mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
7b550ccfc5
from various APIs, addressing PR5325. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86231 91177308-0d34-0410-b5e6-96231b3b80d8
371 lines
15 KiB
C++
371 lines
15 KiB
C++
//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs a limited form of tail duplication, intended to simplify
|
|
// CFGs by removing some unconditional branches. This pass is necessary to
|
|
// straighten out loops created by the C front-end, but also is capable of
|
|
// making other code nicer. After this pass is run, the CFG simplify pass
|
|
// should be run to clean up the mess.
|
|
//
|
|
// This pass could be enhanced in the future to use profile information to be
|
|
// more aggressive.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "tailduplicate"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumEliminated, "Number of unconditional branches eliminated");
|
|
|
|
static cl::opt<unsigned>
|
|
TailDupThreshold("taildup-threshold",
|
|
cl::desc("Max block size to tail duplicate"),
|
|
cl::init(1), cl::Hidden);
|
|
|
|
namespace {
|
|
class TailDup : public FunctionPass {
|
|
bool runOnFunction(Function &F);
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
TailDup() : FunctionPass(&ID) {}
|
|
|
|
private:
|
|
inline bool shouldEliminateUnconditionalBranch(TerminatorInst *, unsigned);
|
|
inline void eliminateUnconditionalBranch(BranchInst *BI);
|
|
SmallPtrSet<BasicBlock*, 4> CycleDetector;
|
|
};
|
|
}
|
|
|
|
char TailDup::ID = 0;
|
|
static RegisterPass<TailDup> X("tailduplicate", "Tail Duplication");
|
|
|
|
// Public interface to the Tail Duplication pass
|
|
FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); }
|
|
|
|
/// runOnFunction - Top level algorithm - Loop over each unconditional branch in
|
|
/// the function, eliminating it if it looks attractive enough. CycleDetector
|
|
/// prevents infinite loops by checking that we aren't redirecting a branch to
|
|
/// a place it already pointed to earlier; see PR 2323.
|
|
bool TailDup::runOnFunction(Function &F) {
|
|
bool Changed = false;
|
|
CycleDetector.clear();
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
|
|
if (shouldEliminateUnconditionalBranch(I->getTerminator(),
|
|
TailDupThreshold)) {
|
|
eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
|
|
Changed = true;
|
|
} else {
|
|
++I;
|
|
CycleDetector.clear();
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// shouldEliminateUnconditionalBranch - Return true if this branch looks
|
|
/// attractive to eliminate. We eliminate the branch if the destination basic
|
|
/// block has <= 5 instructions in it, not counting PHI nodes. In practice,
|
|
/// since one of these is a terminator instruction, this means that we will add
|
|
/// up to 4 instructions to the new block.
|
|
///
|
|
/// We don't count PHI nodes in the count since they will be removed when the
|
|
/// contents of the block are copied over.
|
|
///
|
|
bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI,
|
|
unsigned Threshold) {
|
|
BranchInst *BI = dyn_cast<BranchInst>(TI);
|
|
if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch!
|
|
|
|
BasicBlock *Dest = BI->getSuccessor(0);
|
|
if (Dest == BI->getParent()) return false; // Do not loop infinitely!
|
|
|
|
// Do not inline a block if we will just get another branch to the same block!
|
|
TerminatorInst *DTI = Dest->getTerminator();
|
|
if (BranchInst *DBI = dyn_cast<BranchInst>(DTI))
|
|
if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
|
|
return false; // Do not loop infinitely!
|
|
|
|
// FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
|
|
// because doing so would require breaking critical edges. This should be
|
|
// fixed eventually.
|
|
if (!DTI->use_empty())
|
|
return false;
|
|
|
|
// Do not bother with blocks with only a single predecessor: simplify
|
|
// CFG will fold these two blocks together!
|
|
pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
|
|
++PI;
|
|
if (PI == PE) return false; // Exactly one predecessor!
|
|
|
|
BasicBlock::iterator I = Dest->getFirstNonPHI();
|
|
|
|
for (unsigned Size = 0; I != Dest->end(); ++I) {
|
|
if (Size == Threshold) return false; // The block is too large.
|
|
|
|
// Don't tail duplicate call instructions. They are very large compared to
|
|
// other instructions.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false;
|
|
|
|
// Also alloca and malloc.
|
|
if (isa<AllocaInst>(I)) return false;
|
|
|
|
// Some vector instructions can expand into a number of instructions.
|
|
if (isa<ShuffleVectorInst>(I) || isa<ExtractElementInst>(I) ||
|
|
isa<InsertElementInst>(I)) return false;
|
|
|
|
// Only count instructions that are not debugger intrinsics.
