llvm-6502/lib/Target/TargetTransformImpl.cpp
Nadav Rotem a5a3a61c5f Refactor the VectorTargetTransformInfo interface.
Add getCostXXX calls for different families of opcodes, such as casts, arithmetic, cmp, etc.

Port the LoopVectorizer to the new API.

The LoopVectorizer now finds instructions which will remain uniform after vectorization. It uses this information when calculating the cost of these instructions.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166836 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-26 23:49:28 +00:00

306 lines
10 KiB
C++

// llvm/Target/TargetTransformImpl.cpp - Target Loop Trans Info ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetTransformImpl.h"
#include "llvm/Target/TargetLowering.h"
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
//
// Calls used by scalar transformations.
//
//===----------------------------------------------------------------------===//
bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const {
return TLI->isLegalAddImmediate(imm);
}
bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const {
return TLI->isLegalICmpImmediate(imm);
}
bool ScalarTargetTransformImpl::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
return TLI->isLegalAddressingMode(AM, Ty);
}
bool ScalarTargetTransformImpl::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TLI->isTruncateFree(Ty1, Ty2);
}
bool ScalarTargetTransformImpl::isTypeLegal(Type *Ty) const {
EVT T = TLI->getValueType(Ty);
return TLI->isTypeLegal(T);
}
unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const {
return TLI->getJumpBufAlignment();
}
unsigned ScalarTargetTransformImpl::getJumpBufSize() const {
return TLI->getJumpBufSize();
}
//===----------------------------------------------------------------------===//
//
// Calls used by the vectorizers.
//
//===----------------------------------------------------------------------===//
static int InstructionOpcodeToISD(unsigned Opcode) {
enum InstructionOpcodes {
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
#include "llvm/Instruction.def"
};
switch (static_cast<InstructionOpcodes>(Opcode)) {
case Ret: return 0;
case Br: return 0;
case Switch: return 0;
case IndirectBr: return 0;
case Invoke: return 0;
case Resume: return 0;
case Unreachable: return 0;
case Add: return ISD::ADD;
case FAdd: return ISD::FADD;
case Sub: return ISD::SUB;
case FSub: return ISD::FSUB;
case Mul: return ISD::MUL;
case FMul: return ISD::FMUL;
case UDiv: return ISD::UDIV;
case SDiv: return ISD::UDIV;
case FDiv: return ISD::FDIV;
case URem: return ISD::UREM;
case SRem: return ISD::SREM;
case FRem: return ISD::FREM;
case Shl: return ISD::SHL;
case LShr: return ISD::SRL;
case AShr: return ISD::SRA;
case And: return ISD::AND;
case Or: return ISD::OR;
case Xor: return ISD::XOR;
case Alloca: return 0;
case Load: return ISD::LOAD;
case Store: return ISD::STORE;
case GetElementPtr: return 0;
case Fence: return 0;
case AtomicCmpXchg: return 0;
case AtomicRMW: return 0;
case Trunc: return ISD::TRUNCATE;
case ZExt: return ISD::ZERO_EXTEND;
case SExt: return ISD::SEXTLOAD;
case FPToUI: return ISD::FP_TO_UINT;
case FPToSI: return ISD::FP_TO_SINT;
case UIToFP: return ISD::UINT_TO_FP;
case SIToFP: return ISD::SINT_TO_FP;
case FPTrunc: return ISD::FP_ROUND;
case FPExt: return ISD::FP_EXTEND;
case PtrToInt: return ISD::BITCAST;
case IntToPtr: return ISD::BITCAST;
case BitCast: return ISD::BITCAST;
case ICmp: return ISD::SETCC;
case FCmp: return ISD::SETCC;
case PHI: return 0;
case Call: return 0;
case Select: return ISD::SELECT;
case UserOp1: return 0;
case UserOp2: return 0;
case VAArg: return 0;
case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
case InsertElement: return ISD::INSERT_VECTOR_ELT;
case ShuffleVector: return ISD::VECTOR_SHUFFLE;
case ExtractValue: return ISD::MERGE_VALUES;
case InsertValue: return ISD::MERGE_VALUES;
case LandingPad: return 0;
}
llvm_unreachable("Unknown instruction type encountered!");
}
std::pair<unsigned, EVT>
VectorTargetTransformImpl::getTypeLegalizationCost(LLVMContext &C,
