mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
70d3bebc8b
by virtue of inbounds GEPs that preclude a null pointer. This is a very common pattern in the code generated by std::vector and other standard library routines which use allocators that test for null pervasively. This is one step closer to teaching Clang+LLVM to be able to produce an empty function for: void f() { std::vector<int> v; v.push_back(1); v.push_back(2); v.push_back(3); v.push_back(4); } Which is related to getting them to completely fold SmallVector push_back sequences into constants when inlining and other optimizations make that a possibility. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169573 91177308-0d34-0410-b5e6-96231b3b80d8
650 lines
13 KiB
LLVM
650 lines
13 KiB
LLVM
; RUN: opt < %s -instsimplify -S | FileCheck %s
|
|
target datalayout = "p:32:32"
|
|
|
|
define i1 @ptrtoint() {
|
|
; CHECK: @ptrtoint
|
|
%a = alloca i8
|
|
%tmp = ptrtoint i8* %a to i32
|
|
%r = icmp eq i32 %tmp, 0
|
|
ret i1 %r
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @bitcast() {
|
|
; CHECK: @bitcast
|
|
%a = alloca i32
|
|
%b = alloca i64
|
|
%x = bitcast i32* %a to i8*
|
|
%y = bitcast i64* %b to i8*
|
|
%cmp = icmp eq i8* %x, %y
|
|
ret i1 %cmp
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep() {
|
|
; CHECK: @gep
|
|
%a = alloca [3 x i8], align 8
|
|
%x = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0
|
|
%cmp = icmp eq i8* %x, null
|
|
ret i1 %cmp
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep2() {
|
|
; CHECK: @gep2
|
|
%a = alloca [3 x i8], align 8
|
|
%x = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0
|
|
%y = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0
|
|
%cmp = icmp eq i8* %x, %y
|
|
ret i1 %cmp
|
|
; CHECK-NEXT: ret i1 true
|
|
}
|
|
|
|
; PR11238
|
|
%gept = type { i32, i32 }
|
|
@gepy = global %gept zeroinitializer, align 8
|
|
@gepz = extern_weak global %gept
|
|
|
|
define i1 @gep3() {
|
|
; CHECK: @gep3
|
|
%x = alloca %gept, align 8
|
|
%a = getelementptr %gept* %x, i64 0, i32 0
|
|
%b = getelementptr %gept* %x, i64 0, i32 1
|
|
%equal = icmp eq i32* %a, %b
|
|
ret i1 %equal
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep4() {
|
|
; CHECK: @gep4
|
|
%x = alloca %gept, align 8
|
|
%a = getelementptr %gept* @gepy, i64 0, i32 0
|
|
%b = getelementptr %gept* @gepy, i64 0, i32 1
|
|
%equal = icmp eq i32* %a, %b
|
|
ret i1 %equal
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep5() {
|
|
; CHECK: @gep5
|
|
%x = alloca %gept, align 8
|
|
%a = getelementptr inbounds %gept* %x, i64 0, i32 1
|
|
%b = getelementptr %gept* @gepy, i64 0, i32 0
|
|
%equal = icmp eq i32* %a, %b
|
|
ret i1 %equal
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep6(%gept* %x) {
|
|
; Same as @gep3 but potentially null.