|
|
if (!isa<DbgInfoIntrinsic>(I)) ++Size;
|
|
}
|
|
|
|
// Do not tail duplicate a block that has thousands of successors into a block
|
|
// with a single successor if the block has many other predecessors. This can
|
|
// cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
|
|
// cases that have a large number of indirect gotos.
|
|
unsigned NumSuccs = DTI->getNumSuccessors();
|
|
if (NumSuccs > 8) {
|
|
unsigned TooMany = 128;
|
|
if (NumSuccs >= TooMany) return false;
|
|
TooMany = TooMany/NumSuccs;
|
|
for (; PI != PE; ++PI)
|
|
if (TooMany-- == 0) return false;
|
|
}
|
|
|
|
// If this unconditional branch is a fall-through, be careful about
|
|
// tail duplicating it. In particular, we don't want to taildup it if the
|
|
// original block will still be there after taildup is completed: doing so
|
|
// would eliminate the fall-through, requiring unconditional branches.
|
|
Function::iterator DestI = Dest;
|
|
if (&*--DestI == BI->getParent()) {
|
|
// The uncond branch is a fall-through. Tail duplication of the block is
|
|
// will eliminate the fall-through-ness and end up cloning the terminator
|
|
// at the end of the Dest block. Since the original Dest block will
|
|
// continue to exist, this means that one or the other will not be able to
|
|
// fall through. One typical example that this helps with is code like:
|
|
// if (a)
|
|
// foo();
|
|
// if (b)
|
|
// foo();
|
|
// Cloning the 'if b' block into the end of the first foo block is messy.
|
|
|
|
// The messy case is when the fall-through block falls through to other
|
|
// blocks. This is what we would be preventing if we cloned the block.
|
|
DestI = Dest;
|
|
if (++DestI != Dest->getParent()->end()) {
|
|
BasicBlock *DestSucc = DestI;
|
|
// If any of Dest's successors are fall-throughs, don't do this xform.
|
|
for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest);
|
|
SI != SE; ++SI)
|
|
if (*SI == DestSucc)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Finally, check that we haven't redirected to this target block earlier;
|
|
// there are cases where we loop forever if we don't check this (PR 2323).
|
|
if (!CycleDetector.insert(Dest))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
|
|
/// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we
|
|
/// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
|
|
/// DstBlock, return it.
|
|
static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock,
|
|
BasicBlock *DstBlock) {
|
|
// SrcBlock must have a single predecessor.
|
|
pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock);
|
|
if (PI == PE || ++PI != PE) return 0;
|
|
|
|
BasicBlock *SrcPred = *pred_begin(SrcBlock);
|
|
|
|
// Look at the predecessors of DstBlock. One of them will be SrcBlock. If
|
|
// there is only one other pred, get it, otherwise we can't handle it.
|
|
PI = pred_begin(DstBlock); PE = pred_end(DstBlock);
|
|
BasicBlock *DstOtherPred = 0;
|
|
if (*PI == SrcBlock) {
|
|
if (++PI == PE) return 0;
|
|
DstOtherPred = *PI;
|
|
if (++PI != PE) return 0;
|
|
} else {
|
|
DstOtherPred = *PI;
|
|
if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0;
|
|
}
|
|
|
|
// We can handle two situations here: "if then" and "if then else" blocks. An
|
|
// 'if then' situation is just where DstOtherPred == SrcPred.
|
|
if (DstOtherPred == SrcPred)
|
|
return SrcPred;
|
|
|
|
// Check to see if we have an "if then else" situation, which means that
|
|
// DstOtherPred will have a single predecessor and it will be SrcPred.
|
|
PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred);
|
|
if (PI != PE && *PI == SrcPred) {
|
|
if (++PI != PE) return 0; // Not a single pred.
|
|
return SrcPred; // Otherwise, it's an "if then" situation. Return the if.
|
|
}
|
|
|
|
// Otherwise, this is something we can't handle.
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// eliminateUnconditionalBranch - Clone the instructions from the destination
|
|
/// block into the source block, eliminating the specified unconditional branch.
|
|
/// If the destination block defines values used by successors of the dest
|
|
/// block, we may need to insert PHI nodes.
|
|
///
|
|
void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
|
|
BasicBlock *SourceBlock = Branch->getParent();
|
|
BasicBlock *DestBlock = Branch->getSuccessor(0);
|
|
assert(SourceBlock != DestBlock && "Our predicate is broken!");
|
|
|
|
DEBUG(errs() << "TailDuplication[" << SourceBlock->getParent()->getName()
|
|
<< "]: Eliminating branch: " << *Branch);
|
|
|
|
// See if we can avoid duplicating code by moving it up to a dominator of both
|
|
// blocks.
