llvm-6502/include/llvm/CodeGen/MachineInstrBuilder.h

498 lines
18 KiB
C++

//===-- CodeGen/MachineInstBuilder.h - Simplify creation of MIs -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes a function named BuildMI, which is useful for dramatically
// simplifying how MachineInstr's are created. It allows use of code like this:
//
// M = BuildMI(X86::ADDrr8, 2).addReg(argVal1).addReg(argVal2);
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTRBUILDER_H
#define LLVM_CODEGEN_MACHINEINSTRBUILDER_H
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
class MCInstrDesc;
class MDNode;
namespace RegState {
enum {
Define = 0x2,
Implicit = 0x4,
Kill = 0x8,
Dead = 0x10,
Undef = 0x20,
EarlyClobber = 0x40,
Debug = 0x80,
InternalRead = 0x100,
DefineNoRead = Define | Undef,
ImplicitDefine = Implicit | Define,
ImplicitKill = Implicit | Kill
};
}
class MachineInstrBuilder {
MachineFunction *MF;
MachineInstr *MI;
public:
MachineInstrBuilder() : MF(nullptr), MI(nullptr) {}
/// Create a MachineInstrBuilder for manipulating an existing instruction.
/// F must be the machine function that was used to allocate I.
MachineInstrBuilder(MachineFunction &F, MachineInstr *I) : MF(&F), MI(I) {}
/// Allow automatic conversion to the machine instruction we are working on.
///
operator MachineInstr*() const { return MI; }
MachineInstr *operator->() const { return MI; }
operator MachineBasicBlock::iterator() const { return MI; }
/// addReg - Add a new virtual register operand...
///
const
MachineInstrBuilder &addReg(unsigned RegNo, unsigned flags = 0,
unsigned SubReg = 0) const {
assert((flags & 0x1) == 0 &&
"Passing in 'true' to addReg is forbidden! Use enums instead.");
MI->addOperand(*MF, MachineOperand::CreateReg(RegNo,
flags & RegState::Define,
flags & RegState::Implicit,
flags & RegState::Kill,
flags & RegState::Dead,
flags & RegState::Undef,
flags & RegState::EarlyClobber,
SubReg,
flags & RegState::Debug,
flags & RegState::InternalRead));
return *this;
}
/// addImm - Add a new immediate operand.
///
const MachineInstrBuilder &addImm(int64_t Val) const {
MI->addOperand(*MF, MachineOperand::CreateImm(Val));
return *this;
}
const MachineInstrBuilder &addCImm(const ConstantInt *Val) const {
MI->addOperand(*MF, MachineOperand::CreateCImm(Val));
return *this;
}
const MachineInstrBuilder &addFPImm(const ConstantFP *Val) const {
MI->addOperand(*MF, MachineOperand::CreateFPImm(Val));
return *this;
}
const MachineInstrBuilder &addMBB(MachineBasicBlock *MBB,
unsigned char TargetFlags = 0) const {
MI->addOperand(*MF, MachineOperand::CreateMBB(MBB, TargetFlags));
return *this;
}
const MachineInstrBuilder &addFrameIndex(int Idx) const {
MI->addOperand(*MF, MachineOperand::CreateFI(Idx));
return *this;
}
const MachineInstrBuilder &addConstantPoolIndex(unsigned Idx,
int Offset = 0,
unsigned char TargetFlags = 0) const {
MI->addOperand(*MF, MachineOperand::CreateCPI(Idx, Offset, TargetFlags));
return *this;
}
const MachineInstrBuilder &addTargetIndex(unsigned Idx, int64_t Offset = 0,
unsigned char TargetFlags = 0) const {
MI->addOperand(*MF, MachineOperand::CreateTargetIndex(Idx, Offset,
TargetFlags));
return *this;
}
const MachineInstrBuilder &addJumpTableIndex(unsigned Idx,
unsigned char TargetFlags = 0) const {
MI->addOperand(*MF, MachineOperand::CreateJTI(Idx, TargetFlags));
return *this;
}
const MachineInstrBuilder &addGlobalAddress(const GlobalValue *GV,
int64_t Offset = 0,
unsigned char TargetFlags = 0) const {
