mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-10-31 09:11:13 +00:00
a1a2097919
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6039 91177308-0d34-0410-b5e6-96231b3b80d8
1817 lines
70 KiB
HTML
1817 lines
70 KiB
HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
|
<html><head><title>LLVM Assembly Language Reference Manual</title></head>
|
|
<body bgcolor=white>
|
|
|
|
<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> <font size=+5 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Language Reference Manual</b></font></td>
|
|
</tr></table>
|
|
|
|
<ol>
|
|
<li><a href="#abstract">Abstract</a>
|
|
<li><a href="#introduction">Introduction</a>
|
|
<li><a href="#identifiers">Identifiers</a>
|
|
<li><a href="#typesystem">Type System</a>
|
|
<ol>
|
|
<li><a href="#t_primitive">Primitive Types</a>
|
|
<ol>
|
|
<li><a href="#t_classifications">Type Classifications</a>
|
|
</ol>
|
|
<li><a href="#t_derived">Derived Types</a>
|
|
<ol>
|
|
<li><a href="#t_array" >Array Type</a>
|
|
<li><a href="#t_function">Function Type</a>
|
|
<li><a href="#t_pointer">Pointer Type</a>
|
|
<li><a href="#t_struct" >Structure Type</a>
|
|
<!-- <li><a href="#t_packed" >Packed Type</a> -->
|
|
</ol>
|
|
</ol>
|
|
<li><a href="#highlevel">High Level Structure</a>
|
|
<ol>
|
|
<li><a href="#modulestructure">Module Structure</a>
|
|
<li><a href="#globalvars">Global Variables</a>
|
|
<li><a href="#functionstructure">Function Structure</a>
|
|
</ol>
|
|
<li><a href="#instref">Instruction Reference</a>
|
|
<ol>
|
|
<li><a href="#terminators">Terminator Instructions</a>
|
|
<ol>
|
|
<li><a href="#i_ret" >'<tt>ret</tt>' Instruction</a>
|
|
<li><a href="#i_br" >'<tt>br</tt>' Instruction</a>
|
|
<li><a href="#i_switch">'<tt>switch</tt>' Instruction</a>
|
|
<li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a>
|
|
</ol>
|
|
<li><a href="#binaryops">Binary Operations</a>
|
|
<ol>
|
|
<li><a href="#i_add" >'<tt>add</tt>' Instruction</a>
|
|
<li><a href="#i_sub" >'<tt>sub</tt>' Instruction</a>
|
|
<li><a href="#i_mul" >'<tt>mul</tt>' Instruction</a>
|
|
<li><a href="#i_div" >'<tt>div</tt>' Instruction</a>
|
|
<li><a href="#i_rem" >'<tt>rem</tt>' Instruction</a>
|
|
<li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a>
|
|
</ol>
|
|
<li><a href="#bitwiseops">Bitwise Binary Operations</a>
|
|
<ol>
|
|
<li><a href="#i_and">'<tt>and</tt>' Instruction</a>
|
|
<li><a href="#i_or" >'<tt>or</tt>' Instruction</a>
|
|
<li><a href="#i_xor">'<tt>xor</tt>' Instruction</a>
|
|
<li><a href="#i_shl">'<tt>shl</tt>' Instruction</a>
|
|
<li><a href="#i_shr">'<tt>shr</tt>' Instruction</a>
|
|
</ol>
|
|
<li><a href="#memoryops">Memory Access Operations</a>
|
|
<ol>
|
|
<li><a href="#i_malloc" >'<tt>malloc</tt>' Instruction</a>
|
|
<li><a href="#i_free" >'<tt>free</tt>' Instruction</a>
|
|
<li><a href="#i_alloca" >'<tt>alloca</tt>' Instruction</a>
|
|
<li><a href="#i_load" >'<tt>load</tt>' Instruction</a>
|
|
<li><a href="#i_store" >'<tt>store</tt>' Instruction</a>
|
|
<li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
|
|
</ol>
|
|
<li><a href="#otherops">Other Operations</a>
|
|
<ol>
|
|
<li><a href="#i_phi" >'<tt>phi</tt>' Instruction</a>
|
|
<li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a>
|
|
<li><a href="#i_call" >'<tt>call</tt>' Instruction</a>
|
|
<li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a>
|
|
</ol>
|
|
</ol>
|
|
<li><a href="#intrinsics">Intrinsic Functions</a>
|
|
<ol>
|
|
<li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
|
|
<ol>
|
|
<li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
|
|
<li><a href="#i_va_end" >'<tt>llvm.va_end</tt>' Intrinsic</a>
|
|
<li><a href="#i_va_copy" >'<tt>llvm.va_copy</tt>' Intrinsic</a>
|
|
</ol>
|
|
</ol>
|
|
|
|
<p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and <A href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b><p>
|
|
|
|
|
|
</ol>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
<p><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="abstract">Abstract
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
<blockquote>
|
|
This document is a reference manual for the LLVM assembly language. LLVM is
|
|
an SSA based representation that provides type safety, low level operations,
|
|
flexibility, and the capability of representing 'all' high level languages
|
|
cleanly. It is the common code representation used throughout all phases of
|
|
the LLVM compilation strategy.
|
|
</blockquote>
|
|
|
|
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="introduction">Introduction
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
The LLVM code representation is designed to be used in three different forms: as
|
|
an in-memory compiler IR, as an on-disk bytecode representation, suitable for
|
|
fast loading by a dynamic compiler, and as a human readable assembly language
|
|
representation. This allows LLVM to provide a powerful intermediate
|
|
representation for efficient compiler transformations and analysis, while
|
|
providing a natural means to debug and visualize the transformations. The three
|
|
different forms of LLVM are all equivalent. This document describes the human
|
|
readable representation and notation.<p>
|
|
|
|
The LLVM representation aims to be a light weight and low level while being
|
|
expressive, typed, and extensible at the same time. It aims to be a "universal
|
|
IR" of sorts, by being at a low enough level that high level ideas may be
|
|
cleanly mapped to it (similar to how microprocessors are "universal IR's",
|
|
allowing many source languages to be mapped to them). By providing type
|
|
information, LLVM can be used as the target of optimizations: for example,
|
|
through pointer analysis, it can be proven that a C automatic variable is never
|
|
accessed outside of the current function... allowing it to be promoted to a
|
|
simple SSA value instead of a memory location.<p>
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="wellformed"><h4><hr size=0>Well Formedness</h4><ul>
|
|
|
|
It is important to note that this document describes 'well formed' LLVM assembly
|
|
language. There is a difference between what the parser accepts and what is
|
|
considered 'well formed'. For example, the following instruction is
|
|
syntactically okay, but not well formed:<p>
|
|
|
|
<pre>
|
|
%x = <a href="#i_add">add</a> int 1, %x
|
|
</pre>
|
|
|
|
...because the definition of <tt>%x</tt> does not dominate all of its uses. The
|
|
LLVM infrastructure provides a verification pass that may be used to verify that
|
|
an LLVM module is well formed. This pass is automatically run by the parser
|
|
after parsing input assembly, and by the optimizer before it outputs bytecode.
|
|
The violations pointed out by the verifier pass indicate bugs in transformation
|
|
passes or input to the parser.<p>
|
|
|
|
<!-- Describe the typesetting conventions here. -->
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="identifiers">Identifiers
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
LLVM uses three different forms of identifiers, for different purposes:<p>
|
|
|
|
<ol>
|
|
<li>Numeric constants are represented as you would expect: 12, -3 123.421, etc. Floating point constants have an optional hexidecimal notation.