|
|
if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
|
|
DEBUG(errs() << "Found shared dominator: " << DomBlock->getName() << "\n");
|
|
|
|
// If there are non-phi instructions in DestBlock that have no operands
|
|
// defined in DestBlock, and if the instruction has no side effects, we can
|
|
// move the instruction to DomBlock instead of duplicating it.
|
|
BasicBlock::iterator BBI = DestBlock->getFirstNonPHI();
|
|
while (!isa<TerminatorInst>(BBI)) {
|
|
Instruction *I = BBI++;
|
|
|
|
bool CanHoist = I->isSafeToSpeculativelyExecute() &&
|
|
!I->mayReadFromMemory();
|
|
if (CanHoist) {
|
|
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
|
|
if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
|
|
if (OpI->getParent() == DestBlock ||
|
|
(isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) {
|
|
CanHoist = false;
|
|
break;
|
|
}
|
|
if (CanHoist) {
|
|
// Remove from DestBlock, move right before the term in DomBlock.
|
|
DestBlock->getInstList().remove(I);
|
|
DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
|
|
DEBUG(errs() << "Hoisted: " << *I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tail duplication can not update SSA properties correctly if the values
|
|
// defined in the duplicated tail are used outside of the tail itself. For
|
|
// this reason, we spill all values that are used outside of the tail to the
|
|
// stack.
|
|
for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I)
|
|
if (I->isUsedOutsideOfBlock(DestBlock)) {
|
|
// We found a use outside of the tail. Create a new stack slot to
|
|
// break this inter-block usage pattern.
|
|
DemoteRegToStack(*I);
|
|
}
|
|
|
|
// We are going to have to map operands from the original block B to the new
|
|
// copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
|
|
// nodes also define part of this mapping. Loop over these PHI nodes, adding
|
|
// them to our mapping.
|
|
//
|
|
std::map<Value*, Value*> ValueMapping;
|
|
|
|
BasicBlock::iterator BI = DestBlock->begin();
|
|
bool HadPHINodes = isa<PHINode>(BI);
|
|
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
|
ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
|
|
|
|
// Clone the non-phi instructions of the dest block into the source block,
|
|
// keeping track of the mapping...
|
|
//
|
|
for (; BI != DestBlock->end(); ++BI) {
|
|
Instruction *New = BI->clone();
|
|
New->setName(BI->getName());
|
|
SourceBlock->getInstList().push_back(New);
|
|
ValueMapping[BI] = New;
|
|
}
|
|
|
|
// Now that we have built the mapping information and cloned all of the
|
|
// instructions (giving us a new terminator, among other things), walk the new
|
|
// instructions, rewriting references of old instructions to use new
|
|
// instructions.
|
|
//
|
|
BI = Branch; ++BI; // Get an iterator to the first new instruction
|
|
for (; BI != SourceBlock->end(); ++BI)
|
|
for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
|
|
std::map<Value*, Value*>::const_iterator I =
|
|
ValueMapping.find(BI->getOperand(i));
|
|
if (I != ValueMapping.end())
|
|
BI->setOperand(i, I->second);
|
|
}
|
|
|
|
// Next we check to see if any of the successors of DestBlock had PHI nodes.
|
|
// If so, we need to add entries to the PHI nodes for SourceBlock now.
|
|
for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
|
|
SI != SE; ++SI) {
|
|
BasicBlock *Succ = *SI;
|
|
for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) {
|
|
PHINode *PN = cast<PHINode>(PNI);
|
|
// Ok, we have a PHI node. Figure out what the incoming value was for the
|
|
// DestBlock.
|
|
Value *IV = PN->getIncomingValueForBlock(DestBlock);
|
|
|
|
// Remap the value if necessary...
|
|
std::map<Value*, Value*>::const_iterator I = ValueMapping.find(IV);
|
|
if (I != ValueMapping.end())
|
|
IV = I->second;
|
|
PN->addIncoming(IV, SourceBlock);
|
|
}
|
|
}
|
|
|
|
// Next, remove the old branch instruction, and any PHI node entries that we
|
|
// had.
|
|
BI = Branch; ++BI; // Get an iterator to the first new instruction
|
|
DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
|
|
SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch...
|
|
|
|
// Final step: now that we have finished everything up, walk the cloned
|
|
// instructions one last time, constant propagating and DCE'ing them, because
|
|
// they may not be needed anymore.
|
|
//
|
|
if (HadPHINodes) {
|
|
while (BI != SourceBlock->end()) {
|
|
Instruction *Inst = BI++;
|
|
if (isInstructionTriviallyDead(Inst))
|
|
Inst->eraseFromParent();
|
|
else if (Constant *C = ConstantFoldInstruction(Inst)) {
|
|
Inst->replaceAllUsesWith(C);
|
|
Inst->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
++NumEliminated; // We just killed a branch!
|
|
}
|