llvm-6502/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
Chad Rosier 84125ca43c [ms-inline asm] Remove the MatchInstruction() function. Previously, this was
the interface between the front-end and the MC layer when parsing inline
assembly.  Unfortunately, this is too deep into the parsing stack. Specifically,
we're unable to handle target-independent assembly (i.e., assembly directives,
labels, etc.).  Note the MatchAndEmitInstruction() isn't the correct
abstraction either.  I'll be exposing target-independent hooks shortly, so this
is really just a cleanup.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165858 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-13 00:26:04 +00:00

1333 lines
40 KiB
C++

//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsRegisterInfo.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace {
class MipsAssemblerOptions {
public:
MipsAssemblerOptions():
aTReg(1), reorder(true), macro(true) {
}
unsigned getATRegNum() {return aTReg;}
bool setATReg(unsigned Reg);
bool isReorder() {return reorder;}
void setReorder() {reorder = true;}
void setNoreorder() {reorder = false;}
bool isMacro() {return macro;}
void setMacro() {macro = true;}
void setNomacro() {macro = false;}
private:
unsigned aTReg;
bool reorder;
bool macro;
};
}
namespace {
class MipsAsmParser : public MCTargetAsmParser {
enum FpFormatTy {
FP_FORMAT_NONE = -1,
FP_FORMAT_S,
FP_FORMAT_D,
FP_FORMAT_L,
FP_FORMAT_W
} FpFormat;
MCSubtargetInfo &STI;
MCAsmParser &Parser;
MipsAssemblerOptions Options;
#define GET_ASSEMBLER_HEADER
#include "MipsGenAsmMatcher.inc"
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool parseMathOperation(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool ParseDirective(AsmToken DirectiveID);
MipsAsmParser::OperandMatchResultTy
parseMemOperand(SmallVectorImpl<MCParsedAsmOperand*>&);
bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &,
StringRef Mnemonic);
int tryParseRegister(StringRef Mnemonic);
bool tryParseRegisterOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic);
bool needsExpansion(MCInst &Inst);
void expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool reportParseError(StringRef ErrorMsg);
bool parseMemOffset(const MCExpr *&Res);
bool parseRelocOperand(const MCExpr *&Res);
bool parseDirectiveSet();
bool parseSetAtDirective();
bool parseSetNoAtDirective();
bool parseSetMacroDirective();
bool parseSetNoMacroDirective();
bool parseSetReorderDirective();
bool parseSetNoReorderDirective();
MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
bool isMips64() const {
return (STI.getFeatureBits() & Mips::FeatureMips64) != 0;
}
bool isFP64() const {
return (STI.getFeatureBits() & Mips::FeatureFP64Bit) != 0;
}
int matchRegisterName(StringRef Symbol);
int matchRegisterByNumber(unsigned RegNum, StringRef Mnemonic);
void setFpFormat(FpFormatTy Format) {
FpFormat = Format;
}
void setDefaultFpFormat();
void setFpFormat(StringRef Format);
FpFormatTy getFpFormat() {return FpFormat;}
bool requestsDoubleOperand(StringRef Mnemonic);
unsigned getReg(int RC,int RegNo);
unsigned getATReg();
public:
MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
: MCTargetAsmParser(), STI(sti), Parser(parser) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
};
}
namespace {
/// MipsOperand - Instances of this class represent a parsed Mips machine
/// instruction.
class MipsOperand : public MCParsedAsmOperand {
enum KindTy {
k_CondCode,
k_CoprocNum,
k_Immediate,
k_Memory,
k_PostIndexRegister,
k_Register,
k_Token
} Kind;
MipsOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
union {
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
} Reg;
struct {
const MCExpr *Val;
} Imm;
struct {
unsigned Base;
const MCExpr *Off;
} Mem;
};
SMLoc StartLoc, EndLoc;
public:
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const{
// Add as immediate when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst,Expr);
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBase()));
const MCExpr *Expr = getMemOff();
addExpr(Inst,Expr);
}
bool isReg() const { return Kind == k_Register; }
bool isImm() const { return Kind == k_Immediate; }
bool isToken() const { return Kind == k_Token; }
bool isMem() const { return Kind == k_Memory; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate) && "Invalid access!");
return Imm.Val;
}
unsigned getMemBase() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Base;
}
const MCExpr *getMemOff() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Off;
}
static MipsOperand *CreateToken(StringRef Str, SMLoc S) {
MipsOperand *Op = new MipsOperand(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static MipsOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateMem(unsigned Base, const MCExpr *Off,
SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Memory);
Op->Mem.Base = Base;
Op->Mem.Off = Off;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
virtual void print(raw_ostream &OS) const {
llvm_unreachable("unimplemented!");
}
};
}
bool MipsAsmParser::needsExpansion(MCInst &Inst) {
switch(Inst.getOpcode()) {
case Mips::LoadImm32Reg:
case Mips::LoadAddr32Imm:
case Mips::LoadAddr32Reg:
return true;
default:
return false;
}
}
void MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions){
switch(Inst.getOpcode()) {
case Mips::LoadImm32Reg:
return expandLoadImm(Inst, IDLoc, Instructions);
case Mips::LoadAddr32Imm:
return expandLoadAddressImm(Inst,IDLoc,Instructions);
case Mips::LoadAddr32Reg:
return expandLoadAddressReg(Inst,IDLoc,Instructions);
}
}
void MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions){
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
tmpInst.setLoc(IDLoc);
if ( 0 <= ImmValue && ImmValue <= 65535) {
// for 0 <= j <= 65535.