|
|
<li>Named values are represented as a string of characters with a '%' prefix. For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
|
|
<li>Unnamed values are represented as an unsigned numeric value with a '%' prefix. For example, %12, %2, %44.
|
|
</ol><p>
|
|
|
|
LLVM requires the values start with a '%' sign for two reasons: Compilers don't
|
|
need to worry about name clashes with reserved words, and the set of reserved
|
|
words may be expanded in the future without penalty. Additionally, unnamed
|
|
identifiers allow a compiler to quickly come up with a temporary variable
|
|
without having to avoid symbol table conflicts.<p>
|
|
|
|
Reserved words in LLVM are very similar to reserved words in other languages.
|
|
There are keywords for different opcodes ('<tt><a href="#i_add">add</a></tt>',
|
|
'<tt><a href="#i_cast">cast</a></tt>', '<tt><a href="#i_ret">ret</a></tt>',
|
|
etc...), for primitive type names ('<tt><a href="#t_void">void</a></tt>',
|
|
'<tt><a href="#t_uint">uint</a></tt>', etc...), and others. These reserved
|
|
words cannot conflict with variable names, because none of them start with a '%'
|
|
character.<p>
|
|
|
|
Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>'
|
|
by 8:<p>
|
|
|
|
The easy way:
|
|
<pre>
|
|
%result = <a href="#i_mul">mul</a> uint %X, 8
|
|
</pre>
|
|
|
|
After strength reduction:
|
|
<pre>
|
|
%result = <a href="#i_shl">shl</a> uint %X, ubyte 3
|
|
</pre>
|
|
|
|
And the hard way:
|
|
<pre>
|
|
<a href="#i_add">add</a> uint %X, %X <i>; yields {uint}:%0</i>
|
|
<a href="#i_add">add</a> uint %0, %0 <i>; yields {uint}:%1</i>
|
|
%result = <a href="#i_add">add</a> uint %1, %1
|
|
</pre>
|
|
|
|
This last way of multiplying <tt>%X</tt> by 8 illustrates several important lexical features of LLVM:<p>
|
|
|
|
<ol>
|
|
<li>Comments are delimited with a '<tt>;</tt>' and go until the end of line.
|
|
<li>Unnamed temporaries are created when the result of a computation is not
|
|
assigned to a named value.
|
|
<li>Unnamed temporaries are numbered sequentially
|
|
</ol><p>
|
|
|
|
...and it also show a convention that we follow in this document. When
|
|
demonstrating instructions, we will follow an instruction with a comment that
|
|
defines the type and name of value produced. Comments are shown in italic
|
|
text.<p>
|
|
|
|
The one non-intuitive notation for constants is the optional hexidecimal form of
|
|
floating point constants. For example, the form '<tt>double
|
|
0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
|
|
4.5e+15</tt>' which is also supported by the parser. The only time hexadecimal
|
|
floating point constants are useful (and the only time that they are generated
|
|
by the disassembler) is when an FP constant has to be emitted that is not
|
|
representable as a decimal floating point number exactly. For example, NaN's,
|
|
infinities, and other special cases are represented in their IEEE hexadecimal
|
|
format so that assembly and disassembly do not cause any bits to change in the
|
|
constants.<p>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="typesystem">Type System
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
The LLVM type system is one of the most important features of the intermediate
|
|
representation. Being typed enables a number of optimizations to be performed
|
|
on the IR directly, without having to do extra analyses on the side before the
|
|
transformation. A strong type system makes it easier to read the generated code
|
|
and enables novel analyses and transformations that are not feasible to perform
|
|
on normal three address code representations.<p>
|
|
|
|
<!-- The written form for the type system was heavily influenced by the
|
|
syntactic problems with types in the C language<sup><a
|
|
href="#rw_stroustrup">1</a></sup>.<p> -->
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="t_primitive">Primitive Types
|
|
</b></font></td></tr></table><ul>
|
|
|
|
The primitive types are the fundemental building blocks of the LLVM system. The
|
|
current set of primitive types are as follows:<p>
|
|
|
|
<table border=0 align=center><tr><td>
|
|
|
|
<table border=1 cellspacing=0 cellpadding=4 align=center>
|
|
<tr><td><tt>void</tt></td> <td>No value</td></tr>
|
|
<tr><td><tt>ubyte</tt></td> <td>Unsigned 8 bit value</td></tr>
|
|
<tr><td><tt>ushort</tt></td><td>Unsigned 16 bit value</td></tr>
|
|
<tr><td><tt>uint</tt></td> <td>Unsigned 32 bit value</td></tr>
|
|
<tr><td><tt>ulong</tt></td> <td>Unsigned 64 bit value</td></tr>
|
|
<tr><td><tt>float</tt></td> <td>32 bit floating point value</td></tr>
|
|
<tr><td><tt>label</tt></td> <td>Branch destination</td></tr>
|
|
</table>
|
|
|
|
</td><td valign=top>
|
|
|
|
<table border=1 cellspacing=0 cellpadding=4 align=center>
|
|
<tr><td><tt>bool</tt></td> <td>True or False value</td></tr>
|
|
<tr><td><tt>sbyte</tt></td> <td>Signed 8 bit value</td></tr>
|
|
<tr><td><tt>short</tt></td> <td>Signed 16 bit value</td></tr>
|
|
<tr><td><tt>int</tt></td> <td>Signed 32 bit value</td></tr>
|
|
<tr><td><tt>long</tt></td> <td>Signed 64 bit value</td></tr>
|
|
<tr><td><tt>double</tt></td><td>64 bit floating point value</td></tr>
|
|
</table>
|
|
|
|
</td></tr></table><p>
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="t_classifications"><h4><hr size=0>Type Classifications</h4><ul>
|
|
|
|
These different primitive types fall into a few useful classifications:<p>
|
|
|
|
<table border=1 cellspacing=0 cellpadding=4 align=center>
|
|
<tr><td><a name="t_signed">signed</td> <td><tt>sbyte, short, int, long, float, double</tt></td></tr>
|
|
<tr><td><a name="t_unsigned">unsigned</td><td><tt>ubyte, ushort, uint, ulong</tt></td></tr>
|
|
<tr><td><a name="t_integral">integer</td><td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
|
|
<tr><td><a name="t_integral">integral</td><td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
|
|
<tr><td><a name="t_floating">floating point</td><td><tt>float, double</tt></td></tr>
|
|
<tr><td><a name="t_firstclass">first class</td><td><tt>bool, ubyte, sbyte, ushort, short,<br> uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td></tr>
|
|
</table><p>
|
|
|
|
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="t_derived">Derived Types
|
|
</b></font></td></tr></table><ul>
|
|
|
|
The real power in LLVM comes from the derived types in the system. This is what
|
|
allows a programmer to represent arrays, functions, pointers, and other useful
|
|
types. Note that these derived types may be recursive: For example, it is
|
|
possible to have a two dimensional array.<p>
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="t_array"><h4><hr size=0>Array Type</h4><ul>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The array type is a very simple derived type that arranges elements sequentially
|
|
in memory. The array type requires a size (number of elements) and an
|
|
underlying data type.<p>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
[<# elements> x <elementtype>]
|
|
</pre>
|
|
|
|
The number of elements is a constant integer value, elementtype may be any type
|
|
with a size.<p>
|
|
|
|
<h5>Examples:</h5>
|
|
<ul>
|
|
<tt>[40 x int ]</tt>: Array of 40 integer values.<br>
|
|
<tt>[41 x int ]</tt>: Array of 41 integer values.<br>
|
|
<tt>[40 x uint]</tt>: Array of 40 unsigned integer values.<p>
|
|
</ul>
|
|
|
|
Here are some examples of multidimensional arrays:<p>
|
|
<ul>
|
|
<table border=0 cellpadding=0 cellspacing=0>
|
|
<tr><td><tt>[3 x [4 x int]]</tt></td><td>: 3x4 array integer values.</td></tr>
|
|
<tr><td><tt>[12 x [10 x float]]</tt></td><td>: 2x10 array of single precision floating point values.</td></tr>
|
|
<tr><td><tt>[2 x [3 x [4 x uint]]]</tt></td><td>: 2x3x4 array of unsigned integer values.</td></tr>
|
|
</table>
|
|
