use the specified value #.
|
|
LHSValNoAssignments[VN] = RHSValID;
|
|
if (VN == (unsigned)RHSValID) { // Else this val# is dead.
|
|
NewVNInfo[VN] = RHSValNoInfo;
|
|
LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
|
|
}
|
|
}
|
|
} else {
|
|
NewVNInfo[VN] = VNI;
|
|
LHSValNoAssignments[VN] = VN;
|
|
}
|
|
}
|
|
|
|
assert(RHSValID != -1 && "Didn't find value #?");
|
|
RHSValNoAssignments[0] = RHSValID;
|
|
if (RHSVal0DefinedFromLHS != -1) {
|
|
// This path doesn't go through ComputeUltimateVN so just set
|
|
// it to anything.
|
|
RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
|
|
}
|
|
} else {
|
|
// Loop over the value numbers of the LHS, seeing if any are defined from
|
|
// the RHS.
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
|
|
continue;
|
|
|
|
// DstReg is known to be a register in the LHS interval. If the src is
|
|
// from the RHS interval, we can use its value #.
|
|
if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
|
|
continue;
|
|
|
|
// Figure out the value # from the RHS.
|
|
LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
|
|
assert(lr && "Cannot find live range");
|
|
LHSValsDefinedFromRHS[VNI] = lr->valno;
|
|
}
|
|
|
|
// Loop over the value numbers of the RHS, seeing if any are defined from
|
|
// the LHS.
|
|
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
|
|
continue;
|
|
|
|
// DstReg is known to be a register in the RHS interval. If the src is
|
|
// from the LHS interval, we can use its value #.
|
|
if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
|
|
continue;
|
|
|
|
// Figure out the value # from the LHS.
|
|
LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
|
|
assert(lr && "Cannot find live range");
|
|
RHSValsDefinedFromLHS[VNI] = lr->valno;
|
|
}
|
|
|
|
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
|
|
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
|
|
NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
|
|
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
|
|
continue;
|
|
ComputeUltimateVN(VNI, NewVNInfo,
|
|
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
|
|
LHSValNoAssignments, RHSValNoAssignments);
|
|
}
|
|
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
|
|
continue;
|
|
// If this value number isn't a copy from the LHS, it's a new number.
|
|
if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
|
|
NewVNInfo.push_back(VNI);
|
|
RHSValNoAssignments[VN] = NewVNInfo.size()-1;
|
|
continue;
|
|
}
|
|
|
|
ComputeUltimateVN(VNI, NewVNInfo,
|
|
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
|
|
RHSValNoAssignments, LHSValNoAssignments);
|
|
}
|
|
}
|
|
|
|
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
|
|
// interval lists to see if these intervals are coalescable.
|
|
LiveInterval::const_iterator I = LHS.begin();
|
|
LiveInterval::const_iterator IE = LHS.end();
|
|
LiveInterval::const_iterator J = RHS.begin();
|
|
LiveInterval::const_iterator JE = RHS.end();
|
|
|
|
// Skip ahead until the first place of potential sharing.
|
|
if (I->start < J->start) {
|
|
I = std::upper_bound(I, IE, J->start);
|
|
if (I != LHS.begin()) --I;
|
|
} else if (J->start < I->start) {
|
|
J = std::upper_bound(J, JE, I->start);
|
|
if (J != RHS.begin()) --J;
|
|
}
|
|
|
|
while (1) {
|
|
// Determine if these two live ranges overlap.
|
|
bool Overlaps;
|
|
if (I->start < J->start) {
|
|
Overlaps = I->end > J->start;
|
|
} else {
|
|
Overlaps = J->end > I->start;
|
|
}
|
|
|
|
// If so, check value # info to determine if they are really different.
|
|
if (Overlaps) {
|
|
// If the live range overlap will map to the same value number in the
|
|
// result liverange, we can still coalesce them. If not, we can't.
|
|
if (LHSValNoAssignments[I->valno->id] !=
|
|
RHSValNoAssignments[J->valno->id])
|
|
return false;
|
|
// If it's re-defined by an early clobber somewhere in the live range,
|
|
// then conservatively abort coalescing.
|
|
if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
|
|
return false;
|
|
}
|
|
|
|
if (I->end < J->end) {
|
|
++I;
|
|
if (I == IE) break;
|
|
} else {
|
|
++J;
|
|
if (J == JE) break;
|
|
}
|
|
}
|
|
|
|
// Update kill info. Some live ranges are extended due to copy coalescing.
|
|
for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
|
|
E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
|
|
VNInfo *VNI = I->first;
|
|
unsigned LHSValID = LHSValNoAssignments[VNI->id];
|
|
NewVNInfo[LHSValID]->removeKill(VNI->def);
|
|
if (VNI->hasPHIKill())
|
|
NewVNInfo[LHSValID]->setHasPHIKill(true);
|
|
RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
|
|
}
|
|
|
|
// Update kill info. Some live ranges are extended due to copy coalescing.
