mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 23:32:58 +00:00
cdcb388a58
operands. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77837 91177308-0d34-0410-b5e6-96231b3b80d8
499 lines
14 KiB
C++
499 lines
14 KiB
C++
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCAsmLexer.h"
|
|
#include "llvm/MC/MCAsmParser.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Target/TargetRegistry.h"
|
|
#include "llvm/Target/TargetAsmParser.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct X86Operand;
|
|
|
|
class X86ATTAsmParser : public TargetAsmParser {
|
|
MCAsmParser &Parser;
|
|
|
|
private:
|
|
bool MatchInstruction(const StringRef &Name,
|
|
SmallVectorImpl<X86Operand> &Operands,
|
|
MCInst &Inst);
|
|
|
|
MCAsmParser &getParser() const { return Parser; }
|
|
|
|
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
|
|
|
|
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
|
|
|
|
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
|
|
|
|
bool ParseRegister(X86Operand &Op);
|
|
|
|
bool ParseOperand(X86Operand &Op);
|
|
|
|
bool ParseMemOperand(X86Operand &Op);
|
|
|
|
/// @name Auto-generated Match Functions
|
|
/// {
|
|
|
|
bool MatchRegisterName(const StringRef &Name, unsigned &RegNo);
|
|
|
|
/// }
|
|
|
|
public:
|
|
X86ATTAsmParser(const Target &T, MCAsmParser &_Parser)
|
|
: TargetAsmParser(T), Parser(_Parser) {}
|
|
|
|
virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
namespace {
|
|
|
|
/// X86Operand - Instances of this class represent a parsed X86 machine
|
|
/// instruction.
|
|
struct X86Operand {
|
|
enum {
|
|
Register,
|
|
Immediate,
|
|
Memory
|
|
} Kind;
|
|
|
|
union {
|
|
struct {
|
|
unsigned RegNo;
|
|
} Reg;
|
|
|
|
struct {
|
|
MCValue Val;
|
|
} Imm;
|
|
|
|
struct {
|
|
unsigned SegReg;
|
|
MCValue Disp;
|
|
unsigned BaseReg;
|
|
unsigned IndexReg;
|
|
unsigned Scale;
|
|
} Mem;
|
|
};
|
|
|
|
unsigned getReg() const {
|
|
assert(Kind == Register && "Invalid access!");
|
|
return Reg.RegNo;
|
|
}
|
|
|
|
const MCValue &getImm() const {
|
|
assert(Kind == Immediate && "Invalid access!");
|
|
return Imm.Val;
|
|
}
|
|
|
|
const MCValue &getMemDisp() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.Disp;
|
|
}
|
|
unsigned getMemSegReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.SegReg;
|
|
}
|
|
unsigned getMemBaseReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.BaseReg;
|
|
}
|
|
unsigned getMemIndexReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.IndexReg;
|
|
}
|
|
unsigned getMemScale() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.Scale;
|
|
}
|
|
|
|
static X86Operand CreateReg(unsigned RegNo) {
|
|
X86Operand Res;
|
|
Res.Kind = Register;
|
|
Res.Reg.RegNo = RegNo;
|
|
return Res;
|
|
}
|
|
static X86Operand CreateImm(MCValue Val) {
|
|
X86Operand Res;
|
|
Res.Kind = Immediate;
|
|
Res.Imm.Val = Val;
|
|
return Res;
|
|
}
|
|
static X86Operand CreateMem(unsigned SegReg, MCValue Disp, unsigned BaseReg,
|
|
unsigned IndexReg, unsigned Scale) {
|
|
// We should never just have a displacement, that would be an immediate.
|
|
assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
|
|
|
|
// The scale should always be one of {1,2,4,8}.
|
|
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
|
|
"Invalid scale!");
|
|
X86Operand Res;
|
|
Res.Kind = Memory;
|
|
Res.Mem.SegReg = SegReg;
|
|
Res.Mem.Disp = Disp;
|
|
Res.Mem.BaseReg = BaseReg;
|
|
Res.Mem.IndexReg = IndexReg;
|
|
Res.Mem.Scale = Scale;
|
|
return Res;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
bool X86ATTAsmParser::ParseRegister(X86Operand &Op) {
|
|
const AsmToken &Tok = getLexer().getTok();
|
|
assert(Tok.is(AsmToken::Register) && "Invalid token kind!");
|
|
|
|
// FIXME: Validate register for the current architecture; we have to do
|
|
// validation later, so maybe there is no need for this here.
