llvm-6502/lib/Analysis/ValueTracking.cpp
Dan Gohman ae3a0be92e Split the Add, Sub, and Mul instruction opcodes into separate
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.

For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.

This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
2009-06-04 22:49:04 +00:00

1080 lines
44 KiB
C++

//===- ValueTracking.cpp - Walk computations to compute properties --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/GlobalVariable.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
using namespace llvm;
/// getOpcode - If this is an Instruction or a ConstantExpr, return the
/// opcode value. Otherwise return UserOp1.
static unsigned getOpcode(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getOpcode();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
return CE->getOpcode();
// Use UserOp1 to mean there's no opcode.
return Instruction::UserOp1;
}
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
/// processing.
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero. If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
APInt &KnownZero, APInt &KnownOne,
TargetData *TD, unsigned Depth) {
const unsigned MaxDepth = 6;
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = Mask.getBitWidth();
assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) &&
"Not integer or pointer type!");
assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) &&
(!isa<IntegerType>(V->getType()) ||
V->getType()->getPrimitiveSizeInBits() == BitWidth) &&
KnownZero.getBitWidth() == BitWidth &&
KnownOne.getBitWidth() == BitWidth &&
"V, Mask, KnownOne and KnownZero should have same BitWidth");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// We know all of the bits for a constant!
KnownOne = CI->getValue() & Mask;
KnownZero = ~KnownOne & Mask;
return;
}
// Null is all-zeros.
if (isa<ConstantPointerNull>(V)) {
KnownOne.clear();
KnownZero = Mask;
return;
}
// The address of an aligned GlobalValue has trailing zeros.
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
unsigned Align = GV->getAlignment();
if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
if (Align > 0)
KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
CountTrailingZeros_32(Align));
else
KnownZero.clear();
KnownOne.clear();
return;
}
KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
if (Depth == MaxDepth || Mask == 0)
return; // Limit search depth.
User *I = dyn_cast<User>(V);
if (!I) return;
APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
switch (getOpcode(I)) {
default: break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
APInt Mask2(Mask & ~KnownZero);
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
}
case Instruction::Or: {
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
APInt Mask2(Mask & ~KnownOne);
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
}
case Instruction::Xor: {
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case Instruction::Mul: {
APInt Mask2 = APInt::getAllOnesValue(BitWidth);
ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conserative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
KnownOne.clear();
unsigned TrailZ = KnownZero.countTrailingOnes() +
KnownZero2.countTrailingOnes();
unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
KnownZero2.countLeadingOnes(),
BitWidth) - BitWidth;
TrailZ = std::min(TrailZ, BitWidth);
LeadZ = std::min(LeadZ, BitWidth);
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
APInt::getHighBitsSet(BitWidth, LeadZ);
KnownZero &= Mask;
return;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
APInt AllOnes = APInt::getAllOnesValue(BitWidth);
ComputeMaskedBits(I->getOperand(0),
AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clear();
KnownZero2.clear();
ComputeMaskedBits(I->getOperand(1),
AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
return;
}
case Instruction::Select:
ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
return; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// We can't handle these if we don't know the pointer size.
if (!TD) return;
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
const Type *SrcTy = I->getOperand(0)->getType();
unsigned SrcBitWidth = TD ?
TD->getTypeSizeInBits(SrcTy) :
SrcTy->getPrimitiveSizeInBits();
APInt MaskIn(Mask);
MaskIn.zextOrTrunc(SrcBitWidth);
KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne.zextOrTrunc(SrcBitWidth);
ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
Depth+1);
KnownZero.zextOrTrunc(BitWidth);
KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
if (BitWidth > SrcBitWidth)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
return;
}
case Instruction::BitCast: {
const Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
Depth+1);
return;
}
break;
}
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
unsigned SrcBitWidth = SrcTy->getBitWidth();
APInt MaskIn(Mask);
MaskIn.trunc(SrcBitWidth);
KnownZero.trunc(SrcBitWidth);
KnownOne.trunc(SrcBitWidth);
ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero.zext(BitWidth);
KnownOne.zext(BitWidth);
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
return;
}
case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
APInt Mask2(Mask.lshr(ShiftAmt));
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
return;
}
break;
case Instruction::LShr:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
APInt Mask2(Mask.shl(ShiftAmt));
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
return;
}
break;
case Instruction::AShr:
// (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Signed shift right.