// li d,j => ori d,$zero,j
tmpInst.setOpcode(isMips64() ? Mips::ORi64 : Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(
MCOperand::CreateReg(isMips64() ? Mips::ZERO_64 : Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else if ( ImmValue < 0 && ImmValue >= -32768) {
// for -32768 <= j < 0.
// li d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu); //TODO:no ADDiu64 in td files?
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(
MCOperand::CreateReg(isMips64() ? Mips::ZERO_64 : Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// for any other value of j that is representable as a 32-bit integer.
// li d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(isMips64() ? Mips::LUi64 : Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(isMips64() ? Mips::ORi64 : Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
}
void MipsAsmParser::expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions){
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(2);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if ( -32768 <= ImmValue && ImmValue <= 65535) {
//for -32768 <= j <= 65535.
//la d,j(s) => addiu d,s,j
tmpInst.setOpcode(Mips::ADDiu); //TODO:no ADDiu64 in td files?
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
//for any other value of j that is representable as a 32-bit integer.
//la d,j(s) => lui d,hi16(j)
// ori d,d,lo16(j)
// addu d,d,s
tmpInst.setOpcode(isMips64()?Mips::LUi64:Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(isMips64()?Mips::ORi64:Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ADDu);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
Instructions.push_back(tmpInst);
}
}
void MipsAsmParser::expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions){
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if ( -32768 <= ImmValue && ImmValue <= 65535) {
//for -32768 <= j <= 65535.
//la d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(
MCOperand::CreateReg(isMips64()?Mips::ZERO_64:Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
//for any other value of j that is representable as a 32-bit integer.
//la d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(isMips64()?Mips::LUi64:Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(isMips64()?Mips::ORi64:Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
}
}
bool MipsAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
default: break;
case Match_Success: {
if (needsExpansion(Inst)) {
SmallVector<MCInst, 4> Instructions;
expandInstruction(Inst, IDLoc, Instructions);
for(unsigned i =0; i < Instructions.size(); i++){
Out.EmitInstruction(Instructions[i]);
}
} else {
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst);
}
return false;
}
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((MipsOperand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
}
return true;
}
int MipsAsmParser::matchRegisterName(StringRef Name) {
int CC;
if (!isMips64())
CC = StringSwitch<unsigned>(Name)
.Case("zero", Mips::ZERO)
.Case("a0", Mips::A0)
.Case("a1", Mips::A1)
.Case("a2", Mips::A2)
.Case("a3", Mips::A3)
.Case("v0", Mips::V0)
.Case("v1", Mips::V1)
.Case("s0", Mips::S0)
.Case("s1", Mips::S1)
.Case("s2", Mips::S2)
.Case("s3", Mips::S3)
.Case("s4", Mips::S4)
.Case("s5", Mips::S5)
.Case("s6", Mips::S6)
.Case("s7", Mips::S7)
.Case("k0", Mips::K0)
.Case("k1", Mips::K1)
.Case("sp", Mips::SP)
.Case("fp", Mips::FP)
.Case("gp", Mips::GP)
.Case("ra", Mips::RA)
.Case("t0", Mips::T0)
.Case("t1", Mips::T1)
.Case("t2", Mips::T2)
.Case("t3", Mips::T3)
.Case("t4", Mips::T4)
.Case("t5", Mips::T5)
.Case("t6", Mips::T6)
.Case("t7", Mips::T7)
.Case("t8", Mips::T8)
.Case("t9", Mips::T9)
.Case("at", Mips::AT)
.Case("fcc0", Mips::FCC0)
.Default(-1);
else
CC = StringSwitch<unsigned>(Name)
.Case("zero", Mips::ZERO_64)
.Case("at", Mips::AT_64)
.Case("v0", Mips::V0_64)
.Case("v1", Mips::V1_64)
.Case("a0", Mips::A0_64)
.Case("a1", Mips::A1_64)
