mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
283b399377
behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206822 91177308-0d34-0410-b5e6-96231b3b80d8
461 lines
16 KiB
C++
461 lines
16 KiB
C++
//===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides a template that implements the core algorithm for the
|
|
// SSAUpdater and MachineSSAUpdater.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
|
#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
namespace llvm {
|
|
|
|
#define DEBUG_TYPE "ssaupdater"
|
|
|
|
class CastInst;
|
|
class PHINode;
|
|
template<typename T> class SSAUpdaterTraits;
|
|
|
|
template<typename UpdaterT>
|
|
class SSAUpdaterImpl {
|
|
private:
|
|
UpdaterT *Updater;
|
|
|
|
typedef SSAUpdaterTraits<UpdaterT> Traits;
|
|
typedef typename Traits::BlkT BlkT;
|
|
typedef typename Traits::ValT ValT;
|
|
typedef typename Traits::PhiT PhiT;
|
|
|
|
/// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
|
|
/// The predecessors of each block are cached here since pred_iterator is
|
|
/// slow and we need to iterate over the blocks at least a few times.
|
|
class BBInfo {
|
|
public:
|
|
BlkT *BB; // Back-pointer to the corresponding block.
|
|
ValT AvailableVal; // Value to use in this block.
|
|
BBInfo *DefBB; // Block that defines the available value.
|
|
int BlkNum; // Postorder number.
|
|
BBInfo *IDom; // Immediate dominator.
|
|
unsigned NumPreds; // Number of predecessor blocks.
|
|
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
|
PhiT *PHITag; // Marker for existing PHIs that match.
|
|
|
|
BBInfo(BlkT *ThisBB, ValT V)
|
|
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr), BlkNum(0),
|
|
IDom(nullptr), NumPreds(0), Preds(nullptr), PHITag(nullptr) {}
|
|
};
|
|
|
|
typedef DenseMap<BlkT*, ValT> AvailableValsTy;
|
|
AvailableValsTy *AvailableVals;
|
|
|
|
SmallVectorImpl<PhiT*> *InsertedPHIs;
|
|
|
|
typedef SmallVectorImpl<BBInfo*> BlockListTy;
|
|
typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
|
|
BBMapTy BBMap;
|
|
BumpPtrAllocator Allocator;
|
|
|
|
public:
|
|
explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
|
|
SmallVectorImpl<PhiT*> *Ins) :
|
|
Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
|
|
|
|
/// GetValue - Check to see if AvailableVals has an entry for the specified
|
|
/// BB and if so, return it. If not, construct SSA form by first
|
|
/// calculating the required placement of PHIs and then inserting new PHIs
|
|
/// where needed.
|
|
ValT GetValue(BlkT *BB) {
|
|
SmallVector<BBInfo*, 100> BlockList;
|
|
BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
|
|
|
|
// Special case: bail out if BB is unreachable.
|
|
if (BlockList.size() == 0) {
|
|
ValT V = Traits::GetUndefVal(BB, Updater);
|
|
(*AvailableVals)[BB] = V;
|
|
return V;
|
|
}
|
|
|
|
FindDominators(&BlockList, PseudoEntry);
|
|
FindPHIPlacement(&BlockList);
|
|
FindAvailableVals(&BlockList);
|
|
|
|
return BBMap[BB]->DefBB->AvailableVal;
|
|
}
|
|
|
|
/// BuildBlockList - Starting from the specified basic block, traverse back
|
|
/// through its predecessors until reaching blocks with known values.
|
|
/// Create BBInfo structures for the blocks and append them to the block
|
|
/// list.
|
|
BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
|
|
SmallVector<BBInfo*, 10> RootList;
|
|
SmallVector<BBInfo*, 64> WorkList;
|
|
|
|
BBInfo *Info = new (Allocator) BBInfo(BB, 0);
|
|
BBMap[BB] = Info;
|
|
WorkList.push_back(Info);
|
|
|
|
// Search backward from BB, creating BBInfos along the way and stopping
|
|
// when reaching blocks that define the value. Record those defining
|
|
// blocks on the RootList.