APInt Mask2(Mask.shl(ShiftAmt));
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
KnownZero |= HighBits;
else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
KnownOne |= HighBits;
return;
}
break;
case Instruction::Sub: {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
if (!CLHS->getValue().isNegative()) {
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
TD, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
// from [0-C].
if ((KnownZero2 & MaskV) == MaskV) {
unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
// Top bits known zero.
KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
}
}
}
}
// fall through
case Instruction::Add: {
// If one of the operands has trailing zeros, than the bits that the
// other operand has in those bit positions will be preserved in the
// result. For an add, this works with either operand. For a subtract,
// this only works if the known zeros are in the right operand.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
APInt Mask2 = APInt::getLowBitsSet(BitWidth,
BitWidth - Mask.countLeadingZeros());
ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Depth+1);
assert((LHSKnownZero & LHSKnownOne) == 0 &&
"Bits known to be one AND zero?");
unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
// Determine which operand has more trailing zeros, and use that
// many bits from the other operand.
if (LHSKnownZeroOut > RHSKnownZeroOut) {
if (getOpcode(I) == Instruction::Add) {
APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
KnownZero |= KnownZero2 & Mask;
KnownOne |= KnownOne2 & Mask;
} else {
// If the known zeros are in the left operand for a subtract,
// fall back to the minimum known zeros in both operands.
KnownZero |= APInt::getLowBitsSet(BitWidth,
std::min(LHSKnownZeroOut,
RHSKnownZeroOut));
}
} else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
KnownZero |= LHSKnownZero & Mask;
KnownOne |= LHSKnownOne & Mask;
}
return;
}
case Instruction::SRem:
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
APInt RA = Rem->getValue();
if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
Depth+1);
// If the sign bit of the first operand is zero, the sign bit of
// the result is zero. If the first operand has no one bits below
// the second operand's single 1 bit, its sign will be zero.
if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
KnownZero2 |= ~LowBits;
KnownZero |= KnownZero2 & Mask;
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
}
}
break;
case Instruction::URem: {
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
APInt Mask2 = LowBits & Mask;
KnownZero |= ~LowBits & Mask;
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
APInt AllOnes = APInt::getAllOnesValue(BitWidth);
ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
TD, Depth+1);
ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
TD, Depth+1);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
KnownOne.clear();
KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
break;
}
case Instruction::Alloca:
case Instruction::Malloc: {
AllocationInst *AI = cast<AllocationInst>(V);
unsigned Align = AI->getAlignment();
if (Align == 0 && TD) {
if (isa<AllocaInst>(AI))
Align = TD->getABITypeAlignment(AI->getType()->getElementType());
else if (isa<MallocInst>(AI)) {
// Malloc returns maximally aligned memory.
Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Align =
std::max(Align,
(unsigned)TD->getABITypeAlignment(Type::DoubleTy));
Align =
std::max(Align,
(unsigned)TD->getABITypeAlignment(Type::Int64Ty));
}
}
if (Align > 0)
KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
CountTrailingZeros_32(Align));
break;
}
case Instruction::GetElementPtr: {
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
APInt LocalMask = APInt::getAllOnesValue(BitWidth);
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
ComputeMaskedBits(I->getOperand(0), LocalMask,
LocalKnownZero, LocalKnownOne, TD, Depth+1);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
Value *Index = I->getOperand(i);
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
// Handle struct member offset arithmetic.
if (!TD) return;
const StructLayout *SL = TD->getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
uint64_t Offset = SL->getElementOffset(Idx);
TrailZ = std::min(TrailZ,
CountTrailingZeros_64(Offset));
} else {
// Handle array index arithmetic.