.Case("a2", Mips::A2_64)
.Case("a3", Mips::A3_64)
.Case("a4", Mips::T0_64)
.Case("a5", Mips::T1_64)
.Case("a6", Mips::T2_64)
.Case("a7", Mips::T3_64)
.Case("t4", Mips::T4_64)
.Case("t5", Mips::T5_64)
.Case("t6", Mips::T6_64)
.Case("t7", Mips::T7_64)
.Case("s0", Mips::S0_64)
.Case("s1", Mips::S1_64)
.Case("s2", Mips::S2_64)
.Case("s3", Mips::S3_64)
.Case("s4", Mips::S4_64)
.Case("s5", Mips::S5_64)
.Case("s6", Mips::S6_64)
.Case("s7", Mips::S7_64)
.Case("t8", Mips::T8_64)
.Case("t9", Mips::T9_64)
.Case("kt0", Mips::K0_64)
.Case("kt1", Mips::K1_64)
.Case("gp", Mips::GP_64)
.Case("sp", Mips::SP_64)
.Case("fp", Mips::FP_64)
.Case("s8", Mips::FP_64)
.Case("ra", Mips::RA_64)
.Default(-1);
if (CC != -1)
return CC;
if (Name[0] == 'f') {
StringRef NumString = Name.substr(1);
unsigned IntVal;
if( NumString.getAsInteger(10, IntVal))
return -1; // not integer
if (IntVal > 31)
return -1;
FpFormatTy Format = getFpFormat();
if (Format == FP_FORMAT_S || Format == FP_FORMAT_W)
return getReg(Mips::FGR32RegClassID, IntVal);
if (Format == FP_FORMAT_D) {
if(isFP64()) {
return getReg(Mips::FGR64RegClassID, IntVal);
}
// only even numbers available as register pairs
if (( IntVal > 31) || (IntVal%2 != 0))
return -1;
return getReg(Mips::AFGR64RegClassID, IntVal/2);
}
}
return -1;
}
void MipsAsmParser::setDefaultFpFormat() {
if (isMips64() || isFP64())
FpFormat = FP_FORMAT_D;
else
FpFormat = FP_FORMAT_S;
}
bool MipsAsmParser::requestsDoubleOperand(StringRef Mnemonic){
bool IsDouble = StringSwitch<bool>(Mnemonic.lower())
.Case("ldxc1", true)
.Case("ldc1", true)
.Case("sdxc1", true)
.Case("sdc1", true)
.Default(false);
return IsDouble;
}
void MipsAsmParser::setFpFormat(StringRef Format) {
FpFormat = StringSwitch<FpFormatTy>(Format.lower())
.Case(".s", FP_FORMAT_S)
.Case(".d", FP_FORMAT_D)
.Case(".l", FP_FORMAT_L)
.Case(".w", FP_FORMAT_W)
.Default(FP_FORMAT_NONE);
}
bool MipsAssemblerOptions::setATReg(unsigned Reg) {
if (Reg > 31)
return false;
aTReg = Reg;
return true;
}
unsigned MipsAsmParser::getATReg() {
unsigned Reg = Options.getATRegNum();
if (isMips64())
return getReg(Mips::CPU64RegsRegClassID,Reg);
return getReg(Mips::CPURegsRegClassID,Reg);
}
unsigned MipsAsmParser::getReg(int RC,int RegNo) {
return *(getContext().getRegisterInfo().getRegClass(RC).begin() + RegNo);
}
int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, StringRef Mnemonic) {
if (Mnemonic.lower() == "rdhwr") {
// at the moment only hwreg29 is supported
if (RegNum != 29)
return -1;
return Mips::HWR29;
}
if (RegNum > 31)
return -1;
// MIPS64 registers are numbered 1 after the 32-bit equivalents
return getReg(Mips::CPURegsRegClassID, RegNum) + isMips64();
}
int MipsAsmParser::tryParseRegister(StringRef Mnemonic) {
const AsmToken &Tok = Parser.getTok();
int RegNum = -1;
if (Tok.is(AsmToken::Identifier)) {
std::string lowerCase = Tok.getString().lower();
RegNum = matchRegisterName(lowerCase);
} else if (Tok.is(AsmToken::Integer))
RegNum = matchRegisterByNumber(static_cast<unsigned>(Tok.getIntVal()),
Mnemonic.lower());
else
return RegNum; //error
// 64 bit div operations require Mips::ZERO instead of MIPS::ZERO_64
if (isMips64() && RegNum == Mips::ZERO_64) {
if (Mnemonic.find("ddiv") != StringRef::npos)
RegNum = Mips::ZERO;
}
return RegNum;
}
bool MipsAsmParser::
tryParseRegisterOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic){
SMLoc S = Parser.getTok().getLoc();
int RegNo = -1;
// FIXME: we should make a more generic method for CCR
if ((Mnemonic == "cfc1" || Mnemonic == "ctc1")
&& Operands.size() == 2 && Parser.getTok().is(AsmToken::Integer)){
RegNo = Parser.getTok().getIntVal(); // get the int value
// at the moment only fcc0 is supported
if (RegNo == 0)
RegNo = Mips::FCC0;
} else
RegNo = tryParseRegister(Mnemonic);
if (RegNo == -1)
return true;
Operands.push_back(MipsOperand::CreateReg(RegNo, S,
Parser.getTok().getLoc()));
Parser.Lex(); // Eat register token.