|
|
SmallVector<BlkT*, 10> Preds;
|
|
while (!WorkList.empty()) {
|
|
Info = WorkList.pop_back_val();
|
|
Preds.clear();
|
|
Traits::FindPredecessorBlocks(Info->BB, &Preds);
|
|
Info->NumPreds = Preds.size();
|
|
if (Info->NumPreds == 0)
|
|
Info->Preds = nullptr;
|
|
else
|
|
Info->Preds = static_cast<BBInfo**>
|
|
(Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
|
|
AlignOf<BBInfo*>::Alignment));
|
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
BlkT *Pred = Preds[p];
|
|
// Check if BBMap already has a BBInfo for the predecessor block.
|
|
typename BBMapTy::value_type &BBMapBucket =
|
|
BBMap.FindAndConstruct(Pred);
|
|
if (BBMapBucket.second) {
|
|
Info->Preds[p] = BBMapBucket.second;
|
|
continue;
|
|
}
|
|
|
|
// Create a new BBInfo for the predecessor.
|
|
ValT PredVal = AvailableVals->lookup(Pred);
|
|
BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
|
|
BBMapBucket.second = PredInfo;
|
|
Info->Preds[p] = PredInfo;
|
|
|
|
if (PredInfo->AvailableVal) {
|
|
RootList.push_back(PredInfo);
|
|
continue;
|
|
}
|
|
WorkList.push_back(PredInfo);
|
|
}
|
|
}
|
|
|
|
// Now that we know what blocks are backwards-reachable from the starting
|
|
// block, do a forward depth-first traversal to assign postorder numbers
|
|
// to those blocks.
|
|
BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
|
|
unsigned BlkNum = 1;
|
|
|
|
// Initialize the worklist with the roots from the backward traversal.
|
|
while (!RootList.empty()) {
|
|
Info = RootList.pop_back_val();
|
|
Info->IDom = PseudoEntry;
|
|
Info->BlkNum = -1;
|
|
WorkList.push_back(Info);
|
|
}
|
|
|
|
while (!WorkList.empty()) {
|
|
Info = WorkList.back();
|
|
|
|
if (Info->BlkNum == -2) {
|
|
// All the successors have been handled; assign the postorder number.
|
|
Info->BlkNum = BlkNum++;
|
|
// If not a root, put it on the BlockList.
|
|
if (!Info->AvailableVal)
|
|
BlockList->push_back(Info);
|
|
WorkList.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
|
// successors have been put on the worklist. When it returns to the top
|
|
// the list, after handling its successors, it will be assigned a
|
|
// number.
|
|
Info->BlkNum = -2;
|
|
|
|
// Add unvisited successors to the work list.
|
|
for (typename Traits::BlkSucc_iterator SI =
|
|
Traits::BlkSucc_begin(Info->BB),
|
|
E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
|
|
BBInfo *SuccInfo = BBMap[*SI];
|
|
if (!SuccInfo || SuccInfo->BlkNum)
|
|
continue;
|
|
SuccInfo->BlkNum = -1;
|
|
WorkList.push_back(SuccInfo);
|
|
}
|
|
}
|
|
PseudoEntry->BlkNum = BlkNum;
|
|
return PseudoEntry;
|
|
}
|
|
|
|
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
|
/// finding dominators. Given two basic blocks, it walks up the dominator
|
|
/// tree until it finds a common dominator of both. It uses the postorder
|
|
/// number of the blocks to determine how to do that.