MI->addOperand(*MF, MachineOperand::CreateGA(GV, Offset, TargetFlags));
return *this;
}
const MachineInstrBuilder &addExternalSymbol(const char *FnName,
unsigned char TargetFlags = 0) const {
MI->addOperand(*MF, MachineOperand::CreateES(FnName, TargetFlags));
return *this;
}
const MachineInstrBuilder &addBlockAddress(const BlockAddress *BA,
int64_t Offset = 0,
unsigned char TargetFlags = 0) const {
MI->addOperand(*MF, MachineOperand::CreateBA(BA, Offset, TargetFlags));
return *this;
}
const MachineInstrBuilder &addRegMask(const uint32_t *Mask) const {
MI->addOperand(*MF, MachineOperand::CreateRegMask(Mask));
return *this;
}
const MachineInstrBuilder &addMemOperand(MachineMemOperand *MMO) const {
MI->addMemOperand(*MF, MMO);
return *this;
}
const MachineInstrBuilder &setMemRefs(MachineInstr::mmo_iterator b,
MachineInstr::mmo_iterator e) const {
MI->setMemRefs(b, e);
return *this;
}
const MachineInstrBuilder &addOperand(const MachineOperand &MO) const {
MI->addOperand(*MF, MO);
return *this;
}
const MachineInstrBuilder &addMetadata(const MDNode *MD) const {
MI->addOperand(*MF, MachineOperand::CreateMetadata(MD));
return *this;
}
const MachineInstrBuilder &addCFIIndex(unsigned CFIIndex) const {
MI->addOperand(*MF, MachineOperand::CreateCFIIndex(CFIIndex));
return *this;
}
const MachineInstrBuilder &addSym(MCSymbol *Sym) const {
MI->addOperand(*MF, MachineOperand::CreateMCSymbol(Sym));
return *this;
}
const MachineInstrBuilder &setMIFlags(unsigned Flags) const {
MI->setFlags(Flags);
return *this;
}
const MachineInstrBuilder &setMIFlag(MachineInstr::MIFlag Flag) const {
MI->setFlag(Flag);
return *this;
}
// Add a displacement from an existing MachineOperand with an added offset.
const MachineInstrBuilder &addDisp(const MachineOperand &Disp, int64_t off,
unsigned char TargetFlags = 0) const {
switch (Disp.getType()) {
default:
llvm_unreachable("Unhandled operand type in addDisp()");
case MachineOperand::MO_Immediate:
return addImm(Disp.getImm() + off);
case MachineOperand::MO_GlobalAddress: {
// If caller specifies new TargetFlags then use it, otherwise the
// default behavior is to copy the target flags from the existing
// MachineOperand. This means if the caller wants to clear the
// target flags it needs to do so explicitly.
if (TargetFlags)
return addGlobalAddress(Disp.getGlobal(), Disp.getOffset() + off,
TargetFlags);
return addGlobalAddress(Disp.getGlobal(), Disp.getOffset() + off,
Disp.getTargetFlags());
}
}
}
/// Copy all the implicit operands from OtherMI onto this one.
const MachineInstrBuilder &copyImplicitOps(const MachineInstr *OtherMI) {
MI->copyImplicitOps(*MF, OtherMI);
return *this;
}
};
/// BuildMI - Builder interface. Specify how to create the initial instruction
/// itself.
///
inline MachineInstrBuilder BuildMI(MachineFunction &MF,
DebugLoc DL,
const MCInstrDesc &MCID) {
return MachineInstrBuilder(MF, MF.CreateMachineInstr(MCID, DL));
}
/// BuildMI - This version of the builder sets up the first operand as a
/// destination virtual register.
///
inline MachineInstrBuilder BuildMI(MachineFunction &MF,
DebugLoc DL,
const MCInstrDesc &MCID,
unsigned DestReg) {
return MachineInstrBuilder(MF, MF.CreateMachineInstr(MCID, DL))
.addReg(DestReg, RegState::Define);
}
/// BuildMI - This version of the builder inserts the newly-built
/// instruction before the given position in the given MachineBasicBlock, and
/// sets up the first operand as a destination virtual register.