|
|
unsigned RegNo;
|
|
assert(Tok.getString().startswith("%") && "Invalid register name!");
|
|
if (MatchRegisterName(Tok.getString().substr(1), RegNo))
|
|
return Error(Tok.getLoc(), "invalid register name");
|
|
|
|
Op = X86Operand::CreateReg(RegNo);
|
|
getLexer().Lex(); // Eat register token.
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86ATTAsmParser::ParseOperand(X86Operand &Op) {
|
|
switch (getLexer().getKind()) {
|
|
default:
|
|
return ParseMemOperand(Op);
|
|
case AsmToken::Register:
|
|
// FIXME: if a segment register, this could either be just the seg reg, or
|
|
// the start of a memory operand.
|
|
return ParseRegister(Op);
|
|
case AsmToken::Dollar: {
|
|
// $42 -> immediate.
|
|
getLexer().Lex();
|
|
MCValue Val;
|
|
if (getParser().ParseRelocatableExpression(Val))
|
|
return true;
|
|
Op = X86Operand::CreateImm(Val);
|
|
return false;
|
|
}
|
|
case AsmToken::Star:
|
|
getLexer().Lex(); // Eat the star.
|
|
|
|
if (getLexer().is(AsmToken::Register)) {
|
|
if (ParseRegister(Op))
|
|
return true;
|
|
} else if (ParseMemOperand(Op))
|
|
return true;
|
|
|
|
// FIXME: Note the '*' in the operand for use by the matcher.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// ParseMemOperand: segment: disp(basereg, indexreg, scale)
|
|
bool X86ATTAsmParser::ParseMemOperand(X86Operand &Op) {
|
|
// FIXME: If SegReg ':' (e.g. %gs:), eat and remember.
|
|
unsigned SegReg = 0;
|
|
|
|
// We have to disambiguate a parenthesized expression "(4+5)" from the start
|
|
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
|
|
// only way to do this without lookahead is to eat the ( and see what is after
|
|
// it.
|
|
MCValue Disp = MCValue::get(0, 0, 0);
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
if (getParser().ParseRelocatableExpression(Disp)) return true;
|
|
|
|
// After parsing the base expression we could either have a parenthesized
|
|
// memory address or not. If not, return now. If so, eat the (.
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
// Unless we have a segment register, treat this as an immediate.
|
|
if (SegReg)
|
|
Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1);
|
|
else
|
|
Op = X86Operand::CreateImm(Disp);
|
|
return false;
|
|
}
|
|
|
|
// Eat the '('.
|
|
getLexer().Lex();
|
|
} else {
|
|
// Okay, we have a '('. We don't know if this is an expression or not, but
|
|
// so we have to eat the ( to see beyond it.
|
|
getLexer().Lex(); // Eat the '('.
|
|
|
|
if (getLexer().is(AsmToken::Register) || getLexer().is(AsmToken::Comma)) {
|
|
// Nothing to do here, fall into the code below with the '(' part of the
|
|
// memory operand consumed.
|
|
} else {
|
|
// It must be an parenthesized expression, parse it now.
|
|
if (getParser().ParseParenRelocatableExpression(Disp))
|
|
return true;
|
|
|
|
// After parsing the base expression we could either have a parenthesized
|
|
// memory address or not. If not, return now. If so, eat the (.
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
// Unless we have a segment register, treat this as an immediate.
|
|
if (SegReg)
|
|
Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1);
|
|
else
|
|
Op = X86Operand::CreateImm(Disp);
|
|
return false;
|
|
}
|
|
|
|
// Eat the '('.
|
|
getLexer().Lex();
|
|
}
|
|
}
|
|
|
|
// If we reached here, then we just ate the ( of the memory operand. Process
|
|
// the rest of the memory operand.
|
|
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
|
|
|
|
if (getLexer().is(AsmToken::Register)) {
|
|
if (ParseRegister(Op))
|
|
return true;
|
|
BaseReg = Op.getReg();
|
|
}
|
|
|
|
if (getLexer().is(AsmToken::Comma)) {
|
|
getLexer().Lex(); // Eat the comma.