EVT Ty) const {
unsigned Cost = 1;
// We keep legalizing the type until we find a legal kind. We assume that
// the only operation that costs anything is the split. After splitting
// we need to handle two types.
while (true) {
TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, Ty);
if (LK.first == TargetLowering::TypeLegal)
return std::make_pair(Cost, Ty);
if (LK.first == TargetLowering::TypeSplitVector)
Cost *= 2;
// Keep legalizing the type.
Ty = LK.second;
}
}
unsigned
VectorTargetTransformImpl::getScalarizationOverhead(Type *Ty,
bool Insert,
bool Extract) const {
assert (Ty->isVectorTy() && "Can only scalarize vectors");
unsigned Cost = 0;
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
if (Insert)
Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
if (Extract)
Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
}
return Cost;
}
unsigned VectorTargetTransformImpl::getArithmeticInstrCost(unsigned Opcode,
Type *Ty) const {
// Check if any of the operands are vector operands.
int ISD = InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, EVT> LT =
getTypeLegalizationCost(Ty->getContext(), TLI->getValueType(Ty));
if (!TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
// Else, assume that we need to scalarize this op.
if (Ty->isVectorTy()) {
unsigned Num = Ty->getVectorNumElements();
unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(Ty, true, true) + Num * Cost;
}
// We don't know anything about this scalar instruction.
return 1;
}
unsigned VectorTargetTransformImpl::getBroadcastCost(Type *Tp) const {
return 1;
}
unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
assert(Src->isVectorTy() == Dst->isVectorTy() && "Invalid input types");
int ISD = InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, EVT> SrcLT =
getTypeLegalizationCost(Src->getContext(), TLI->getValueType(Src));
std::pair<unsigned, EVT> DstLT =
getTypeLegalizationCost(Dst->getContext(), TLI->getValueType(Dst));
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Just check the op cost:
if (!TLI->isOperationExpand(ISD, DstLT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return SrcLT.first * 1;
}
}
// Otherwise, assume that the cast is scalarized.
if (Dst->isVectorTy()) {
unsigned Num = Dst->getVectorNumElements();
unsigned Cost = getCastInstrCost(Opcode, Src->getScalarType(),
Dst->getScalarType());
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
}
// Unknown scalar opcode.
return 1;
}
unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const {
return 1;
}
unsigned VectorTargetTransformImpl::getCmpSelInstrCost(unsigned Opcode,
Type *ValTy,
Type *CondTy) const {
int ISD = InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Selects on vectors are actually vector selects.
if (ISD == ISD::SELECT) {
assert(CondTy && "CondTy must exist");
if (CondTy->isVectorTy())
ISD = ISD::VSELECT;
}
std::pair<unsigned, EVT> LT =
getTypeLegalizationCost(ValTy->getContext(), TLI->getValueType(ValTy));
if (!TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
// Otherwise, assume that the cast is scalarized.
if (ValTy->isVectorTy()) {
unsigned Num = ValTy->getVectorNumElements();
if (CondTy)
CondTy = CondTy->getScalarType();
unsigned Cost = getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
CondTy);
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
}
// Unknown scalar opcode.
return 1;
}
/// Returns the expected cost of Vector Insert and Extract.
unsigned VectorTargetTransformImpl::getVectorInstrCost(unsigned Opcode,
Type *Val,
unsigned Index) const {
return 1;
}
unsigned
VectorTargetTransformImpl::getInstrCost(unsigned Opcode, Type *Ty1,
Type *Ty2) const {
return 1;
}
unsigned
VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
std::pair<unsigned, EVT> LT =
getTypeLegalizationCost(Src->getContext(), TLI->getValueType(Src));
// Assume that all loads of legal types cost 1.
return LT.first;
}
unsigned
VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const {
return TLI->getNumRegisters(Tp->getContext(), TLI->getValueType(Tp));
}