</ul>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="t_function"><h4><hr size=0>Function Type</h4><ul>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The function type can be thought of as a function signature. It consists of a
|
|
return type and a list of formal parameter types. Function types are usually
|
|
used when to build virtual function tables (which are structures of pointers to
|
|
functions), for indirect function calls, and when defining a function.<p>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<returntype> (<parameter list>)
|
|
</pre>
|
|
|
|
Where '<tt><parameter list></tt>' is a comma seperated list of type
|
|
specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
|
|
which indicates that the function takes a variable number of arguments. Note
|
|
that there currently is no way to define a function in LLVM that takes a
|
|
variable number of arguments, but it is possible to <b>call</b> a function that
|
|
is vararg.<p>
|
|
|
|
<h5>Examples:</h5>
|
|
<ul>
|
|
<table border=0 cellpadding=0 cellspacing=0>
|
|
|
|
<tr><td><tt>int (int)</tt></td><td>: function taking an <tt>int</tt>, returning
|
|
an <tt>int</tt></td></tr>
|
|
|
|
<tr><td><tt>float (int, int *) *</tt></td><td>: <a href="#t_pointer">Pointer</a>
|
|
to a function that takes an <tt>int</tt> and a <a href="#t_pointer">pointer</a>
|
|
to <tt>int</tt>, returning <tt>float</tt>.</td></tr>
|
|
|
|
<tr><td><tt>int (sbyte *, ...)</tt></td><td>: A vararg function that takes at
|
|
least one <a href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C),
|
|
which returns an integer. This is the signature for <tt>printf</tt> in
|
|
LLVM.</td></tr>
|
|
|
|
</table>
|
|
</ul>
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="t_struct"><h4><hr size=0>Structure Type</h4><ul>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The structure type is used to represent a collection of data members together in
|
|
memory. The packing of the field types is defined to match the ABI of the
|
|
underlying processor. The elements of a structure may be any type that has a
|
|
size.<p>
|
|
|
|
Structures are accessed using '<tt><a href="#i_load">load</a></tt> and '<tt><a
|
|
href="#i_store">store</a></tt>' by getting a pointer to a field with the '<tt><a
|
|
href="#i_getelementptr">getelementptr</a></tt>' instruction.<p>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
{ <type list> }
|
|
</pre>
|
|
|
|
|
|
<h5>Examples:</h5>
|
|
<table border=0 cellpadding=0 cellspacing=0>
|
|
|
|
<tr><td><tt>{ int, int, int }</tt></td><td>: a triple of three <tt>int</tt>
|
|
values</td></tr>
|
|
|
|
<tr><td><tt>{ float, int (int) * }</tt></td><td>: A pair, where the first
|
|
element is a <tt>float</tt> and the second element is a <a
|
|
href="#t_pointer">pointer</a> to a <a href="t_function">function</a> that takes
|
|
an <tt>int</tt>, returning an <tt>int</tt>.</td></tr>
|
|
|
|
</table>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="t_pointer"><h4><hr size=0>Pointer Type</h4><ul>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
As in many languages, the pointer type represents a pointer or reference to
|
|
another object, which must live in memory.<p>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<type> *
|
|
</pre>
|
|
|
|
<h5>Examples:</h5>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0>
|
|
|
|
<tr><td><tt>[4x int]*</tt></td><td>: <a href="#t_pointer">pointer</a> to <a
|
|
href="#t_array">array</a> of four <tt>int</tt> values</td></tr>
|
|
|
|
<tr><td><tt>int (int *) *</tt></td><td>: A <a href="#t_pointer">pointer</a> to a
|
|
<a href="t_function">function</a> that takes an <tt>int</tt>, returning an
|
|
<tt>int</tt>.</td></tr>
|
|
|
|
</table>
|
|
<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
<!--
|
|
</ul><a name="t_packed"><h4><hr size=0>Packed Type</h4><ul>
|
|
|
|
Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p>
|
|
|
|
Packed types should be 'nonsaturated' because standard data types are not saturated. Maybe have a saturated packed type?<p>
|
|
|
|
-->
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="highlevel">High Level Structure
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="modulestructure">Module Structure
|
|
</b></font></td></tr></table><ul>
|
|
|
|
LLVM programs are composed of "Module"s, each of which is a translation unit of
|
|
the input programs. Each module consists of functions, global variables, and
|
|
symbol table entries. Modules may be combined together with the LLVM linker,
|
|
which merges function (and global variable) definitions, resolves forward
|
|
declarations, and merges symbol table entries. Here is an example of the "hello world" module:<p>
|
|
|
|
<pre>
|
|
<i>; Declare the string constant as a global constant...</i>
|
|
<a href="#identifiers">%.LC0</a> = <a href="#linkage_decl">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00" <i>; [13 x sbyte]*</i>
|
|
|
|
<i>; Forward declaration of puts</i>
|
|
<a href="#functionstructure">declare</a> int "puts"(sbyte*) <i>; int(sbyte*)* </i>
|
|
|
|
<i>; Definition of main function</i>
|
|
int "main"() { <i>; int()* </i>
|
|
<i>; Convert [13x sbyte]* to sbyte *...</i>
|
|
%cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i>
|
|
|
|
<i>; Call puts function to write out the string to stdout...</i>
|
|
<a href="#i_call">call</a> int %puts(sbyte* %cast210) <i>; int</i>
|
|
<a href="#i_ret">ret</a> int 0
|
|
}
|
|
</pre>
|
|
|
|
This example is made up of a <a href="#globalvars">global variable</a> named
|
|
"<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and a
|
|
<a href="#functionstructure">function definition</a> for "<tt>main</tt>".<p>
|
|
|
|
<a name="linkage_decl">
|
|
In general, a module is made up of a list of global values, where both functions
|
|
and global variables are global values. Global values are represented by a
|
|
pointer to a memory location (in this case, a pointer to an array of char, and a
|
|
pointer to a function), and can be either "internal" or externally accessible
|
|
(which corresponds to the static keyword in C, when used at global scope).<p>
|
|
|
|
For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
|
|
another module defined a "<tt>.LC0</tt>" variable and was linked with this one,
|
|
one of the two would be renamed, preventing a collision. Since "<tt>main</tt>"
|
|
and "<tt>puts</tt>" are external (i.e., lacking "<tt>internal</tt>"
|
|
declarations), they are accessible outside of the current module. It is illegal
|
|
for a function declaration to be "<tt>internal</tt>".<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="globalvars">Global Variables
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Global variables define regions of memory allocated at compilation time instead
|
|
of run-time. Global variables may optionally be initialized. A variable may
|
|
be defined as a global "constant", which indicates that the contents of the
|
|
variable will never be modified (opening options for optimization). Constants
|
|
must always have an initial value.<p>
|
|
|
|
As SSA values, global variables define pointer values that are in scope
|
|
(i.e. they dominate) for all basic blocks in the program. Global variables
|
|
always define a pointer to their "content" type because they describe a region
|
|
of memory, and all memory objects in LLVM are accessed through pointers.<p>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="functionstructure">Function Structure
|
|
</b></font></td></tr></table><ul>
|
|
|
|
LLVM functions definitions are composed of a (possibly empty) argument list, an
|
|
opening curly brace, a list of basic blocks, and a closing curly brace. LLVM
|
|
function declarations are defined with the "<tt>declare</tt>" keyword, a
|
|
function name and a function signature.<p>
|
|
|
|
A function definition contains a list of basic blocks, forming the CFG for the
|
|
function. Each basic block may optionally start with a label (giving the basic
|
|