|
|
|
|
// Following the comma we should have either an index register, or a scale
|
|
// value. We don't support the later form, but we want to parse it
|
|
// correctly.
|
|
//
|
|
// Not that even though it would be completely consistent to support syntax
|
|
// like "1(%eax,,1)", the assembler doesn't.
|
|
if (getLexer().is(AsmToken::Register)) {
|
|
if (ParseRegister(Op))
|
|
return true;
|
|
IndexReg = Op.getReg();
|
|
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
// Parse the scale amount:
|
|
// ::= ',' [scale-expression]
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return true;
|
|
getLexer().Lex(); // Eat the comma.
|
|
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
SMLoc Loc = getLexer().getTok().getLoc();
|
|
|
|
int64_t ScaleVal;
|
|
if (getParser().ParseAbsoluteExpression(ScaleVal))
|
|
return true;
|
|
|
|
// Validate the scale amount.
|
|
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8)
|
|
return Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
|
|
Scale = (unsigned)ScaleVal;
|
|
}
|
|
}
|
|
} else if (getLexer().isNot(AsmToken::RParen)) {
|
|
// Otherwise we have the unsupported form of a scale amount without an
|
|
// index.
|
|
SMLoc Loc = getLexer().getTok().getLoc();
|
|
|
|
int64_t Value;
|
|
if (getParser().ParseAbsoluteExpression(Value))
|
|
return true;
|
|
|
|
return Error(Loc, "cannot have scale factor without index register");
|
|
}
|
|
}
|
|
|
|
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
|
|
if (getLexer().isNot(AsmToken::RParen))
|
|
return Error(getLexer().getTok().getLoc(),
|
|
"unexpected token in memory operand");
|
|
getLexer().Lex(); // Eat the ')'.
|
|
|
|
Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale);
|
|
return false;
|
|
}
|
|
|
|
bool X86ATTAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
|
|
SmallVector<X86Operand, 3> Operands;
|
|
|
|
SMLoc Loc = getLexer().getTok().getLoc();
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
// Read the first operand.
|
|
Operands.push_back(X86Operand());
|
|
if (ParseOperand(Operands.back()))
|
|
return true;
|
|
|
|
while (getLexer().is(AsmToken::Comma)) {
|
|
getLexer().Lex(); // Eat the comma.
|
|
|
|
// Parse and remember the operand.
|
|
Operands.push_back(X86Operand());
|
|
if (ParseOperand(Operands.back()))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!MatchInstruction(Name, Operands, Inst))
|
|
return false;
|
|
|
|
// FIXME: We should give nicer diagnostics about the exact failure.
|
|
|
|
// FIXME: For now we just treat unrecognized instructions as "warnings".
|
|
Warning(Loc, "unrecognized instruction");
|
|
|
|
return false;
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" void LLVMInitializeX86AsmParser() {
|
|
RegisterAsmParser<X86ATTAsmParser> X(TheX86_32Target);
|
|
RegisterAsmParser<X86ATTAsmParser> Y(TheX86_64Target);
|
|
}
|
|
|
|
// FIXME: These should come from tblgen?
|
|
|
|
static bool
|
|
Match_X86_Op_REG(const X86Operand &Op, MCOperand *MCOps, unsigned NumOps) {
|
|
assert(NumOps == 1 && "Invalid number of ops!");
|
|
|
|
// FIXME: Match correct registers.
|
|
if (Op.Kind != X86Operand::Register)
|
|
return true;
|
|
|
|
MCOps[0] = MCOperand::CreateReg(Op.getReg());
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
Match_X86_Op_IMM(const X86Operand &Op, MCOperand *MCOps, unsigned NumOps) {
|
|
assert(NumOps == 1 && "Invalid number of ops!");
|
|
|
|
// FIXME: We need to check widths.