const Type *IndexedTy = GTI.getIndexedType();
if (!IndexedTy->isSized()) return;
unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
LocalMask = APInt::getAllOnesValue(GEPOpiBits);
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
ComputeMaskedBits(Index, LocalMask,
LocalKnownZero, LocalKnownOne, TD, Depth+1);
TrailZ = std::min(TrailZ,
unsigned(CountTrailingZeros_64(TypeSize) +
LocalKnownZero.countTrailingOnes()));
}
}
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
break;
}
case Instruction::PHI: {
PHINode *P = cast<PHINode>(I);
// Handle the case of a simple two-predecessor recurrence PHI.
// There's a lot more that could theoretically be done here, but
// this is sufficient to catch some interesting cases.
if (P->getNumIncomingValues() == 2) {
for (unsigned i = 0; i != 2; ++i) {
Value *L = P->getIncomingValue(i);
Value *R = P->getIncomingValue(!i);
User *LU = dyn_cast<User>(L);
if (!LU)
continue;
unsigned Opcode = getOpcode(LU);
// Check for operations that have the property that if
// both their operands have low zero bits, the result
// will have low zero bits.
if (Opcode == Instruction::Add ||
Opcode == Instruction::Sub ||
Opcode == Instruction::And ||
Opcode == Instruction::Or ||
Opcode == Instruction::Mul) {
Value *LL = LU->getOperand(0);
Value *LR = LU->getOperand(1);
// Find a recurrence.
if (LL == I)
L = LR;
else if (LR == I)
L = LL;
else
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
APInt Mask2 = APInt::getAllOnesValue(BitWidth);
ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
Mask2 = APInt::getLowBitsSet(BitWidth,
KnownZero2.countTrailingOnes());
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
KnownZero = Mask &
APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
KnownZero3.countTrailingOnes()));
break;
}
}
}
// Otherwise take the unions of the known bit sets of the operands,
// taking conservative care to avoid excessive recursion.
if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
KnownZero = APInt::getAllOnesValue(BitWidth);
KnownOne = APInt::getAllOnesValue(BitWidth);
for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
// Skip direct self references.
if (P->getIncomingValue(i) == P) continue;
KnownZero2 = APInt(BitWidth, 0);
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
KnownZero2, KnownOne2, TD, MaxDepth-1);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
// more operands.
if (!KnownZero && !KnownOne)
break;
}
}
break;
}
case Instruction::Call:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz: {
unsigned LowBits = Log2_32(BitWidth)+1;
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
}
}
break;
}
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
TargetData *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "ashr X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
///
/// 'Op' must have a scalar integer type.
///
unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
const IntegerType *Ty = cast<IntegerType>(V->getType());
unsigned TyBits = Ty->getBitWidth();
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
// Note that ConstantInt is handled by the general ComputeMaskedBits case
// below.
if (Depth == 6)
return 1; // Limit search depth.
User *U = dyn_cast<User>(V);
switch (getOpcode(V)) {
default: break;
case Instruction::SExt:
Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
case Instruction::AShr:
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
// ashr X, C -> adds C sign bits.
if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
Tmp += C->getZExtValue();
if (Tmp > TyBits) Tmp = TyBits;
}
return Tmp;
case Instruction::Shl:
if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (C->getZExtValue() >= TyBits || // Bad shift.
C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
return Tmp - C->getZExtValue();
}
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
// ComputeMaskedBits, and pick whichever answer is better.