|
|
BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
|
|
while (Blk1 != Blk2) {
|
|
while (Blk1->BlkNum < Blk2->BlkNum) {
|
|
Blk1 = Blk1->IDom;
|
|
if (!Blk1)
|
|
return Blk2;
|
|
}
|
|
while (Blk2->BlkNum < Blk1->BlkNum) {
|
|
Blk2 = Blk2->IDom;
|
|
if (!Blk2)
|
|
return Blk1;
|
|
}
|
|
}
|
|
return Blk1;
|
|
}
|
|
|
|
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
|
/// corresponding to the basic blocks on the BlockList. This uses the
|
|
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
|
|
/// and Kennedy, published in Software--Practice and Experience, 2001,
|
|
/// 4:1-10. Because the CFG subset does not include any edges leading into
|
|
/// blocks that define the value, the results are not the usual dominator
|
|
/// tree. The CFG subset has a single pseudo-entry node with edges to a set
|
|
/// of root nodes for blocks that define the value. The dominators for this
|
|
/// subset CFG are not the standard dominators but they are adequate for
|
|
/// placing PHIs within the subset CFG.
|
|
void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
BBInfo *NewIDom = nullptr;
|
|
|
|
// Iterate through the block's predecessors.
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
BBInfo *Pred = Info->Preds[p];
|
|
|
|
// Treat an unreachable predecessor as a definition with 'undef'.
|
|
if (Pred->BlkNum == 0) {
|
|
Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
|
|
(*AvailableVals)[Pred->BB] = Pred->AvailableVal;
|
|
Pred->DefBB = Pred;
|
|
Pred->BlkNum = PseudoEntry->BlkNum;
|
|
PseudoEntry->BlkNum++;
|
|
}
|
|
|
|
if (!NewIDom)
|
|
NewIDom = Pred;
|
|
else
|
|
NewIDom = IntersectDominators(NewIDom, Pred);
|
|
}
|
|
|
|
// Check if the IDom value has changed.
|
|
if (NewIDom && NewIDom != Info->IDom) {
|
|
Info->IDom = NewIDom;
|
|
Changed = true;
|
|
}
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
|
/// any blocks containing definitions of the value. If one is found, then
|
|
/// the successor of Pred is in the dominance frontier for the definition,
|
|
/// and this function returns true.
|
|
bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
|
|
for (; Pred != IDom; Pred = Pred->IDom) {
|
|
if (Pred->DefBB == Pred)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
|
|
/// of the known definitions. Iteratively add PHIs in the dom frontiers
|
|
/// until nothing changes. Along the way, keep track of the nearest
|
|
/// dominating definitions for non-PHI blocks.
|
|
void FindPHIPlacement(BlockListTy *BlockList) {
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
|
|
// If this block already needs a PHI, there is nothing to do here.
|
|
if (Info->DefBB == Info)
|
|
continue;
|
|
|
|
// Default to use the same def as the immediate dominator.
|
|
BBInfo *NewDefBB = Info->IDom->DefBB;
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
|
// Need a PHI here.
|
|
NewDefBB = Info;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if anything changed.
|
|
if (NewDefBB != Info->DefBB) {
|
|
Info->DefBB = NewDefBB;
|
|
Changed = true;
|
|
}
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
/// FindAvailableVal - If this block requires a PHI, first check if an
|
|
/// existing PHI matches the PHI placement and reaching definitions computed
|
|
/// earlier, and if not, create a new PHI. Visit all the block's
|
|
/// predecessors to calculate the available value for each one and fill in
|
|
/// the incoming values for a new PHI.
|
|
void FindAvailableVals(BlockListTy *BlockList) {
|
|
// Go through the worklist in forward order (i.e., backward through the CFG)
|
|
// and check if existing PHIs can be used. If not, create empty PHIs where
|
|
// they are needed.
|
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
|
E = BlockList->end(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
// Check if there needs to be a PHI in BB.
|
|
if (Info->DefBB != Info)
|
|
continue;
|
|
|
|
// Look for an existing PHI.
|
|
FindExistingPHI(Info->BB, BlockList);
|
|
if (Info->AvailableVal)
|
|
continue;
|
|
|
|
ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
|
|
Info->AvailableVal = PHI;
|
|
(*AvailableVals)[Info->BB] = PHI;
|
|
}
|
|
|
|
// Now go back through the worklist in reverse order to fill in the
|
|
// arguments for any new PHIs added in the forward traversal.