|
|
for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
|
|
E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
|
|
VNInfo *VNI = I->first;
|
|
unsigned RHSValID = RHSValNoAssignments[VNI->id];
|
|
NewVNInfo[RHSValID]->removeKill(VNI->def);
|
|
if (VNI->hasPHIKill())
|
|
NewVNInfo[RHSValID]->setHasPHIKill(true);
|
|
LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
|
|
}
|
|
|
|
// If we get here, we know that we can coalesce the live ranges. Ask the
|
|
// intervals to coalesce themselves now.
|
|
if ((RHS.ranges.size() > LHS.ranges.size() &&
|
|
TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
|
|
TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
|
|
RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
|
|
mri_);
|
|
Swapped = true;
|
|
} else {
|
|
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
|
|
mri_);
|
|
Swapped = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
// DepthMBBCompare - Comparison predicate that sort first based on the loop
|
|
// depth of the basic block (the unsigned), and then on the MBB number.
|
|
struct DepthMBBCompare {
|
|
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
|
|
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
|
|
// Deeper loops first
|
|
if (LHS.first != RHS.first)
|
|
return LHS.first > RHS.first;
|
|
|
|
// Prefer blocks that are more connected in the CFG. This takes care of
|
|
// the most difficult copies first while intervals are short.
|
|
unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
|
|
unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
|
|
if (cl != cr)
|
|
return cl > cr;
|
|
|
|
// As a last resort, sort by block number.
|
|
return LHS.second->getNumber() < RHS.second->getNumber();
|
|
}
|
|
};
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
|
|
std::vector<CopyRec> &TryAgain) {
|
|
DEBUG(dbgs() << MBB->getName() << ":\n");
|
|
|
|
std::vector<CopyRec> VirtCopies;
|
|
std::vector<CopyRec> PhysCopies;
|
|
std::vector<CopyRec> ImpDefCopies;
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
|
|
MII != E;) {
|
|
MachineInstr *Inst = MII++;
|
|
|
|
// If this isn't a copy nor a extract_subreg, we can't join intervals.
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
bool isInsUndef = false;
|
|
if (Inst->isExtractSubreg()) {
|
|
DstReg = Inst->getOperand(0).getReg();
|
|
SrcReg = Inst->getOperand(1).getReg();
|
|
} else if (Inst->isInsertSubreg()) {
|
|
DstReg = Inst->getOperand(0).getReg();
|
|
SrcReg = Inst->getOperand(2).getReg();
|
|
if (Inst->getOperand(1).isUndef())
|
|
isInsUndef = true;
|
|
} else if (Inst->isInsertSubreg() || Inst->isSubregToReg()) {
|
|
DstReg = Inst->getOperand(0).getReg();
|
|
SrcReg = Inst->getOperand(2).getReg();
|
|
} else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
|
|
continue;
|
|
|
|
bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
|
|
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
|
|
if (isInsUndef ||
|
|
(li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty()))
|
|
ImpDefCopies.push_back(CopyRec(Inst, 0));
|
|
else if (SrcIsPhys || DstIsPhys)
|
|
PhysCopies.push_back(CopyRec(Inst, 0));
|
|
else
|
|
VirtCopies.push_back(CopyRec(Inst, 0));
|
|
}
|
|
|
|
// Try coalescing implicit copies and insert_subreg <undef> first,
|
|
// followed by copies to / from physical registers, then finally copies
|
|
// from virtual registers to virtual registers.
|
|
for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = ImpDefCopies[i];
|
|
bool Again = false;
|
|
if (!JoinCopy(TheCopy, Again))
|
|
if (Again)
|
|
TryAgain.push_back(TheCopy);
|
|
}
|
|
for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = PhysCopies[i];
|
|
bool Again = false;
|
|
if (!JoinCopy(TheCopy, Again))
|
|
if (Again)
|
|
TryAgain.push_back(TheCopy);
|
|
}
|
|
for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = VirtCopies[i];
|
|
bool Again = false;
|
|
if (!JoinCopy(TheCopy, Again))
|
|
if (Again)
|
|
TryAgain.push_back(TheCopy);
|
|
}
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::joinIntervals() {
|
|
DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
|
|
|
|
std::vector<CopyRec> TryAgainList;
|
|
if (loopInfo->empty()) {
|
|
// If there are no loops in the function, join intervals in function order.