block a symbol table entry), contains a list of instructions, and ends with a <a
|
|
href="#terminators">terminator</a> instruction (such as a branch or function
|
|
return).<p>
|
|
|
|
The first basic block in program is special in two ways: it is immediately
|
|
executed on entrance to the function, and it is not allowed to have predecessor
|
|
basic blocks (i.e. there can not be any branches to the entry block of a
|
|
function).<p>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="instref">Instruction Reference
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
The LLVM instruction set consists of several different classifications of
|
|
instructions: <a href="#terminators">terminator instructions</a>, <a
|
|
href="#binaryops">binary instructions</a>, <a href="#memoryops">memory
|
|
instructions</a>, and <a href="#otherops">other instructions</a>.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="terminators">Terminator Instructions
|
|
</b></font></td></tr></table><ul>
|
|
|
|
As mentioned <a href="#functionstructure">previously</a>, every basic block in a
|
|
program ends with a "Terminator" instruction, which indicates which block should
|
|
be executed after the current block is finished. These terminator instructions
|
|
typically yield a '<tt>void</tt>' value: they produce control flow, not values
|
|
(the one exception being the '<a href="#i_invoke"><tt>invoke</tt></a>'
|
|
instruction).<p>
|
|
|
|
There are four different terminator instructions: the '<a
|
|
href="#i_ret"><tt>ret</tt></a>' instruction, the '<a
|
|
href="#i_br"><tt>br</tt></a>' instruction, the '<a
|
|
href="#i_switch"><tt>switch</tt></a>' instruction, and the '<a
|
|
href="#i_invoke"><tt>invoke</tt></a>' instruction.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_ret"><h4><hr size=0>'<tt>ret</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
ret <type> <value> <i>; Return a value from a non-void function</i>
|
|
ret void <i>; Return from void function</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>ret</tt>' instruction is used to return control flow (and a value) from
|
|
a function, back to the caller.<p>
|
|
|
|
There are two forms of the '<tt>ret</tt>' instructruction: one that returns a
|
|
value and then causes control flow, and one that just causes control flow to
|
|
occur.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The '<tt>ret</tt>' instruction may return any '<a href="#t_firstclass">first
|
|
class</a>' type. Notice that a function is not <a href="#wellformed">well
|
|
formed</a> if there exists a '<tt>ret</tt>' instruction inside of the function
|
|
that returns a value that does not match the return type of the function.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
When the '<tt>ret</tt>' instruction is executed, control flow returns back to
|
|
the calling function's context. If the instruction returns a value, that value
|
|
shall be propagated into the calling function's data space.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
ret int 5 <i>; Return an integer value of 5</i>
|
|
ret void <i>; Return from a void function</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_br"><h4><hr size=0>'<tt>br</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
br bool <cond>, label <iftrue>, label <iffalse>
|
|
br label <dest> <i>; Unconditional branch</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
|
|
different basic block in the current function. There are two forms of this
|
|
instruction, corresponding to a conditional branch and an unconditional
|
|
branch.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The conditional branch form of the '<tt>br</tt>' instruction takes a single
|
|
'<tt>bool</tt>' value and two '<tt>label</tt>' values. The unconditional form
|
|
of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
|
|
target.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
|
|
argument is evaluated. If the value is <tt>true</tt>, control flows to the
|
|
'<tt>iftrue</tt>' '<tt>label</tt>' argument. If "cond" is <tt>false</tt>,
|
|
control flows to the '<tt>iffalse</tt>' '<tt>label</tt>' argument.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
Test:
|
|
%cond = <a href="#i_setcc">seteq</a> int %a, %b
|
|
br bool %cond, label %IfEqual, label %IfUnequal
|
|
IfEqual:
|
|
<a href="#i_ret">ret</a> int 1
|
|
IfUnequal:
|
|
<a href="#i_ret">ret</a> int 0
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_switch"><h4><hr size=0>'<tt>switch</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
switch int <value>, label <defaultdest> [ int <val>, label &dest>, ... ]
|
|
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>switch</tt>' instruction is used to transfer control flow to one of
|
|
several different places. It is a generalization of the '<tt>br</tt>'
|
|
instruction, allowing a branch to occur to one of many possible destinations.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The '<tt>switch</tt>' instruction uses three parameters: a '<tt>uint</tt>'
|
|
comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
|
|
an array of pairs of comparison value constants and '<tt>label</tt>'s.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The <tt>switch</tt> instruction specifies a table of values and destinations.
|
|
When the '<tt>switch</tt>' instruction is executed, this table is searched for
|
|
the given value. If the value is found, the corresponding destination is
|
|
branched to, otherwise the default value it transfered to.<p>
|
|
|
|
<h5>Implementation:</h5>
|
|
|
|
Depending on properties of the target machine and the particular <tt>switch</tt>
|
|
instruction, this instruction may be code generated as a series of chained
|
|
conditional branches, or with a lookup table.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<i>; Emulate a conditional br instruction</i>
|
|
%Val = <a href="#i_cast">cast</a> bool %value to uint
|
|
switch int %Val, label %truedest [int 0, label %falsedest ]
|
|
|
|
<i>; Emulate an unconditional br instruction</i>
|
|
switch int 0, label %dest [ ]
|
|
|
|
<i>; Implement a jump table:</i>
|
|
switch int %val, label %otherwise [ int 0, label %onzero,
|
|
int 1, label %onone,
|
|
int 2, label %ontwo ]
|
|
</pre>
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_invoke"><h4><hr size=0>'<tt>invoke</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = invoke <ptr to function ty> %<function ptr val>(<function args>)
|
|
to label <normal label> except label <exception label>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>invoke</tt>' instruction is used to cause control flow to transfer to a
|
|
specified function, with the possibility of control flow transfer to either the
|
|
'<tt>normal label</tt>' label or the '<tt>exception label</tt>'. The '<tt><a
|
|
href="#i_call">call</a></tt>' instruction is closely related, but guarantees
|
|
that control flow either never returns from the called function, or that it
|
|
returns to the instruction following the '<tt><a href="#i_call">call</a></tt>'
|
|
instruction.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
This instruction requires several arguments:<p>
|
|
<ol>
|
|
|
|
<li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
|
|
function value being invoked. In most cases, this is a direct function
|
|
invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
|
|
an arbitrary pointer to function value.<p>
|
|
|
|
<li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
|
|
function to be invoked.
|
|
|
|
<li>'<tt>function args</tt>': argument list whose types match the function
|
|
signature argument types. If the function signature indicates the function
|
|
accepts a variable number of arguments, the extra arguments can be specified.
|
|
|
|
<li>'<tt>normal label</tt>': the label reached when the called function executes
|
|
a '<tt><a href="#i_ret">ret</a></tt>' instruction.