return false;
}
bool MipsAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*>&Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Dollar: {
// parse register
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat dollar token.
// parse register operand
if (!tryParseRegisterOperand(Operands, Mnemonic)) {
if (getLexer().is(AsmToken::LParen)) {
// check if it is indexed addressing operand
Operands.push_back(MipsOperand::CreateToken("(", S));
Parser.Lex(); // eat parenthesis
if (getLexer().isNot(AsmToken::Dollar))
return true;
Parser.Lex(); // eat dollar
if (tryParseRegisterOperand(Operands, Mnemonic))
return true;
if (!getLexer().is(AsmToken::RParen))
return true;
S = Parser.getTok().getLoc();
Operands.push_back(MipsOperand::CreateToken(")", S));
Parser.Lex();
}
return false;
}
// maybe it is a symbol reference
StringRef Identifier;
if (Parser.ParseIdentifier(Identifier))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().GetOrCreateSymbol("$" + Identifier);
// Otherwise create a symbol ref.
const MCExpr *Res = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E));
return false;
}
case AsmToken::Identifier:
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String: {
// quoted label names
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc();
if (getParser().ParseExpression(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::Percent: {
// it is a symbol reference or constant expression
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc(); // start location of the operand
if (parseRelocOperand(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
} // case AsmToken::Percent
} // switch(getLexer().getKind())
return true;
}
bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
Parser.Lex(); // eat % token
const AsmToken &Tok = Parser.getTok(); // get next token, operation
if (Tok.isNot(AsmToken::Identifier))
return true;
std::string Str = Tok.getIdentifier().str();
Parser.Lex(); // eat identifier
// now make expression from the rest of the operand
const MCExpr *IdVal;
SMLoc EndLoc;
if (getLexer().getKind() == AsmToken::LParen) {
while (1) {
Parser.Lex(); // eat '(' token
if (getLexer().getKind() == AsmToken::Percent) {
Parser.Lex(); // eat % token
const AsmToken &nextTok = Parser.getTok();
if (nextTok.isNot(AsmToken::Identifier))
return true;
Str += "(%";
Str += nextTok.getIdentifier();
Parser.Lex(); // eat identifier
if (getLexer().getKind() != AsmToken::LParen)
return true;
} else
break;
}
if (getParser().ParseParenExpression(IdVal,EndLoc))
return true;
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex(); // eat ')' token
} else
return true; // parenthesis must follow reloc operand
// Check the type of the expression
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal)) {
// it's a constant, evaluate lo or hi value
int Val = MCE->getValue();
if (Str == "lo") {
Val = Val & 0xffff;
} else if (Str == "hi") {
Val = (Val & 0xffff0000) >> 16;
}
Res = MCConstantExpr::Create(Val, getContext());
return false;
}
if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(IdVal)) {
// it's a symbol, create symbolic expression from symbol
StringRef Symbol = MSRE->getSymbol().getName();
MCSymbolRefExpr::VariantKind VK = getVariantKind(Str);
Res = MCSymbolRefExpr::Create(Symbol,VK,getContext());
return false;
}
return true;
}
bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = tryParseRegister("");
EndLoc = Parser.getTok().getLoc();
return (RegNo == (unsigned)-1);
}
bool MipsAsmParser::parseMemOffset(const MCExpr *&Res) {
SMLoc S;
switch(getLexer().getKind()) {
default:
return true;
case AsmToken::Integer:
case AsmToken::Minus:
case AsmToken::Plus:
return (getParser().ParseExpression(Res));
case AsmToken::Percent:
return parseRelocOperand(Res);
case AsmToken::LParen:
return false; // it's probably assuming 0
}
return true;
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMemOperand(
SmallVectorImpl<MCParsedAsmOperand*>&Operands) {
const MCExpr *IdVal = 0;
SMLoc S;
// first operand is the offset
S = Parser.getTok().getLoc();
if (parseMemOffset(IdVal))
return MatchOperand_ParseFail;
const AsmToken &Tok = Parser.getTok(); // get next token
if (Tok.isNot(AsmToken::LParen)) {
MipsOperand *Mnemonic = static_cast<MipsOperand*>(Operands[0]);
if (Mnemonic->getToken() == "la") {
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer()-1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return MatchOperand_Success;
}
Error(Parser.getTok().getLoc(), "'(' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat '(' token.