///
inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
DebugLoc DL,
const MCInstrDesc &MCID,
unsigned DestReg) {
MachineFunction &MF = *BB.getParent();
MachineInstr *MI = MF.CreateMachineInstr(MCID, DL);
BB.insert(I, MI);
return MachineInstrBuilder(MF, MI).addReg(DestReg, RegState::Define);
}
inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB,
MachineBasicBlock::instr_iterator I,
DebugLoc DL,
const MCInstrDesc &MCID,
unsigned DestReg) {
MachineFunction &MF = *BB.getParent();
MachineInstr *MI = MF.CreateMachineInstr(MCID, DL);
BB.insert(I, MI);
return MachineInstrBuilder(MF, MI).addReg(DestReg, RegState::Define);
}
inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB,
MachineInstr *I,
DebugLoc DL,
const MCInstrDesc &MCID,
unsigned DestReg) {
if (I->isInsideBundle()) {
MachineBasicBlock::instr_iterator MII = I;
return BuildMI(BB, MII, DL, MCID, DestReg);
}
MachineBasicBlock::iterator MII = I;
return BuildMI(BB, MII, DL, MCID, DestReg);
}
/// BuildMI - This version of the builder inserts the newly-built
/// instruction before the given position in the given MachineBasicBlock, and
/// does NOT take a destination register.
///
inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
DebugLoc DL,
const MCInstrDesc &MCID) {
MachineFunction &MF = *BB.getParent();
MachineInstr *MI = MF.CreateMachineInstr(MCID, DL);
BB.insert(I, MI);
return MachineInstrBuilder(MF, MI);
}
inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB,
MachineBasicBlock::instr_iterator I,
DebugLoc DL,
const MCInstrDesc &MCID) {
MachineFunction &MF = *BB.getParent();
MachineInstr *MI = MF.CreateMachineInstr(MCID, DL);
BB.insert(I, MI);
return MachineInstrBuilder(MF, MI);
}
inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB,
MachineInstr *I,
DebugLoc DL,
const MCInstrDesc &MCID) {
if (I->isInsideBundle()) {
MachineBasicBlock::instr_iterator MII = I;
return BuildMI(BB, MII, DL, MCID);
}
MachineBasicBlock::iterator MII = I;
return BuildMI(BB, MII, DL, MCID);
}
/// BuildMI - This version of the builder inserts the newly-built
/// instruction at the end of the given MachineBasicBlock, and does NOT take a
/// destination register.
///
inline MachineInstrBuilder BuildMI(MachineBasicBlock *BB,
DebugLoc DL,
const MCInstrDesc &MCID) {
return BuildMI(*BB, BB->end(), DL, MCID);
}
/// BuildMI - This version of the builder inserts the newly-built
/// instruction at the end of the given MachineBasicBlock, and sets up the first
/// operand as a destination virtual register.
///
inline MachineInstrBuilder BuildMI(MachineBasicBlock *BB,
DebugLoc DL,
const MCInstrDesc &MCID,
unsigned DestReg) {
return BuildMI(*BB, BB->end(), DL, MCID, DestReg);
}
/// BuildMI - This version of the builder builds a DBG_VALUE intrinsic
/// for either a value in a register or a register-indirect+offset
/// address. The convention is that a DBG_VALUE is indirect iff the
/// second operand is an immediate.
///
inline MachineInstrBuilder BuildMI(MachineFunction &MF,
DebugLoc DL,
const MCInstrDesc &MCID,
bool IsIndirect,
unsigned Reg,
unsigned Offset,
const MDNode *MD) {
if (IsIndirect)
return BuildMI(MF, DL, MCID)
.addReg(Reg, RegState::Debug)
.addImm(Offset)
.addMetadata(MD);
else {
assert(Offset == 0 && "A direct address cannot have an offset.");
return BuildMI(MF, DL, MCID)
.addReg(Reg, RegState::Debug)
.addReg(0U, RegState::Debug)
.addMetadata(MD);
}
}
/// BuildMI - This version of the builder builds a DBG_VALUE intrinsic
/// for either a value in a register or a register-indirect+offset
/// address and inserts it at position I.