|
|
|
|
<li>'<tt>exception label</tt>': the label reached when an exception is thrown.
|
|
</ol>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
This instruction is designed to operate as a standard '<tt><a
|
|
href="#i_call">call</a></tt>' instruction in most regards. The primary
|
|
difference is that it associates a label with the function invocation that may
|
|
be accessed via the runtime library provided by the execution environment. This
|
|
instruction is used in languages with destructors to ensure that proper cleanup
|
|
is performed in the case of either a <tt>longjmp</tt> or a thrown exception.
|
|
Additionally, this is important for implementation of '<tt>catch</tt>' clauses
|
|
in high-level languages that support them.<p>
|
|
|
|
<!-- For a more comprehensive explanation of how this instruction is used, look in the llvm/docs/2001-05-18-ExceptionHandling.txt document.<p> -->
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
%retval = invoke int %Test(int 15)
|
|
to label %Continue except label %TestCleanup <i>; {int}:retval set</i>
|
|
</pre>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="binaryops">Binary Operations
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Binary operators are used to do most of the computation in a program. They
|
|
require two operands, execute an operation on them, and produce a single value.
|
|
The result value of a binary operator is not neccesarily the same type as its
|
|
operands.<p>
|
|
|
|
There are several different binary operators:<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_add"><h4><hr size=0>'<tt>add</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = add <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>add</tt>' instruction returns the sum of its two operands.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
The two arguments to the '<tt>add</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The value produced is the integer or floating point sum of the two operands.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = add int 4, %var <i>; yields {int}:result = 4 + %var</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_sub"><h4><hr size=0>'<tt>sub</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = sub <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>sub</tt>' instruction returns the difference of its two operands.<p>
|
|
|
|
Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
|
|
instruction present in most other intermediate representations.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The two arguments to the '<tt>sub</tt>' instruction must be either <a
|
|
href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
|
|
values. Both arguments must have identical types.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The value produced is the integer or floating point difference of the two
|
|
operands.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = sub int 4, %var <i>; yields {int}:result = 4 - %var</i>
|
|
<result> = sub int 0, %val <i>; yields {int}:result = -%var</i>
|
|
</pre>
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_mul"><h4><hr size=0>'<tt>mul</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = mul <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>mul</tt>' instruction returns the product of its two operands.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
The two arguments to the '<tt>mul</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The value produced is the integer or floating point product of the two
|
|
operands.<p>
|
|
|
|
There is no signed vs unsigned multiplication. The appropriate action is taken
|
|
based on the type of the operand. <p>
|
|
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = mul int 4, %var <i>; yields {int}:result = 4 * %var</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_div"><h4><hr size=0>'<tt>div</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = div <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>div</tt>' instruction returns the quotient of its two operands.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The two arguments to the '<tt>div</tt>' instruction must be either <a
|
|
href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
|
|
values. Both arguments must have identical types.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The value produced is the integer or floating point quotient of the two
|
|
operands.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = div int 4, %var <i>; yields {int}:result = 4 / %var</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_rem"><h4><hr size=0>'<tt>rem</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = rem <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>rem</tt>' instruction returns the remainder from the division of its two operands.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
The two arguments to the '<tt>rem</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
This returns the <i>remainder</i> of a division (where the result has the same
|
|
sign as the divisor), not the <i>modulus</i> (where the result has the same sign
|
|
as the dividend) of a value. For more information about the difference, see: <a
|
|
href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The Math
|
|
Forum</a>.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = rem int 4, %var <i>; yields {int}:result = 4 % %var</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_setcc"><h4><hr size=0>'<tt>set<i>cc</i></tt>' Instructions</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = seteq <ty> <var1>, <var2> <i>; yields {bool}:result</i>
|
|
<result> = setne <ty> <var1>, <var2> <i>; yields {bool}:result</i>
|
|
<result> = setlt <ty> <var1>, <var2> <i>; yields {bool}:result</i>
|
|
<result> = setgt <ty> <var1>, <var2> <i>; yields {bool}:result</i>
|
|
<result> = setle <ty> <var1>, <var2> <i>; yields {bool}:result</i>
|
|
<result> = setge <ty> <var1>, <var2> <i>; yields {bool}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5> The '<tt>set<i>cc</i></tt>' family of instructions returns a
|
|
boolean value based on a comparison of their two operands.<p>
|
|
|
|
<h5>Arguments:</h5> The two arguments to the '<tt>set<i>cc</i></tt>'
|
|
instructions must be of <a href="#t_firstclass">first class</a> or <a
|
|
href="#t_pointer">pointer</a> type (it is not possible to compare
|
|
'<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' or '<tt>void</tt>'
|
|
values, etc...). Both arguments must have identical types.<p>
|
|
|
|
The '<tt>setlt</tt>', '<tt>setgt</tt>', '<tt>setle</tt>', and '<tt>setge</tt>'
|
|
instructions do not operate on '<tt>bool</tt>' typed arguments.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
|
|
both operands are equal.<br>
|
|
|
|
The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
|
|
both operands are unequal.<br>
|
|
|
|
The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
|
|
the first operand is less than the second operand.<br>
|
|
|
|
The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
|
|
the first operand is greater than the second operand.<br>
|
|
|
|
The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
|
|
the first operand is less than or equal to the second operand.<br>
|
|
|
|
The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
|
|
the first operand is greater than or equal to the second operand.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = seteq int 4, 5 <i>; yields {bool}:result = false</i>
|
|
<result> = setne float 4, 5 <i>; yields {bool}:result = true</i>
|
|
<result> = setlt uint 4, 5 <i>; yields {bool}:result = true</i>
|
|
<result> = setgt sbyte 4, 5 <i>; yields {bool}:result = false</i>
|
|
<result> = setle sbyte 4, 5 <i>; yields {bool}:result = true</i>
|
|
<result> = setge sbyte 4, 5 <i>; yields {bool}:result = false</i>
|
|
</pre>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="bitwiseops">Bitwise Binary Operations
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Bitwise binary operators are used to do various forms of bit-twiddling in a
|
|
program. They are generally very efficient instructions, and can commonly be
|
|
strength reduced from other instructions. They require two operands, execute an
|
|
operation on them, and produce a single value. The resulting value of the
|
|
bitwise binary operators is always the same type as its first operand.<p>
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_and"><h4><hr size=0>'<tt>and</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = and <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>and</tt>' instruction returns the bitwise logical and of its two operands.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The two arguments to the '<tt>and</tt>' instruction must be <a
|
|
href="#t_integral">integral</a> values. Both arguments must have identical
|
|
types.<p>
|
|
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The truth table used for the '<tt>and</tt>' instruction is:<p>
|
|
|
|
<center><table border=1 cellspacing=0 cellpadding=4>
|
|
<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
|
|
<tr><td>0</td> <td>0</td> <td>0</td></tr>
|
|
<tr><td>0</td> <td>1</td> <td>0</td></tr>
|
|
<tr><td>1</td> <td>0</td> <td>0</td></tr>
|
|
<tr><td>1</td> <td>1</td> <td>1</td></tr>
|
|
</table></center><p>
|
|
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = and int 4, %var <i>; yields {int}:result = 4 & %var</i>
|
|
<result> = and int 15, 40 <i>; yields {int}:result = 8</i>
|
|
<result> = and int 4, 8 <i>; yields {int}:result = 0</i>
|
|
</pre>
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_or"><h4><hr size=0>'<tt>or</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = or <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5> The '<tt>or</tt>' instruction returns the bitwise logical
|
|
inclusive or of its two operands.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The two arguments to the '<tt>or</tt>' instruction must be <a
|
|
href="#t_integral">integral</a> values. Both arguments must have identical
|
|
types.<p>
|
|
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The truth table used for the '<tt>or</tt>' instruction is:<p>
|
|
|
|
<center><table border=1 cellspacing=0 cellpadding=4>
|
|
<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
|
|
<tr><td>0</td> <td>0</td> <td>0</td></tr>
|
|
<tr><td>0</td> <td>1</td> <td>1</td></tr>
|
|
<tr><td>1</td> <td>0</td> <td>1</td></tr>
|
|
<tr><td>1</td> <td>1</td> <td>1</td></tr>
|
|
</table></center><p>
|
|
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = or int 4, %var <i>; yields {int}:result = 4 | %var</i>
|
|
<result> = or int 15, 40 <i>; yields {int}:result = 47</i>
|
|
<result> = or int 4, 8 <i>; yields {int}:result = 12</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_xor"><h4><hr size=0>'<tt>xor</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = xor <ty> <var1>, <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of its
|
|
two operands.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The two arguments to the '<tt>xor</tt>' instruction must be <a
|
|
href="#t_integral">integral</a> values. Both arguments must have identical
|
|
types.<p>
|
|
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The truth table used for the '<tt>xor</tt>' instruction is:<p>
|
|
|
|
<center><table border=1 cellspacing=0 cellpadding=4>
|
|
<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
|
|
<tr><td>0</td> <td>0</td> <td>0</td></tr>
|
|
<tr><td>0</td> <td>1</td> <td>1</td></tr>
|
|
<tr><td>1</td> <td>0</td> <td>1</td></tr>
|
|
<tr><td>1</td> <td>1</td> <td>0</td></tr>
|
|
</table></center><p>
|
|
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = xor int 4, %var <i>; yields {int}:result = 4 ^ %var</i>
|
|
<result> = xor int 15, 40 <i>; yields {int}:result = 39</i>
|
|
<result> = xor int 4, 8 <i>; yields {int}:result = 12</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_shl"><h4><hr size=0>'<tt>shl</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = shl <ty> <var1>, ubyte <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>shl</tt>' instruction returns the first operand shifted to the left a
|
|
specified number of bits.