|
|
if (Op.Kind != X86Operand::Immediate)
|
|
return true;
|
|
|
|
MCOps[0] = MCOperand::CreateMCValue(Op.getImm());
|
|
return false;
|
|
}
|
|
|
|
static bool Match_X86_Op_LMEM(const X86Operand &Op,
|
|
MCOperand *MCOps,
|
|
unsigned NumMCOps) {
|
|
assert(NumMCOps == 4 && "Invalid number of ops!");
|
|
|
|
if (Op.Kind != X86Operand::Memory)
|
|
return true;
|
|
|
|
MCOps[0] = MCOperand::CreateReg(Op.getMemBaseReg());
|
|
MCOps[1] = MCOperand::CreateImm(Op.getMemScale());
|
|
MCOps[2] = MCOperand::CreateReg(Op.getMemIndexReg());
|
|
MCOps[3] = MCOperand::CreateMCValue(Op.getMemDisp());
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool Match_X86_Op_MEM(const X86Operand &Op,
|
|
MCOperand *MCOps,
|
|
unsigned NumMCOps) {
|
|
assert(NumMCOps == 5 && "Invalid number of ops!");
|
|
|
|
if (Match_X86_Op_LMEM(Op, MCOps, 4))
|
|
return true;
|
|
|
|
MCOps[4] = MCOperand::CreateReg(Op.getMemSegReg());
|
|
|
|
return false;
|
|
}
|
|
|
|
#define REG(name) \
|
|
static bool Match_X86_Op_##name(const X86Operand &Op, \
|
|
MCOperand *MCOps, \
|
|
unsigned NumMCOps) { \
|
|
return Match_X86_Op_REG(Op, MCOps, NumMCOps); \
|
|
}
|
|
|
|
REG(GR64)
|
|
REG(GR32)
|
|
REG(GR16)
|
|
REG(GR8)
|
|
|
|
#define IMM(name) \
|
|
static bool Match_X86_Op_##name(const X86Operand &Op, \
|
|
MCOperand *MCOps, \
|
|
unsigned NumMCOps) { \
|
|
return Match_X86_Op_IMM(Op, MCOps, NumMCOps); \
|
|
}
|
|
|
|
IMM(brtarget)
|
|
IMM(brtarget8)
|
|
IMM(i16i8imm)
|
|
IMM(i16imm)
|
|
IMM(i32i8imm)
|
|
IMM(i32imm)
|
|
IMM(i32imm_pcrel)
|
|
IMM(i64i32imm)
|
|
IMM(i64i32imm_pcrel)
|
|
IMM(i64i8imm)
|
|
IMM(i64imm)
|
|
IMM(i8imm)
|
|
|
|
#define LMEM(name) \
|
|
static bool Match_X86_Op_##name(const X86Operand &Op, \
|
|
MCOperand *MCOps, \
|
|
unsigned NumMCOps) { \
|
|
return Match_X86_Op_LMEM(Op, MCOps, NumMCOps); \
|
|
}
|
|
|
|
LMEM(lea32mem)
|
|
LMEM(lea64_32mem)
|
|
LMEM(lea64mem)
|
|
|
|
#define MEM(name) \
|
|
static bool Match_X86_Op_##name(const X86Operand &Op, \
|
|
MCOperand *MCOps, \
|
|
unsigned NumMCOps) { \
|
|
return Match_X86_Op_MEM(Op, MCOps, NumMCOps); \
|
|
}
|
|
|
|
MEM(f128mem)
|
|
MEM(f32mem)
|
|
MEM(f64mem)
|
|
MEM(f80mem)
|
|
MEM(i128mem)
|
|
MEM(i16mem)
|
|
MEM(i32mem)
|
|
MEM(i64mem)
|
|
MEM(i8mem)
|
|
MEM(sdmem)
|
|
MEM(ssmem)
|
|
|
|
#define DUMMY(name) \
|
|
static bool Match_X86_Op_##name(const X86Operand &Op, \
|
|
MCOperand *MCOps, \
|
|
unsigned NumMCOps) { \
|
|
return true; \
|
|
}
|
|
|
|
DUMMY(FR32)
|
|
DUMMY(FR64)
|
|
DUMMY(GR32_NOREX)
|
|
DUMMY(GR8_NOREX)
|
|
DUMMY(RST)
|
|
DUMMY(VR128)
|
|
DUMMY(VR64)
|
|
DUMMY(i8mem_NOREX)
|
|
|
|
#include "X86GenAsmMatcher.inc"
|