const AsmToken &Tok1 = Parser.getTok(); // get next token
if (Tok1.is(AsmToken::Dollar)) {
Parser.Lex(); // Eat '$' token.
if (tryParseRegisterOperand(Operands,"")) {
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return MatchOperand_ParseFail;
}
} else {
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return MatchOperand_ParseFail;
}
const AsmToken &Tok2 = Parser.getTok(); // get next token
if (Tok2.isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "')' expected");
return MatchOperand_ParseFail;
}
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat ')' token.
if (IdVal == 0)
IdVal = MCConstantExpr::Create(0, getContext());
// now replace register operand with the mem operand
MipsOperand* op = static_cast<MipsOperand*>(Operands.back());
int RegNo = op->getReg();
// remove register from operands
Operands.pop_back();
// and add memory operand
Operands.push_back(MipsOperand::CreateMem(RegNo, IdVal, S, E));
delete op;
return MatchOperand_Success;
}
MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
MCSymbolRefExpr::VariantKind VK
= StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
.Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
.Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
.Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
.Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
.Case("got", MCSymbolRefExpr::VK_Mips_GOT)
.Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
.Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
.Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
.Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
.Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
.Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
.Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
.Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
.Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
.Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
.Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
.Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
.Default(MCSymbolRefExpr::VK_None);
return VK;
}
static int ConvertCcString(StringRef CondString) {
int CC = StringSwitch<unsigned>(CondString)
.Case(".f", 0)
.Case(".un", 1)
.Case(".eq", 2)
.Case(".ueq", 3)
.Case(".olt", 4)
.Case(".ult", 5)
.Case(".ole", 6)
.Case(".ule", 7)
.Case(".sf", 8)
.Case(".ngle", 9)
.Case(".seq", 10)
.Case(".ngl", 11)
.Case(".lt", 12)
.Case(".nge", 13)
.Case(".le", 14)
.Case(".ngt", 15)
.Default(-1);
return CC;
}
bool MipsAsmParser::
parseMathOperation(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// split the format
size_t Start = Name.find('.'), Next = Name.rfind('.');
StringRef Format1 = Name.slice(Start, Next);
// and add the first format to the operands
Operands.push_back(MipsOperand::CreateToken(Format1, NameLoc));
// now for the second format
StringRef Format2 = Name.slice(Next, StringRef::npos);
Operands.push_back(MipsOperand::CreateToken(Format2, NameLoc));
// set the format for the first register
setFpFormat(Format1);
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (getLexer().isNot(AsmToken::Comma)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Eat the comma.
//set the format for the first register
setFpFormat(Format2);
// Parse and remember the operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool MipsAsmParser::
ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// floating point instructions: should register be treated as double?
if (requestsDoubleOperand(Name)) {
setFpFormat(FP_FORMAT_D);
Operands.push_back(MipsOperand::CreateToken(Name, NameLoc));
}
else {
setDefaultFpFormat();
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Mnemonic = Name.slice(Start, Next);
Operands.push_back(MipsOperand::CreateToken(Mnemonic, NameLoc));
if (Next != StringRef::npos) {
// there is a format token in mnemonic
// StringRef Rest = Name.slice(Next, StringRef::npos);
size_t Dot = Name.find('.', Next+1);
StringRef Format = Name.slice(Next, Dot);
if (Dot == StringRef::npos) //only one '.' in a string, it's a format
Operands.push_back(MipsOperand::CreateToken(Format, NameLoc));
else {
if (Name.startswith("c.")){
// floating point compare, add '.' and immediate represent for cc
Operands.push_back(MipsOperand::CreateToken(".", NameLoc));
int Cc = ConvertCcString(Format);
if (Cc == -1) {
return Error(NameLoc, "Invalid conditional code");
}
SMLoc E = SMLoc::getFromPointer(
Parser.getTok().getLoc().getPointer() -1 );
Operands.push_back(MipsOperand::CreateImm(
MCConstantExpr::Create(Cc, getContext()), NameLoc, E));
} else {
// trunc, ceil, floor ...