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The first argument to the '<tt>shl</tt>' instruction must be an <a
|
|
href="#t_integer">integer</a> type. The second argument must be an
|
|
'<tt>ubyte</tt>' type.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.<p>
|
|
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = shl int 4, ubyte %var <i>; yields {int}:result = 4 << %var</i>
|
|
<result> = shl int 4, ubyte 2 <i>; yields {int}:result = 16</i>
|
|
<result> = shl int 1, ubyte 10 <i>; yields {int}:result = 1024</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_shr"><h4><hr size=0>'<tt>shr</tt>' Instruction</h4><ul>
|
|
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = shr <ty> <var1>, ubyte <var2> <i>; yields {ty}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>shr</tt>' instruction returns the first operand shifted to the right a specified number of bits.
|
|
|
|
<h5>Arguments:</h5>
|
|
The first argument to the '<tt>shr</tt>' instruction must be an <a href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>' type.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
If the first argument is a <a href="#t_signed">signed</a> type, the most
|
|
significant bit is duplicated in the newly free'd bit positions. If the first
|
|
argument is unsigned, zero bits shall fill the empty positions.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<result> = shr int 4, ubyte %var <i>; yields {int}:result = 4 >> %var</i>
|
|
<result> = shr int 4, ubyte 1 <i>; yields {int}:result = 2</i>
|
|
<result> = shr int 4, ubyte 2 <i>; yields {int}:result = 1</i>
|
|
<result> = shr int 4, ubyte 3 <i>; yields {int}:result = 0</i>
|
|
</pre>
|
|
|
|
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="memoryops">Memory Access Operations
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Accessing memory in SSA form is, well, sticky at best. This section describes how to read, write, allocate and free memory in LLVM.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_malloc"><h4><hr size=0>'<tt>malloc</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = malloc <type>, uint <NumElements> <i>; yields {type*}:result</i>
|
|
<result> = malloc <type> <i>; yields {type*}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>malloc</tt>' instruction allocates memory from the system heap and returns a pointer to it.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The the '<tt>malloc</tt>' instruction allocates
|
|
<tt>sizeof(<type>)*NumElements</tt> bytes of memory from the operating
|
|
system, and returns a pointer of the appropriate type to the program. The
|
|
second form of the instruction is a shorter version of the first instruction
|
|
that defaults to allocating one element.<p>
|
|
|
|
'<tt>type</tt>' must be a sized type<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
Memory is allocated, a pointer is returned.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
%array = malloc [4 x ubyte ] <i>; yields {[%4 x ubyte]*}:array</i>
|
|
|
|
%size = <a href="#i_add">add</a> uint 2, 2 <i>; yields {uint}:size = uint 4</i>
|
|
%array1 = malloc ubyte, uint 4 <i>; yields {ubyte*}:array1</i>
|
|
%array2 = malloc [12 x ubyte], uint %size <i>; yields {[12 x ubyte]*}:array2</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_free"><h4><hr size=0>'<tt>free</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
free <type> <value> <i>; yields {void}</i>
|
|
</pre>
|
|
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>free</tt>' instruction returns memory back to the unused memory heap, to be reallocated in the future.<p>
|
|
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
'<tt>value</tt>' shall be a pointer value that points to a value that was
|
|
allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.<p>
|
|
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
Access to the memory pointed to by the pointer is not longer defined after this instruction executes.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
%array = <a href="#i_malloc">malloc</a> [4 x ubyte] <i>; yields {[4 x ubyte]*}:array</i>
|
|
free [4 x ubyte]* %array
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_alloca"><h4><hr size=0>'<tt>alloca</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = alloca <type>, uint <NumElements> <i>; yields {type*}:result</i>
|
|
<result> = alloca <type> <i>; yields {type*}:result</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>alloca</tt>' instruction allocates memory on the current stack frame of
|
|
the procedure that is live until the current function returns to its caller.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The the '<tt>alloca</tt>' instruction allocates
|
|
<tt>sizeof(<type>)*NumElements</tt> bytes of memory on the runtime stack,
|
|
returning a pointer of the appropriate type to the program. The second form of
|
|
the instruction is a shorter version of the first that defaults to allocating
|
|
one element.<p>
|
|
|
|
'<tt>type</tt>' may be any sized type.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
Memory is allocated, a pointer is returned. '<tt>alloca</tt>'d memory is
|
|
automatically released when the function returns. The '<tt>alloca</tt>'
|
|
instruction is commonly used to represent automatic variables that must have an
|
|
address available, as well as spilled variables.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
%ptr = alloca int <i>; yields {int*}:ptr</i>
|
|
%ptr = alloca int, uint 4 <i>; yields {int*}:ptr</i>
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_load"><h4><hr size=0>'<tt>load</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = load <ty>* <pointer>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>load</tt>' instruction is used to read from memory.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The argument to the '<tt>load</tt>' instruction specifies the memory address to load from. The pointer must point to a <a href="t_firstclass">first class</a> type.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The location of memory pointed to is loaded.