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
|
|
I != E; ++I)
|
|
CopyCoalesceInMBB(I, TryAgainList);
|
|
} else {
|
|
// Otherwise, join intervals in inner loops before other intervals.
|
|
// Unfortunately we can't just iterate over loop hierarchy here because
|
|
// there may be more MBB's than BB's. Collect MBB's for sorting.
|
|
|
|
// Join intervals in the function prolog first. We want to join physical
|
|
// registers with virtual registers before the intervals got too long.
|
|
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
|
|
MachineBasicBlock *MBB = I;
|
|
MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
|
|
}
|
|
|
|
// Sort by loop depth.
|
|
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
|
|
|
|
// Finally, join intervals in loop nest order.
|
|
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
|
|
CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
|
|
}
|
|
|
|
// Joining intervals can allow other intervals to be joined. Iteratively join
|
|
// until we make no progress.
|
|
bool ProgressMade = true;
|
|
while (ProgressMade) {
|
|
ProgressMade = false;
|
|
|
|
for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = TryAgainList[i];
|
|
if (!TheCopy.MI)
|
|
continue;
|
|
|
|
bool Again = false;
|
|
bool Success = JoinCopy(TheCopy, Again);
|
|
if (Success || !Again) {
|
|
TheCopy.MI = 0; // Mark this one as done.
|
|
ProgressMade = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return true if the two specified registers belong to different register
|
|
/// classes. The registers may be either phys or virt regs.
|
|
bool
|
|
SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
|
|
unsigned RegB) const {
|
|
// Get the register classes for the first reg.
|
|
if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
|
|
assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
|
|
"Shouldn't consider two physregs!");
|
|
return !mri_->getRegClass(RegB)->contains(RegA);
|
|
}
|
|
|
|
// Compare against the regclass for the second reg.
|
|
const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
|
|
if (TargetRegisterInfo::isVirtualRegister(RegB)) {
|
|
const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
|
|
return RegClassA != RegClassB;
|
|
}
|
|
return !RegClassA->contains(RegB);
|
|
}
|
|
|
|
/// lastRegisterUse - Returns the last (non-debug) use of the specific register
|
|
/// between cycles Start and End or NULL if there are no uses.
|
|
MachineOperand *
|
|
SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
|
|
SlotIndex End,
|
|
unsigned Reg,
|
|
SlotIndex &UseIdx) const{
|
|
UseIdx = SlotIndex();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
MachineOperand *LastUse = NULL;
|
|
for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
|
|
E = mri_->use_nodbg_end(); I != E; ++I) {
|
|
MachineOperand &Use = I.getOperand();
|
|
MachineInstr *UseMI = Use.getParent();
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
|
|
SrcReg == DstReg)
|
|
// Ignore identity copies.
|
|
continue;
|
|
SlotIndex Idx = li_->getInstructionIndex(UseMI);
|
|
// FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
|
|
// that compares higher than any other interval.
|
|
if (Idx >= Start && Idx < End && Idx >= UseIdx) {
|
|
LastUse = &Use;
|
|
UseIdx = Idx.getUseIndex();
|
|
}
|
|
}
|
|
return LastUse;
|
|
}
|
|
|
|
SlotIndex s = Start;
|
|
SlotIndex e = End.getPrevSlot().getBaseIndex();
|
|
while (e >= s) {
|
|
// Skip deleted instructions
|
|
MachineInstr *MI = li_->getInstructionFromIndex(e);
|
|
while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
|
|
e = e.getPrevIndex();
|
|
MI = li_->getInstructionFromIndex(e);
|
|
}
|
|
if (e < s || MI == NULL)
|
|
return NULL;
|
|
|
|
// Ignore identity copies.
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
|
|
SrcReg == DstReg))
|
|
for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
|
|
MachineOperand &Use = MI->getOperand(i);
|
|
if (Use.isReg() && Use.isUse() && Use.getReg() &&
|
|
tri_->regsOverlap(Use.getReg(), Reg)) {
|
|
UseIdx = e.getUseIndex();
|
|
return &Use;
|
|
}
|
|
}
|
|
|
|
e = e.getPrevIndex();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::releaseMemory() {
|
|
JoinedCopies.clear();
|
|
ReMatCopies.clear();
|
|
ReMatDefs.clear();
|
|
}
|
|
|
|
bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
|
|
mf_ = &fn;
|
|
mri_ = &fn.getRegInfo();
|
|
tm_ = &fn.getTarget();
|
|
tri_ = tm_->getRegisterInfo();
|
|
tii_ = tm_->getInstrInfo();
|
|
li_ = &getAnalysis<LiveIntervals>();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
loopInfo = &getAnalysis<MachineLoopInfo>();
|
|
|
|
DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
|
|
<< "********** Function: "
|
|
<< ((Value*)mf_->getFunction())->getName() << '\n');
|
|
|
|
allocatableRegs_ = tri_->getAllocatableSet(fn);
|
|
for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
|
|
E = tri_->regclass_end(); I != E; ++I)
|
|
allocatableRCRegs_.insert(std::make_pair(*I,
|
|
tri_->getAllocatableSet(fn, *I)));
|
|
|
|
// Join (coalesce) intervals if requested.