|
|
; CHECK: @gep6
|
|
%a = getelementptr %gept* %x, i64 0, i32 0
|
|
%b = getelementptr %gept* %x, i64 0, i32 1
|
|
%equal = icmp eq i32* %a, %b
|
|
ret i1 %equal
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep7(%gept* %x) {
|
|
; CHECK: @gep7
|
|
%a = getelementptr %gept* %x, i64 0, i32 0
|
|
%b = getelementptr %gept* @gepz, i64 0, i32 0
|
|
%equal = icmp eq i32* %a, %b
|
|
ret i1 %equal
|
|
; CHECK: ret i1 %equal
|
|
}
|
|
|
|
define i1 @gep8(%gept* %x) {
|
|
; CHECK: @gep8
|
|
%a = getelementptr %gept* %x, i32 1
|
|
%b = getelementptr %gept* %x, i32 -1
|
|
%equal = icmp ugt %gept* %a, %b
|
|
ret i1 %equal
|
|
; CHECK: ret i1 %equal
|
|
}
|
|
|
|
define i1 @gep9(i8* %ptr) {
|
|
; CHECK: @gep9
|
|
; CHECK-NOT: ret
|
|
; CHECK: ret i1 true
|
|
|
|
entry:
|
|
%first1 = getelementptr inbounds i8* %ptr, i32 0
|
|
%first2 = getelementptr inbounds i8* %first1, i32 1
|
|
%first3 = getelementptr inbounds i8* %first2, i32 2
|
|
%first4 = getelementptr inbounds i8* %first3, i32 4
|
|
%last1 = getelementptr inbounds i8* %first2, i32 48
|
|
%last2 = getelementptr inbounds i8* %last1, i32 8
|
|
%last3 = getelementptr inbounds i8* %last2, i32 -4
|
|
%last4 = getelementptr inbounds i8* %last3, i32 -4
|
|
%first.int = ptrtoint i8* %first4 to i32
|
|
%last.int = ptrtoint i8* %last4 to i32
|
|
%cmp = icmp ne i32 %last.int, %first.int
|
|
ret i1 %cmp
|
|
}
|
|
|
|
define i1 @gep10(i8* %ptr) {
|
|
; CHECK: @gep10
|
|
; CHECK-NOT: ret
|
|
; CHECK: ret i1 true
|
|
|
|
entry:
|
|
%first1 = getelementptr inbounds i8* %ptr, i32 -2
|
|
%first2 = getelementptr inbounds i8* %first1, i32 44
|
|
%last1 = getelementptr inbounds i8* %ptr, i32 48
|
|
%last2 = getelementptr inbounds i8* %last1, i32 -6
|
|
%first.int = ptrtoint i8* %first2 to i32
|
|
%last.int = ptrtoint i8* %last2 to i32
|
|
%cmp = icmp eq i32 %last.int, %first.int
|
|
ret i1 %cmp
|
|
}
|
|
|
|
define i1 @gep11(i8* %ptr) {
|
|
; CHECK: @gep11
|
|
; CHECK-NOT: ret
|
|
; CHECK: ret i1 true
|
|
|
|
entry:
|
|
%first1 = getelementptr inbounds i8* %ptr, i32 -2
|
|
%last1 = getelementptr inbounds i8* %ptr, i32 48
|
|
%last2 = getelementptr inbounds i8* %last1, i32 -6
|
|
%cmp = icmp ult i8* %first1, %last2
|
|
ret i1 %cmp
|
|
}
|
|
|
|
define i1 @gep12(i8* %ptr) {
|
|
; CHECK: @gep12
|
|
; CHECK-NOT: ret
|
|
; CHECK: ret i1 %cmp
|
|
|
|
entry:
|
|
%first1 = getelementptr inbounds i8* %ptr, i32 -2
|
|
%last1 = getelementptr inbounds i8* %ptr, i32 48
|
|
%last2 = getelementptr inbounds i8* %last1, i32 -6
|
|
%cmp = icmp slt i8* %first1, %last2
|
|
ret i1 %cmp
|
|
}
|
|
|
|
define i1 @gep13(i8* %ptr) {
|
|
; CHECK: @gep13
|
|
; We can prove this GEP is non-null because it is inbounds.
|
|
%x = getelementptr inbounds i8* %ptr, i32 1
|
|
%cmp = icmp eq i8* %x, null
|
|
ret i1 %cmp
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep14({ {}, i8 }* %ptr) {
|
|
; CHECK: @gep14
|
|
; We can't simplify this because the offset of one in the GEP actually doesn't
|
|
; move the pointer.
|
|
%x = getelementptr inbounds { {}, i8 }* %ptr, i32 0, i32 1
|
|
%cmp = icmp eq i8* %x, null
|
|
ret i1 %cmp
|
|
; CHECK-NOT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) {
|
|
; CHECK: @gep15
|
|
; We can prove this GEP is non-null even though there is a user value, as we
|
|
; would necessarily violate inbounds on one side or the other.
|
|
%x = getelementptr inbounds { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
|
|
%cmp = icmp eq i8* %x, null
|
|
ret i1 %cmp
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @gep16(i8* %ptr, i32 %a) {
|
|
; CHECK: @gep16
|
|
; We can prove this GEP is non-null because it is inbounds and because we know
|
|
; %b is non-zero even though we don't know its value.