|
|
|
|
<h5>Examples:</h5>
|
|
<pre>
|
|
%ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
|
|
<a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
|
|
%val = load int* %ptr <i>; yields {int}:val = int 3</i>
|
|
</pre>
|
|
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_store"><h4><hr size=0>'<tt>store</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
store <ty> <value>, <ty>* <pointer> <i>; yields {void}</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
The '<tt>store</tt>' instruction is used to write to memory.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
There are two arguments to the '<tt>store</tt>' instruction: a value to store
|
|
and an address to store it into. The type of the '<tt><pointer></tt>'
|
|
operand must be a pointer to the type of the '<tt><value></tt>'
|
|
operand.<p>
|
|
|
|
<h5>Semantics:</h5> The contents of memory are updated to contain
|
|
'<tt><value></tt>' at the location specified by the
|
|
'<tt><pointer></tt>' operand.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
%ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
|
|
<a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
|
|
%val = load int* %ptr <i>; yields {int}:val = int 3</i>
|
|
</pre>
|
|
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_getelementptr"><h4><hr size=0>'<tt>getelementptr</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = getelementptr <ty>* <ptrval>{, long <aidx>|, ubyte <sidx>}*
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>getelementptr</tt>' instruction is used to get the address of a
|
|
subelement of an aggregate data structure.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt>
|
|
constants that indicate what form of addressing to perform. The actual types of
|
|
the arguments provided depend on the type of the first pointer argument. The
|
|
'<tt>getelementptr</tt>' instruction is used to index down through the type
|
|
levels of a structure.<p>
|
|
|
|
For example, lets consider a C code fragment and how it gets compiled to
|
|
LLVM:<p>
|
|
|
|
<pre>
|
|
struct RT {
|
|
char A;
|
|
int B[10][20];
|
|
char C;
|
|
};
|
|
struct ST {
|
|
int X;
|
|
double Y;
|
|
struct RT Z;
|
|
};
|
|
|
|
int *foo(struct ST *s) {
|
|
return &s[1].Z.B[5][13];
|
|
}
|
|
</pre>
|
|
|
|
The LLVM code generated by the GCC frontend is:
|
|
|
|
<pre>
|
|
%RT = type { sbyte, [10 x [20 x int]], sbyte }
|
|
%ST = type { int, double, %RT }
|
|
|
|
int* "foo"(%ST* %s) {
|
|
%reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13
|
|
ret int* %reg
|
|
}
|
|
</pre>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The index types specified for the '<tt>getelementptr</tt>' instruction depend on
|
|
the pointer type that is being index into. <a href="t_pointer">Pointer</a> and
|
|
<a href="t_array">array</a> types require '<tt>long</tt>' values, and <a
|
|
href="t_struct">structure</a> types require '<tt>ubyte</tt>'
|
|
<b>constants</b>.<p>
|
|
|
|
In the example above, the first index is indexing into the '<tt>%ST*</tt>' type,
|
|
which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT }</tt>'
|
|
type, a structure. The second index indexes into the third element of the
|
|
structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]], sbyte
|
|
}</tt>' type, another structure. The third index indexes into the second
|
|
element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an
|
|
array. The two dimensions of the array are subscripted into, yielding an
|
|
'<tt>int</tt>' type. The '<tt>getelementptr</tt>' instruction return a pointer
|
|
to this element, thus yielding a '<tt>int*</tt>' type.<p>
|
|
|
|
Note that it is perfectly legal to index partially through a structure,
|
|
returning a pointer to an inner element. Because of this, the LLVM code for the
|
|
given testcase is equivalent to:<p>
|
|
|
|
<pre>
|
|
int* "foo"(%ST* %s) {
|
|
%t1 = getelementptr %ST* %s , long 1 <i>; yields %ST*:%t1</i>
|
|
%t2 = getelementptr %ST* %t1, long 0, ubyte 2 <i>; yields %RT*:%t2</i>
|
|
%t3 = getelementptr %RT* %t2, long 0, ubyte 1 <i>; yields [10 x [20 x int]]*:%t3</i>
|
|
%t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5 <i>; yields [20 x int]*:%t4</i>
|
|
%t5 = getelementptr [20 x int]* %t4, long 0, long 13 <i>; yields int*:%t5</i>
|
|
ret int* %t5
|
|
}
|
|
</pre>
|
|
|
|
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
<i>; yields [12 x ubyte]*:aptr</i>
|
|
%aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1
|
|
</pre>
|
|
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="otherops">Other Operations
|
|
</b></font></td></tr></table><ul>
|
|
|
|
The instructions in this catagory are the "miscellaneous" functions, that defy better classification.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_phi"><h4><hr size=0>'<tt>phi</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = phi <ty> [ <val0>, <label0>], ...
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>phi</tt>' instruction is used to implement the φ node in the SSA
|
|
graph representing the function.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The type of the incoming values are specified with the first type field. After
|
|
this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
|
|
one pair for each predecessor basic block of the current block.<p>
|
|
|
|
There must be no non-phi instructions between the start of a basic block and the
|
|
PHI instructions: i.e. PHI instructions must be first in a basic block.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
At runtime, the '<tt>phi</tt>' instruction logically takes on the value
|
|
specified by the parameter, depending on which basic block we came from in the
|
|
last <a href="#terminators">terminator</a> instruction.<p>
|
|
|
|
<h5>Example:</h5>
|
|
|
|
<pre>
|
|
Loop: ; Infinite loop that counts from 0 on up...
|
|
%indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
|
|
%nextindvar = add uint %indvar, 1
|
|
br label %Loop
|
|
</pre>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_cast"><h4><hr size=0>'<tt>cast .. to</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = cast <ty> <value> to <ty2> <i>; yields ty2</i>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>cast</tt>' instruction is used as the primitive means to convert
|
|
integers to floating point, change data type sizes, and break type safety (by
|
|
casting pointers).<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The '<tt>cast</tt>' instruction takes a value to cast, which must be a first
|
|
class value, and a type to cast it to, which must also be a first class type.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
This instruction follows the C rules for explicit casts when determining how the
|
|
data being cast must change to fit in its new container.<p>
|
|
|
|
When casting to bool, any value that would be considered true in the context of
|
|
a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' values,
|
|
all else are '<tt>false</tt>'.<p>
|
|
|
|
When extending an integral value from a type of one signness to another (for
|
|
example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value is sign-extended if the
|
|
<b>source</b> value is signed, and zero-extended if the source value is
|
|
unsigned. <tt>bool</tt> values are always zero extended into either zero or
|
|
one.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
%X = cast int 257 to ubyte <i>; yields ubyte:1</i>
|
|
%Y = cast int 123 to bool <i>; yields bool:true</i>
|
|
</pre>
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_call"><h4><hr size=0>'<tt>call</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = call <ty>* <fnptrval>(<param list>)
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>call</tt>' instruction represents a simple function call.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
This instruction requires several arguments:<p>
|
|
<ol>
|
|
|
|
<li>'<tt>ty</tt>': shall be the signature of the pointer to function value being
|
|
invoked. The argument types must match the types implied by this signature.<p>
|
|
|
|
<li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to be
|
|
invoked. In most cases, this is a direct function invocation, but indirect
|
|
<tt>call</tt>s are just as possible, calling an arbitrary pointer to function
|
|
values.<p>
|
|
|
|
<li>'<tt>function args</tt>': argument list whose types match the function
|
|
signature argument types. If the function signature indicates the function
|
|
accepts a variable number of arguments, the extra arguments can be specified.
|
|
</ol>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The '<tt>call</tt>' instruction is used to cause control flow to transfer to a
|
|
specified function, with its incoming arguments bound to the specified values.