return parseMathOperation(Name, NameLoc, Operands);
}
// the rest is a format
Format = Name.slice(Dot, StringRef::npos);
Operands.push_back(MipsOperand::CreateToken(Format, NameLoc));
}
setFpFormat(Format);
}
}
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
while (getLexer().is(AsmToken::Comma) ) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool MipsAsmParser::reportParseError(StringRef ErrorMsg) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::parseSetNoAtDirective() {
// line should look like:
// .set noat
// set at reg to 0
Options.setATReg(0);
// eat noat
Parser.Lex();
// if this is not the end of the statement, report error
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool MipsAsmParser::parseSetAtDirective() {
// line can be
// .set at - defaults to $1
// or .set at=$reg
getParser().Lex();
if (getLexer().is(AsmToken::EndOfStatement)) {
Options.setATReg(1);
Parser.Lex(); // Consume the EndOfStatement
return false;
} else if (getLexer().is(AsmToken::Equal)) {
getParser().Lex(); //eat '='
if (getLexer().isNot(AsmToken::Dollar)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // eat '$'
if (getLexer().isNot(AsmToken::Integer)) {
reportParseError("unexpected token in statement");
return false;
}
const AsmToken &Reg = Parser.getTok();
if (!Options.setATReg(Reg.getIntVal())) {
reportParseError("unexpected token in statement");
return false;
}
getParser().Lex(); //eat reg
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement
return false;
} else {
reportParseError("unexpected token in statement");
return false;
}
}
bool MipsAsmParser::parseSetReorderDirective() {
Parser.Lex();
// if this is not the end of the statement, report error
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setReorder();
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool MipsAsmParser::parseSetNoReorderDirective() {
Parser.Lex();
// if this is not the end of the statement, report error
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setNoreorder();
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool MipsAsmParser::parseSetMacroDirective() {
Parser.Lex();
// if this is not the end of the statement, report error
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setMacro();
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool MipsAsmParser::parseSetNoMacroDirective() {
Parser.Lex();
// if this is not the end of the statement, report error
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
if (Options.isReorder()) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
Options.setNomacro();
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool MipsAsmParser::parseDirectiveSet() {
// get next token
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "noat") {
return parseSetNoAtDirective();
} else if (Tok.getString() == "at") {
return parseSetAtDirective();
} else if (Tok.getString() == "reorder") {
return parseSetReorderDirective();
} else if (Tok.getString() == "noreorder") {
return parseSetNoReorderDirective();
} else if (Tok.getString() == "macro") {
return parseSetMacroDirective();
} else if (Tok.getString() == "nomacro") {
return parseSetNoMacroDirective();
} else if (Tok.getString() == "nomips16") {
// ignore this directive for now
Parser.EatToEndOfStatement();
return false;
} else if (Tok.getString() == "nomicromips") {
// ignore this directive for now
Parser.EatToEndOfStatement();
return false;
}
return true;
}
bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
if (DirectiveID.getString() == ".ent") {
// ignore this directive for now
Parser.Lex();
return false;
}
if (DirectiveID.getString() == ".end") {
// ignore this directive for now
Parser.Lex();
return false;
}
if (DirectiveID.getString() == ".frame") {
// ignore this directive for now
Parser.EatToEndOfStatement();
return false;
}
if (DirectiveID.getString() == ".set") {
return parseDirectiveSet();
}
if (DirectiveID.getString() == ".fmask") {
// ignore this directive for now
Parser.EatToEndOfStatement();
return false;
}
if (DirectiveID.getString() == ".mask") {
// ignore this directive for now
Parser.EatToEndOfStatement();
return false;
}
if (DirectiveID.getString() == ".gpword") {
// ignore this directive for now
Parser.EatToEndOfStatement();
return false;
}
return true;
}
extern "C" void LLVMInitializeMipsAsmParser() {
RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "MipsGenAsmMatcher.inc"