}
break;
case Instruction::Select:
Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
return std::min(Tmp, Tmp2);
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask = APInt::getAllOnesValue(TyBits);
ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)) == Mask)
return TyBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (KnownZero.isNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
break;
case Instruction::Sub:
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask = APInt::getAllOnesValue(TyBits);
ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)) == Mask)
return TyBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (KnownZero.isNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
break;
case Instruction::Trunc:
// FIXME: it's tricky to do anything useful for this, but it is an important
// case for targets like X86.
break;
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask = APInt::getAllOnesValue(TyBits);
ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
} else if (KnownOne.isNegative()) { // sign bit is 1;
Mask = KnownOne;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask = ~Mask;
Mask <<= Mask.getBitWidth()-TyBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
}
/// CannotBeNegativeZero - Return true if we can prove that the specified FP
/// value is never equal to -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
///
bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
if (Depth == 6)
return 1; // Limit search depth.
const Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return false;
// (add x, 0.0) is guaranteed to return +0.0, not -0.0.
if (I->getOpcode() == Instruction::FAdd &&
isa<ConstantFP>(I->getOperand(1)) &&
cast<ConstantFP>(I->getOperand(1))->isNullValue())
return true;
// sitofp and uitofp turn into +0.0 for zero.
if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
return true;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
// sqrt(-0.0) = -0.0, no other negative results are possible.
if (II->getIntrinsicID() == Intrinsic::sqrt)
return CannotBeNegativeZero(II->getOperand(1), Depth+1);
if (const CallInst *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction()) {
if (F->isDeclaration()) {
switch (F->getNameLen()) {
case 3: // abs(x) != -0.0
if (!strcmp(F->getNameStart(), "abs")) return true;
break;
case 4: // abs[lf](x) != -0.0
if (!strcmp(F->getNameStart(), "absf")) return true;
if (!strcmp(F->getNameStart(), "absl")) return true;
break;
}
}
}
return false;
}
// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of
// indices from Idxs that should be left out when inserting into the resulting
// struct. To is the result struct built so far, new insertvalue instructions
// build on that.
Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
SmallVector<unsigned, 10> &Idxs,
unsigned IdxSkip,
Instruction *InsertBefore) {
const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
if (STy) {
// Save the original To argument so we can modify it
Value *OrigTo = To;
// General case, the type indexed by Idxs is a struct
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
// Process each struct element recursively
Idxs.push_back(i);
Value *PrevTo = To;
To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
InsertBefore);
Idxs.pop_back();
if (!To) {
// Couldn't find any inserted value for this index? Cleanup
while (PrevTo != OrigTo) {
InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
PrevTo = Del->getAggregateOperand();
Del->eraseFromParent();
}
// Stop processing elements
break;
}
}
// If we succesfully found a value for each of our subaggregates
if (To)
return To;
}
// Base case, the type indexed by SourceIdxs is not a struct, or not all of
// the struct's elements had a value that was inserted directly. In the latter
// case, perhaps we can't determine each of the subelements individually, but
// we might be able to find the complete struct somewhere.
// Find the value that is at that particular spot
Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
if (!V)
return NULL;
// Insert the value in the new (sub) aggregrate
return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
Idxs.end(), "tmp", InsertBefore);
}
// This helper takes a nested struct and extracts a part of it (which is again a
// struct) into a new value. For example, given the struct:
// { a, { b, { c, d }, e } }
// and the indices "1, 1" this returns
// { c, d }.
//
// It does this by inserting an insertvalue for each element in the resulting
// struct, as opposed to just inserting a single struct. This will only work if
// each of the elements of the substruct are known (ie, inserted into From by an
// insertvalue instruction somewhere).
//
// All inserted insertvalue instructions are inserted before InsertBefore
Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
const unsigned *idx_end, Instruction *InsertBefore) {
assert(InsertBefore && "Must have someplace to insert!");
const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
idx_begin,
idx_end);
Value *To = UndefValue::get(IndexedType);
SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
unsigned IdxSkip = Idxs.size();
return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}
/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
/// the scalar value indexed is already around as a register, for example if it
/// were inserted directly into the aggregrate.