|
|
Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called function,
|
|
control flow continues with the instruction after the function call, and the
|
|
return value of the function is bound to the result argument. This is a simpler
|
|
case of the <a href="#i_invoke">invoke</a> instruction.<p>
|
|
|
|
<h5>Example:</h5>
|
|
<pre>
|
|
%retval = call int %test(int %argc)
|
|
call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);
|
|
|
|
</pre>
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_va_arg"><h4><hr size=0>'<tt>va_arg</tt>' Instruction</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
<result> = va_arg <va_list>* <arglist>, <retty>
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>va_arg</tt>' instruction is used to access arguments passed through the
|
|
"variable argument" area of a function call. It corresponds directly to the
|
|
<tt>va_arg</tt> macro in C.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
This instruction takes a pointer to a <tt>valist</tt> value to read a new
|
|
argument from. The return type of the instruction is defined by the second
|
|
argument, a type.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The '<tt>va_arg</tt>' instruction works just like the <tt>va_arg</tt> macro
|
|
available in C. In a target-dependent way, it reads the argument indicated by
|
|
the value the arglist points to, updates the arglist, then returns a value of
|
|
the specified type. This instruction should be used in conjunction with the
|
|
variable argument handling <a href="#int_varargs">Intrinsic Functions</a>.<p>
|
|
|
|
It is legal for this instruction to be called in a function which does not take
|
|
a variable number of arguments, for example, the <tt>vfprintf</tt> function.<p>
|
|
|
|
<tt>va_arg</tt> is an LLVM instruction instead of an <a
|
|
href="#intrinsics">intrinsic function</a> because the return type depends on an
|
|
argument.<p>
|
|
|
|
<h5>Example:</h5>
|
|
|
|
See the <a href="#int_varargs">variable argument processing</a> section.<p>
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
|
|
<a name="intrinsics">Intrinsic Functions
|
|
</b></font></td></tr></table><ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
LLVM supports the notion of an "intrinsic function". These functions have well
|
|
known names and semantics, and are required to follow certain restrictions.
|
|
Overall, these instructions represent an extension mechanism for the LLVM
|
|
language that does not require changing all of the transformations in LLVM to
|
|
add to the language (or the bytecode reader/writer, the parser, etc...).<p>
|
|
|
|
Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this
|
|
prefix is reserved in LLVM for intrinsic names, thus functions may not be named
|
|
this. Intrinsic functions must always be external functions: you cannot define
|
|
the body of intrinsic functions. Intrinsic functions may only be used in call
|
|
or invoke instructions: it is illegal to take the address of an intrinsic
|
|
function. Additionally, because intrinsic functions are part of the LLVM
|
|
language, it is required that they all be documented here if any are added.<p>
|
|
|
|
Unless an intrinsic function is target-specific, there must be a lowering pass
|
|
to eliminate the intrinsic or all backends must support the intrinsic
|
|
function.<p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
|
|
<tr><td> </td><td width="100%"> <font color="#EEEEFF" face="Georgia,Palatino"><b>
|
|
<a name="int_varargs">Variable Argument Handling Intrinsics
|
|
</b></font></td></tr></table><ul>
|
|
|
|
Variable argument support is defined in LLVM with the <a
|
|
href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three intrinsic
|
|
functions. These function correspond almost directly to the similarly named
|
|
macros defined in the <tt><stdarg.h></tt> header file.<p>
|
|
|
|
All of these functions operate on arguments that use a target-specific type
|
|
"<tt>va_list</tt>". The LLVM assembly language reference manual does not define
|
|
what this type is, so all transformations should be prepared to handle
|
|
intrinsics with any type used.<p>
|
|
|
|
This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction
|
|
and the variable argument handling intrinsic functions are used.<p>
|
|
|
|
<pre>
|
|
int %test(int %X, ...) {
|
|
; Allocate two va_list items. On this target, va_list is of type sbyte*
|
|
%ap = alloca sbyte*
|
|
%aq = alloca sbyte*
|
|
|
|
; Initialize variable argument processing
|
|
call void (sbyte**)* %<a href="#i_va_start">llvm.va_start</a>(sbyte** %ap)
|
|
|
|
; Read a single integer argument
|
|
%tmp = <a href="#i_va_arg">va_arg</a> sbyte** %ap, int
|
|
|
|
; Demonstrate usage of llvm.va_copy and llvm_va_end
|
|
%apv = load sbyte** %ap
|
|
call void %<a href="#i_va_copy">llvm.va_copy</a>(sbyte** %aq, sbyte* %apv)
|
|
call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %aq)
|
|
|
|
; Stop processing of arguments.
|
|
call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %ap)
|
|
ret int %tmp
|
|
}
|
|
</pre>
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_va_start"><h4><hr size=0>'<tt>llvm.va_start</tt>' Intrinsic</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
call void (va_list*)* %llvm.va_start(<va_list>* <arglist>)
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*<arglist></tt> for
|
|
subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt> and <tt><a
|
|
href="#i_va_end">llvm.va_end</a></tt>, and must be called before either are
|
|
invoked.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The argument is a pointer to a <tt>va_list</tt> element to initialize.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
|
|
macro available in C. In a target-dependent way, it initializes the
|
|
<tt>va_list</tt> element the argument points to, so that the next call to
|
|
<tt>va_arg</tt> will produce the first variable argument passed to the function.
|
|
Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
|
|
last argument of the function, the compiler can figure that out.<p>
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_va_end"><h4><hr size=0>'<tt>llvm.va_end</tt>' Intrinsic</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
call void (va_list*)* %llvm.va_end(<va_list>* <arglist>)
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*<arglist></tt> which
|
|
has been initialized previously with <tt><a
|
|
href="#i_va_begin">llvm.va_begin</a></tt>.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The argument is a pointer to a <tt>va_list</tt> element to destroy.<p>
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> macro
|
|
available in C. In a target-dependent way, it destroys the <tt>va_list</tt>
|
|
that the argument points to. Calls to <a
|
|
href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
|
|
href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly with calls
|
|
to <tt>llvm.va_end</tt>.<p>
|
|
|
|
|
|
|
|
<!-- _______________________________________________________________________ -->
|
|
</ul><a name="i_va_copy"><h4><hr size=0>'<tt>llvm.va_copy</tt>' Intrinsic</h4><ul>
|
|
|
|
<h5>Syntax:</h5>
|
|
<pre>
|
|
call void (va_list*, va_list)* %va_copy(<va_list>* <destarglist>,
|
|
<va_list> <srcarglist>)
|
|
</pre>
|
|
|
|
<h5>Overview:</h5>
|
|
|
|
The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
|
|
the source argument list to the destination argument list.<p>
|
|
|
|
<h5>Arguments:</h5>
|
|
|
|
The first argument is a pointer to a <tt>va_list</tt> element to initialize.
|
|
The second argument is a <tt>va_list</tt> element to copy from.<p>
|
|
|
|
|
|
<h5>Semantics:</h5>
|
|
|
|
The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
|
|
available in C. In a target-dependent way, it copies the source
|
|
<tt>va_list</tt> element into the destination list. This intrinsic is necessary
|
|
because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
|
|
arbitrarily complex and require memory allocation, for example.<p>
|
|
|
|
|
|
<!-- *********************************************************************** -->
|
|
</ul>
|
|
<!-- *********************************************************************** -->
|
|
|
|
|
|
<hr>
|
|
<font size=-1>
|
|
<address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
|
|
<!-- Created: Tue Jan 23 15:19:28 CST 2001 -->
|
|
<!-- hhmts start -->
|
|
Last modified: Thu May 8 10:48:46 CDT 2003
|
|
<!-- hhmts end -->
|
|
</font>
|
|
</body></html>
|