|
|
%b = or i32 %a, 1
|
|
%x = getelementptr inbounds i8* %ptr, i32 %b
|
|
%cmp = icmp eq i8* %x, null
|
|
ret i1 %cmp
|
|
; CHECK-NEXT: ret i1 false
|
|
}
|
|
|
|
define i1 @zext(i32 %x) {
|
|
; CHECK: @zext
|
|
%e1 = zext i32 %x to i64
|
|
%e2 = zext i32 %x to i64
|
|
%r = icmp eq i64 %e1, %e2
|
|
ret i1 %r
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @zext2(i1 %x) {
|
|
; CHECK: @zext2
|
|
%e = zext i1 %x to i32
|
|
%c = icmp ne i32 %e, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 %x
|
|
}
|
|
|
|
define i1 @zext3() {
|
|
; CHECK: @zext3
|
|
%e = zext i1 1 to i32
|
|
%c = icmp ne i32 %e, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @sext(i32 %x) {
|
|
; CHECK: @sext
|
|
%e1 = sext i32 %x to i64
|
|
%e2 = sext i32 %x to i64
|
|
%r = icmp eq i64 %e1, %e2
|
|
ret i1 %r
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @sext2(i1 %x) {
|
|
; CHECK: @sext2
|
|
%e = sext i1 %x to i32
|
|
%c = icmp ne i32 %e, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 %x
|
|
}
|
|
|
|
define i1 @sext3() {
|
|
; CHECK: @sext3
|
|
%e = sext i1 1 to i32
|
|
%c = icmp ne i32 %e, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @add(i32 %x, i32 %y) {
|
|
; CHECK: @add
|
|
%l = lshr i32 %x, 1
|
|
%q = lshr i32 %y, 1
|
|
%r = or i32 %q, 1
|
|
%s = add i32 %l, %r
|
|
%c = icmp eq i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @add2(i8 %x, i8 %y) {
|
|
; CHECK: @add2
|
|
%l = or i8 %x, 128
|
|
%r = or i8 %y, 129
|
|
%s = add i8 %l, %r
|
|
%c = icmp eq i8 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @add3(i8 %x, i8 %y) {
|
|
; CHECK: @add3
|
|
%l = zext i8 %x to i32
|
|
%r = zext i8 %y to i32
|
|
%s = add i32 %l, %r
|
|
%c = icmp eq i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 %c
|
|
}
|
|
|
|
define i1 @add4(i32 %x, i32 %y) {
|
|
; CHECK: @add4
|
|
%z = add nsw i32 %y, 1
|
|
%s1 = add nsw i32 %x, %y
|
|
%s2 = add nsw i32 %x, %z
|
|
%c = icmp slt i32 %s1, %s2
|
|
ret i1 %c
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @add5(i32 %x, i32 %y) {
|
|
; CHECK: @add5
|
|
%z = add nuw i32 %y, 1
|
|
%s1 = add nuw i32 %x, %z
|
|
%s2 = add nuw i32 %x, %y
|
|
%c = icmp ugt i32 %s1, %s2
|
|
ret i1 %c
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @add6(i64 %A, i64 %B) {
|
|
; CHECK: @add6
|
|
%s1 = add i64 %A, %B
|
|
%s2 = add i64 %B, %A
|
|
%cmp = icmp eq i64 %s1, %s2
|
|
ret i1 %cmp
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @addpowtwo(i32 %x, i32 %y) {
|
|
; CHECK: @addpowtwo
|
|
%l = lshr i32 %x, 1
|
|
%r = shl i32 1, %y
|
|
%s = add i32 %l, %r
|
|
%c = icmp eq i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @or(i32 %x) {
|
|
; CHECK: @or
|
|
%o = or i32 %x, 1
|
|
%c = icmp eq i32 %o, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @shl(i32 %x) {
|
|
; CHECK: @shl
|
|
%s = shl i32 1, %x
|
|
%c = icmp eq i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @lshr1(i32 %x) {
|
|
; CHECK: @lshr1
|
|
%s = lshr i32 -1, %x
|
|
%c = icmp eq i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @lshr2(i32 %x) {
|
|
; CHECK: @lshr2
|
|
%s = lshr i32 %x, 30
|
|
%c = icmp ugt i32 %s, 8
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @ashr1(i32 %x) {
|
|
; CHECK: @ashr1
|
|
%s = ashr i32 -1, %x
|
|