///
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
const unsigned *idx_end, Instruction *InsertBefore) {
// Nothing to index? Just return V then (this is useful at the end of our
// recursion)
if (idx_begin == idx_end)
return V;
// We have indices, so V should have an indexable type
assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
&& "Not looking at a struct or array?");
assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
&& "Invalid indices for type?");
const CompositeType *PTy = cast<CompositeType>(V->getType());
if (isa<UndefValue>(V))
return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
idx_begin,
idx_end));
else if (isa<ConstantAggregateZero>(V))
return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
idx_begin,
idx_end));
else if (Constant *C = dyn_cast<Constant>(V)) {
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
// Recursively process this constant
return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end,
InsertBefore);
} else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
// Loop the indices for the insertvalue instruction in parallel with the
// requested indices
const unsigned *req_idx = idx_begin;
for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
i != e; ++i, ++req_idx) {
if (req_idx == idx_end) {
if (InsertBefore)
// The requested index identifies a part of a nested aggregate. Handle
// this specially. For example,
// %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
// %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
// %C = extractvalue {i32, { i32, i32 } } %B, 1
// This can be changed into
// %A = insertvalue {i32, i32 } undef, i32 10, 0
// %C = insertvalue {i32, i32 } %A, i32 11, 1
// which allows the unused 0,0 element from the nested struct to be
// removed.
return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
else
// We can't handle this without inserting insertvalues
return 0;
}
// This insert value inserts something else than what we are looking for.
// See if the (aggregrate) value inserted into has the value we are
// looking for, then.
if (*req_idx != *i)
return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
InsertBefore);
}
// If we end up here, the indices of the insertvalue match with those
// requested (though possibly only partially). Now we recursively look at
// the inserted value, passing any remaining indices.
return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
InsertBefore);
} else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
// If we're extracting a value from an aggregrate that was extracted from
// something else, we can extract from that something else directly instead.
// However, we will need to chain I's indices with the requested indices.
// Calculate the number of indices required
unsigned size = I->getNumIndices() + (idx_end - idx_begin);
// Allocate some space to put the new indices in
SmallVector<unsigned, 5> Idxs;
Idxs.reserve(size);
// Add indices from the extract value instruction
for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
i != e; ++i)
Idxs.push_back(*i);
// Add requested indices
for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
Idxs.push_back(*i);
assert(Idxs.size() == size
&& "Number of indices added not correct?");
return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
InsertBefore);
}
// Otherwise, we don't know (such as, extracting from a function return value
// or load instruction)
return 0;
}
/// GetConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V. If successful, it returns true
/// and returns the string in Str. If unsuccessful, it returns false.
bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
bool StopAtNul) {
// If V is NULL then return false;
if (V == NULL) return false;
// Look through bitcast instructions.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return false because ConstantArray can't occur
// any other way
User *GEP = 0;
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
GEP = GEPI;
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() == Instruction::BitCast)
return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
if (CE->getOpcode() != Instruction::GetElementPtr)
return false;
GEP = CE;
}
if (GEP) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Make sure the index-ee is a pointer to array of i8.
const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
if (AT == 0 || AT->getElementType() != Type::Int8Ty)
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (FirstIdx == 0 || !FirstIdx->isZero())
return false;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
uint64_t StartIdx = 0;
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
StartIdx = CI->getZExtValue();
else
return false;
return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
StopAtNul);
}
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
if (!GV || !GV->isConstant() || !GV->hasInitializer())
return false;
Constant *GlobalInit = GV->getInitializer();
// Handle the ConstantAggregateZero case
if (isa<ConstantAggregateZero>(GlobalInit)) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
Str.clear();
return true;
}
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
return false;
// Get the number of elements in the array
uint64_t NumElts = Array->getType()->getNumElements();
if (Offset > NumElts)
return false;
// Traverse the constant array from 'Offset' which is the place the GEP refers
// to in the array.
Str.reserve(NumElts-Offset);
for (unsigned i = Offset; i != NumElts; ++i) {
Constant *Elt = Array->getOperand(i);
ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI) // This array isn't suitable, non-int initializer.
return false;
if (StopAtNul && CI->isZero())
return true; // we found end of string, success!
Str += (char)CI->getZExtValue();
}
// The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
return true;
}