///
inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
DebugLoc DL,
const MCInstrDesc &MCID,
bool IsIndirect,
unsigned Reg,
unsigned Offset,
const MDNode *MD) {
MachineFunction &MF = *BB.getParent();
MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, MD);
BB.insert(I, MI);
return MachineInstrBuilder(MF, MI);
}
inline unsigned getDefRegState(bool B) {
return B ? RegState::Define : 0;
}
inline unsigned getImplRegState(bool B) {
return B ? RegState::Implicit : 0;
}
inline unsigned getKillRegState(bool B) {
return B ? RegState::Kill : 0;
}
inline unsigned getDeadRegState(bool B) {
return B ? RegState::Dead : 0;
}
inline unsigned getUndefRegState(bool B) {
return B ? RegState::Undef : 0;
}
inline unsigned getInternalReadRegState(bool B) {
return B ? RegState::InternalRead : 0;
}
inline unsigned getDebugRegState(bool B) {
return B ? RegState::Debug : 0;
}
/// Helper class for constructing bundles of MachineInstrs.
///
/// MIBundleBuilder can create a bundle from scratch by inserting new
/// MachineInstrs one at a time, or it can create a bundle from a sequence of
/// existing MachineInstrs in a basic block.
class MIBundleBuilder {
MachineBasicBlock &MBB;
MachineBasicBlock::instr_iterator Begin;
MachineBasicBlock::instr_iterator End;
public:
/// Create an MIBundleBuilder that inserts instructions into a new bundle in
/// BB above the bundle or instruction at Pos.
MIBundleBuilder(MachineBasicBlock &BB,
MachineBasicBlock::iterator Pos)
: MBB(BB), Begin(Pos.getInstrIterator()), End(Begin) {}
/// Create a bundle from the sequence of instructions between B and E.
MIBundleBuilder(MachineBasicBlock &BB,
MachineBasicBlock::iterator B,
MachineBasicBlock::iterator E)
: MBB(BB), Begin(B.getInstrIterator()), End(E.getInstrIterator()) {
assert(B != E && "No instructions to bundle");
++B;
while (B != E) {
MachineInstr *MI = B;
++B;
MI->bundleWithPred();
}
}
/// Create an MIBundleBuilder representing an existing instruction or bundle
/// that has MI as its head.
explicit MIBundleBuilder(MachineInstr *MI)
: MBB(*MI->getParent()), Begin(MI), End(getBundleEnd(MI)) {}
/// Return a reference to the basic block containing this bundle.
MachineBasicBlock &getMBB() const { return MBB; }
/// Return true if no instructions have been inserted in this bundle yet.
/// Empty bundles aren't representable in a MachineBasicBlock.
bool empty() const { return Begin == End; }
/// Return an iterator to the first bundled instruction.
MachineBasicBlock::instr_iterator begin() const { return Begin; }
/// Return an iterator beyond the last bundled instruction.
MachineBasicBlock::instr_iterator end() const { return End; }
/// Insert MI into this bundle before I which must point to an instruction in
/// the bundle, or end().
MIBundleBuilder &insert(MachineBasicBlock::instr_iterator I,
MachineInstr *MI) {
MBB.insert(I, MI);
if (I == Begin) {
if (!empty())
MI->bundleWithSucc();
Begin = MI;
return *this;
}
if (I == End) {
MI->bundleWithPred();
return *this;
}
// MI was inserted in the middle of the bundle, so its neighbors' flags are
// already fine. Update MI's bundle flags manually.
MI->setFlag(MachineInstr::BundledPred);
MI->setFlag(MachineInstr::BundledSucc);
return *this;
}
/// Insert MI into MBB by prepending it to the instructions in the bundle.
/// MI will become the first instruction in the bundle.
MIBundleBuilder &prepend(MachineInstr *MI) {
return insert(begin(), MI);
}
/// Insert MI into MBB by appending it to the instructions in the bundle.
/// MI will become the last instruction in the bundle.
MIBundleBuilder &append(MachineInstr *MI) {
return insert(end(), MI);
}
};
} // End llvm namespace
#endif