%c = icmp eq i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @ashr2(i32 %x) {
|
|
; CHECK: @ashr2
|
|
%s = ashr i32 %x, 30
|
|
%c = icmp slt i32 %s, -5
|
|
ret i1 %c
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @select1(i1 %cond) {
|
|
; CHECK: @select1
|
|
%s = select i1 %cond, i32 1, i32 0
|
|
%c = icmp eq i32 %s, 1
|
|
ret i1 %c
|
|
; CHECK: ret i1 %cond
|
|
}
|
|
|
|
define i1 @select2(i1 %cond) {
|
|
; CHECK: @select2
|
|
%x = zext i1 %cond to i32
|
|
%s = select i1 %cond, i32 %x, i32 0
|
|
%c = icmp ne i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 %cond
|
|
}
|
|
|
|
define i1 @select3(i1 %cond) {
|
|
; CHECK: @select3
|
|
%x = zext i1 %cond to i32
|
|
%s = select i1 %cond, i32 1, i32 %x
|
|
%c = icmp ne i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 %cond
|
|
}
|
|
|
|
define i1 @select4(i1 %cond) {
|
|
; CHECK: @select4
|
|
%invert = xor i1 %cond, 1
|
|
%s = select i1 %invert, i32 0, i32 1
|
|
%c = icmp ne i32 %s, 0
|
|
ret i1 %c
|
|
; CHECK: ret i1 %cond
|
|
}
|
|
|
|
define i1 @select5(i32 %x) {
|
|
; CHECK: @select5
|
|
%c = icmp eq i32 %x, 0
|
|
%s = select i1 %c, i32 1, i32 %x
|
|
%c2 = icmp eq i32 %s, 0
|
|
ret i1 %c2
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @select6(i32 %x) {
|
|
; CHECK: @select6
|
|
%c = icmp sgt i32 %x, 0
|
|
%s = select i1 %c, i32 %x, i32 4
|
|
%c2 = icmp eq i32 %s, 0
|
|
ret i1 %c2
|
|
; CHECK: ret i1 %c2
|
|
}
|
|
|
|
define i1 @urem1(i32 %X, i32 %Y) {
|
|
; CHECK: @urem1
|
|
%A = urem i32 %X, %Y
|
|
%B = icmp ult i32 %A, %Y
|
|
ret i1 %B
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @urem2(i32 %X, i32 %Y) {
|
|
; CHECK: @urem2
|
|
%A = urem i32 %X, %Y
|
|
%B = icmp eq i32 %A, %Y
|
|
ret i1 %B
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @urem3(i32 %X) {
|
|
; CHECK: @urem3
|
|
%A = urem i32 %X, 10
|
|
%B = icmp ult i32 %A, 15
|
|
ret i1 %B
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @urem4(i32 %X) {
|
|
; CHECK: @urem4
|
|
%A = urem i32 %X, 15
|
|
%B = icmp ult i32 %A, 10
|
|
ret i1 %B
|
|
; CHECK: ret i1 %B
|
|
}
|
|
|
|
define i1 @urem5(i16 %X, i32 %Y) {
|
|
; CHECK: @urem5
|
|
%A = zext i16 %X to i32
|
|
%B = urem i32 %A, %Y
|
|
%C = icmp slt i32 %B, %Y
|
|
ret i1 %C
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @urem6(i32 %X, i32 %Y) {
|
|
; CHECK: @urem6
|
|
%A = urem i32 %X, %Y
|
|
%B = icmp ugt i32 %Y, %A
|
|
ret i1 %B
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @srem1(i32 %X) {
|
|
; CHECK: @srem1
|
|
%A = srem i32 %X, -5
|
|
%B = icmp sgt i32 %A, 5
|
|
ret i1 %B
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
; PR9343 #15
|
|
; CHECK: @srem2
|
|
; CHECK: ret i1 false
|
|
define i1 @srem2(i16 %X, i32 %Y) {
|
|
%A = zext i16 %X to i32
|
|
%B = add nsw i32 %A, 1
|
|
%C = srem i32 %B, %Y
|
|
%D = icmp slt i32 %C, 0
|
|
ret i1 %D
|
|
}
|
|
|
|
; CHECK: @srem3
|
|
; CHECK-NEXT: ret i1 false
|
|
define i1 @srem3(i16 %X, i32 %Y) {
|
|
%A = zext i16 %X to i32
|
|
%B = or i32 2147483648, %A
|
|
%C = sub nsw i32 1, %B
|
|
%D = srem i32 %C, %Y
|
|
%E = icmp slt i32 %D, 0
|
|
ret i1 %E
|
|
}
|
|
|
|
define i1 @udiv1(i32 %X) {
|
|
; CHECK: @udiv1
|
|
%A = udiv i32 %X, 1000000
|
|
%B = icmp ult i32 %A, 5000
|
|
ret i1 %B
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @udiv2(i32 %X, i32 %Y, i32 %Z) {