|
|
if (EnableJoining) {
|
|
joinIntervals();
|
|
DEBUG({
|
|
dbgs() << "********** INTERVALS POST JOINING **********\n";
|
|
for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
|
|
I != E; ++I){
|
|
I->second->print(dbgs(), tri_);
|
|
dbgs() << "\n";
|
|
}
|
|
});
|
|
}
|
|
|
|
// Perform a final pass over the instructions and compute spill weights
|
|
// and remove identity moves.
|
|
SmallVector<unsigned, 4> DeadDefs;
|
|
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
|
|
mbbi != mbbe; ++mbbi) {
|
|
MachineBasicBlock* mbb = mbbi;
|
|
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
|
|
mii != mie; ) {
|
|
MachineInstr *MI = mii;
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (JoinedCopies.count(MI)) {
|
|
// Delete all coalesced copies.
|
|
bool DoDelete = true;
|
|
if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
|
|
assert((MI->isExtractSubreg() || MI->isInsertSubreg() ||
|
|
MI->isSubregToReg()) && "Unrecognized copy instruction");
|
|
DstReg = MI->getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(DstReg))
|
|
// Do not delete extract_subreg, insert_subreg of physical
|
|
// registers unless the definition is dead. e.g.
|
|
// %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
|
|
// or else the scavenger may complain. LowerSubregs will
|
|
// delete them later.
|
|
DoDelete = false;
|
|
}
|
|
if (MI->allDefsAreDead()) {
|
|
LiveInterval &li = li_->getInterval(DstReg);
|
|
if (!ShortenDeadCopySrcLiveRange(li, MI))
|
|
ShortenDeadCopyLiveRange(li, MI);
|
|
DoDelete = true;
|
|
}
|
|
if (!DoDelete)
|
|
mii = llvm::next(mii);
|
|
else {
|
|
li_->RemoveMachineInstrFromMaps(MI);
|
|
mii = mbbi->erase(mii);
|
|
++numPeep;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Now check if this is a remat'ed def instruction which is now dead.
|
|
if (ReMatDefs.count(MI)) {
|
|
bool isDead = true;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
DeadDefs.push_back(Reg);
|
|
if (MO.isDead())
|
|
continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
|
|
!mri_->use_nodbg_empty(Reg)) {
|
|
isDead = false;
|
|
break;
|
|
}
|
|
}
|
|
if (isDead) {
|
|
while (!DeadDefs.empty()) {
|
|
unsigned DeadDef = DeadDefs.back();
|
|
DeadDefs.pop_back();
|
|
RemoveDeadDef(li_->getInterval(DeadDef), MI);
|
|
}
|
|
li_->RemoveMachineInstrFromMaps(mii);
|
|
mii = mbbi->erase(mii);
|
|
continue;
|
|
} else
|
|
DeadDefs.clear();
|
|
}
|
|
|
|
// If the move will be an identity move delete it
|
|
bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
|
|
if (isMove && SrcReg == DstReg) {
|
|
if (li_->hasInterval(SrcReg)) {
|
|
LiveInterval &RegInt = li_->getInterval(SrcReg);
|
|
// If def of this move instruction is dead, remove its live range
|
|
// from the dstination register's live interval.
|
|
if (MI->registerDefIsDead(DstReg)) {
|
|
if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
|
|
ShortenDeadCopyLiveRange(RegInt, MI);
|
|
}
|
|
}
|
|
li_->RemoveMachineInstrFromMaps(MI);
|
|
mii = mbbi->erase(mii);
|
|
++numPeep;
|
|
continue;
|
|
}
|
|
|
|
++mii;
|
|
|
|
// Check for now unnecessary kill flags.
|
|
if (li_->isNotInMIMap(MI)) continue;
|
|
SlotIndex UseIdx = li_->getInstructionIndex(MI).getUseIndex();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isKill()) continue;
|
|
unsigned reg = MO.getReg();
|
|
if (!reg || !li_->hasInterval(reg)) continue;
|
|
LiveInterval &LI = li_->getInterval(reg);
|
|
const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
|
|
if (!LR ||
|
|
(!LR->valno->isKill(UseIdx.getDefIndex()) &&
|
|
LR->valno->def != UseIdx.getDefIndex()))
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(dump());
|
|
return true;
|
|
}
|
|
|
|
/// print - Implement the dump method.
|
|
void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
|
|
li_->print(O, m);
|
|
}
|
|
|
|
RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
|
|
return new SimpleRegisterCoalescing();
|
|
}
|
|
|
|
// Make sure that anything that uses RegisterCoalescer pulls in this file...
|
|
DEFINING_FILE_FOR(SimpleRegisterCoalescing)
|