|
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
|
|
if (Info->DefBB != Info) {
|
|
// Record the available value at join nodes to speed up subsequent
|
|
// uses of this SSAUpdater for the same value.
|
|
if (Info->NumPreds > 1)
|
|
(*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
|
|
continue;
|
|
}
|
|
|
|
// Check if this block contains a newly added PHI.
|
|
PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
|
|
if (!PHI)
|
|
continue;
|
|
|
|
// Iterate through the block's predecessors.
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
BBInfo *PredInfo = Info->Preds[p];
|
|
BlkT *Pred = PredInfo->BB;
|
|
// Skip to the nearest preceding definition.
|
|
if (PredInfo->DefBB != PredInfo)
|
|
PredInfo = PredInfo->DefBB;
|
|
Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
|
|
}
|
|
|
|
DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
|
|
}
|
|
}
|
|
|
|
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
|
/// them match what is needed.
|
|
void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
|
|
for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
|
|
BBI != BBE; ++BBI) {
|
|
PhiT *SomePHI = Traits::InstrIsPHI(BBI);
|
|
if (!SomePHI)
|
|
break;
|
|
if (CheckIfPHIMatches(SomePHI)) {
|
|
RecordMatchingPHIs(BlockList);
|
|
break;
|
|
}
|
|
// Match failed: clear all the PHITag values.
|
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
|
E = BlockList->end(); I != E; ++I)
|
|
(*I)->PHITag = nullptr;
|
|
}
|
|
}
|
|
|
|
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
|
/// in the BBMap.
|
|
bool CheckIfPHIMatches(PhiT *PHI) {
|
|
SmallVector<PhiT*, 20> WorkList;
|
|
WorkList.push_back(PHI);
|
|
|
|
// Mark that the block containing this PHI has been visited.
|
|
BBMap[PHI->getParent()]->PHITag = PHI;
|
|
|
|
while (!WorkList.empty()) {
|
|
PHI = WorkList.pop_back_val();
|
|
|
|
// Iterate through the PHI's incoming values.
|
|
for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
|
|
E = Traits::PHI_end(PHI); I != E; ++I) {
|
|
ValT IncomingVal = I.getIncomingValue();
|
|
BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
|
|
// Skip to the nearest preceding definition.
|
|
if (PredInfo->DefBB != PredInfo)
|
|
PredInfo = PredInfo->DefBB;
|
|
|
|
// Check if it matches the expected value.
|
|
if (PredInfo->AvailableVal) {
|
|
if (IncomingVal == PredInfo->AvailableVal)
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
// Check if the value is a PHI in the correct block.
|
|
PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
|
|
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
|
|
return false;
|
|
|
|
// If this block has already been visited, check if this PHI matches.
|
|
if (PredInfo->PHITag) {
|
|
if (IncomingPHIVal == PredInfo->PHITag)
|
|
continue;
|
|
return false;
|
|
}
|
|
PredInfo->PHITag = IncomingPHIVal;
|
|
|
|
WorkList.push_back(IncomingPHIVal);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// RecordMatchingPHIs - For each PHI node that matches, record it in both
|
|
/// the BBMap and the AvailableVals mapping.
|
|
void RecordMatchingPHIs(BlockListTy *BlockList) {
|
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
|
E = BlockList->end(); I != E; ++I)
|
|
if (PhiT *PHI = (*I)->PHITag) {
|
|
BlkT *BB = PHI->getParent();
|
|
ValT PHIVal = Traits::GetPHIValue(PHI);
|
|
(*AvailableVals)[BB] = PHIVal;
|
|
BBMap[BB]->AvailableVal = PHIVal;
|
|
}
|
|
}
|
|
};
|
|
|
|
#undef DEBUG_TYPE // "ssaupdater"
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|