|
|
; CHECK: @udiv2
|
|
%A = udiv exact i32 10, %Z
|
|
%B = udiv exact i32 20, %Z
|
|
%C = icmp ult i32 %A, %B
|
|
ret i1 %C
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @udiv3(i32 %X, i32 %Y) {
|
|
; CHECK: @udiv3
|
|
%A = udiv i32 %X, %Y
|
|
%C = icmp ugt i32 %A, %X
|
|
ret i1 %C
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @udiv4(i32 %X, i32 %Y) {
|
|
; CHECK: @udiv4
|
|
%A = udiv i32 %X, %Y
|
|
%C = icmp ule i32 %A, %X
|
|
ret i1 %C
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @udiv5(i32 %X) {
|
|
; CHECK: @udiv5
|
|
%A = udiv i32 123, %X
|
|
%C = icmp ugt i32 %A, 124
|
|
ret i1 %C
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
; PR11340
|
|
define i1 @udiv6(i32 %X) nounwind {
|
|
; CHECK: @udiv6
|
|
%A = udiv i32 1, %X
|
|
%C = icmp eq i32 %A, 0
|
|
ret i1 %C
|
|
; CHECK: ret i1 %C
|
|
}
|
|
|
|
|
|
define i1 @sdiv1(i32 %X) {
|
|
; CHECK: @sdiv1
|
|
%A = sdiv i32 %X, 1000000
|
|
%B = icmp slt i32 %A, 3000
|
|
ret i1 %B
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @or1(i32 %X) {
|
|
; CHECK: @or1
|
|
%A = or i32 %X, 62
|
|
%B = icmp ult i32 %A, 50
|
|
ret i1 %B
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @and1(i32 %X) {
|
|
; CHECK: @and1
|
|
%A = and i32 %X, 62
|
|
%B = icmp ugt i32 %A, 70
|
|
ret i1 %B
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @mul1(i32 %X) {
|
|
; CHECK: @mul1
|
|
; Square of a non-zero number is non-zero if there is no overflow.
|
|
%Y = or i32 %X, 1
|
|
%M = mul nuw i32 %Y, %Y
|
|
%C = icmp eq i32 %M, 0
|
|
ret i1 %C
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
define i1 @mul2(i32 %X) {
|
|
; CHECK: @mul2
|
|
; Square of a non-zero number is positive if there is no signed overflow.
|
|
%Y = or i32 %X, 1
|
|
%M = mul nsw i32 %Y, %Y
|
|
%C = icmp sgt i32 %M, 0
|
|
ret i1 %C
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define i1 @mul3(i32 %X, i32 %Y) {
|
|
; CHECK: @mul3
|
|
; Product of non-negative numbers is non-negative if there is no signed overflow.
|
|
%XX = mul nsw i32 %X, %X
|
|
%YY = mul nsw i32 %Y, %Y
|
|
%M = mul nsw i32 %XX, %YY
|
|
%C = icmp sge i32 %M, 0
|
|
ret i1 %C
|
|
; CHECK: ret i1 true
|
|
}
|
|
|
|
define <2 x i1> @vectorselect1(<2 x i1> %cond) {
|
|
; CHECK: @vectorselect1
|
|
%invert = xor <2 x i1> %cond, <i1 1, i1 1>
|
|
%s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1>
|
|
%c = icmp ne <2 x i32> %s, <i32 0, i32 0>
|
|
ret <2 x i1> %c
|
|
; CHECK: ret <2 x i1> %cond
|
|
}
|
|
|
|
; PR11948
|
|
define <2 x i1> @vectorselectcrash(i32 %arg1) {
|
|
%tobool40 = icmp ne i32 %arg1, 0
|
|
%cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1>
|
|
%cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21>
|
|
ret <2 x i1> %cmp45
|
|
}
|
|
|
|
; PR12013
|
|
define i1 @alloca_compare(i64 %idx) {
|
|
%sv = alloca { i32, i32, [124 x i32] }
|
|
%1 = getelementptr inbounds { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
|
|
%2 = icmp eq i32* %1, null
|
|
ret i1 %2
|
|
; CHECK: alloca_compare
|
|
; CHECK: ret i1 false
|
|
}
|
|
|
|
; PR12075
|
|
define i1 @infinite_gep() {
|
|
ret i1 1
|
|
|
|
unreachableblock:
|
|
%X = getelementptr i32 *%X, i32 1
|
|
%Y = icmp eq i32* %X, null
|
|
ret i1 %Y
|
|
}
|