mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-18 10:31:57 +00:00
50dd1d0280
model, except for external calls; this makes addressing modes PC-relative. Incomplete. The assertion at the top of Emitter::runOnMachineFunction was obviously bogus (always true) so I removed it. If someone knows what the correct test should be to cover all the various targets, please fix. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54656 91177308-0d34-0410-b5e6-96231b3b80d8
1153 lines
42 KiB
C++
1153 lines
42 KiB
C++
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a MachineCodeEmitter object that is used by the JIT to
|
|
// write machine code to memory and remember where relocatable values are.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "JIT.h"
|
|
#include "JITDwarfEmitter.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRelocation.h"
|
|
#include "llvm/ExecutionEngine/JITMemoryManager.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetJITInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MutexGuard.h"
|
|
#include "llvm/System/Disassembler.h"
|
|
#include "llvm/System/Memory.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumBytes, "Number of bytes of machine code compiled");
|
|
STATISTIC(NumRelos, "Number of relocations applied");
|
|
static JIT *TheJIT = 0;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JIT lazy compilation code.
|
|
//
|
|
namespace {
|
|
class JITResolverState {
|
|
private:
|
|
/// FunctionToStubMap - Keep track of the stub created for a particular
|
|
/// function so that we can reuse them if necessary.
|
|
std::map<Function*, void*> FunctionToStubMap;
|
|
|
|
/// StubToFunctionMap - Keep track of the function that each stub
|
|
/// corresponds to.
|
|
std::map<void*, Function*> StubToFunctionMap;
|
|
|
|
/// GlobalToLazyPtrMap - Keep track of the lazy pointer created for a
|
|
/// particular GlobalVariable so that we can reuse them if necessary.
|
|
std::map<GlobalValue*, void*> GlobalToLazyPtrMap;
|
|
|
|
public:
|
|
std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
|
|
assert(locked.holds(TheJIT->lock));
|
|
return FunctionToStubMap;
|
|
}
|
|
|
|
std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
|
|
assert(locked.holds(TheJIT->lock));
|
|
return StubToFunctionMap;
|
|
}
|
|
|
|
std::map<GlobalValue*, void*>&
|
|
getGlobalToLazyPtrMap(const MutexGuard& locked) {
|
|
assert(locked.holds(TheJIT->lock));
|
|
return GlobalToLazyPtrMap;
|
|
}
|
|
};
|
|
|
|
/// JITResolver - Keep track of, and resolve, call sites for functions that
|
|
/// have not yet been compiled.
|
|
class JITResolver {
|
|
/// LazyResolverFn - The target lazy resolver function that we actually
|
|
/// rewrite instructions to use.
|
|
TargetJITInfo::LazyResolverFn LazyResolverFn;
|
|
|
|
JITResolverState state;
|
|
|
|
/// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
|
|
/// external functions.
|
|
std::map<void*, void*> ExternalFnToStubMap;
|
|
|
|
//map addresses to indexes in the GOT
|
|
std::map<void*, unsigned> revGOTMap;
|
|
unsigned nextGOTIndex;
|
|
|
|
static JITResolver *TheJITResolver;
|
|
public:
|
|
explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
|
|
TheJIT = &jit;
|
|
|
|
LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
|
|
assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
|
|
TheJITResolver = this;
|
|
}
|
|
|
|
~JITResolver() {
|
|
TheJITResolver = 0;
|
|
}
|
|
|
|
/// getFunctionStub - This returns a pointer to a function stub, creating
|
|
/// one on demand as needed.
|
|
void *getFunctionStub(Function *F);
|
|
|
|
/// getExternalFunctionStub - Return a stub for the function at the
|
|
/// specified address, created lazily on demand.
|
|
void *getExternalFunctionStub(void *FnAddr);
|
|
|
|
/// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
|
|
/// GV address.
|
|
void *getGlobalValueLazyPtr(GlobalValue *V, void *GVAddress);
|
|
|
|
/// AddCallbackAtLocation - If the target is capable of rewriting an
|
|
/// instruction without the use of a stub, record the location of the use so
|
|
/// we know which function is being used at the location.
|
|
void *AddCallbackAtLocation(Function *F, void *Location) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
/// Get the target-specific JIT resolver function.
|
|
state.getStubToFunctionMap(locked)[Location] = F;
|
|
return (void*)(intptr_t)LazyResolverFn;
|
|
}
|
|
|
|
/// getGOTIndexForAddress - Return a new or existing index in the GOT for
|
|
/// an address. This function only manages slots, it does not manage the
|
|
/// contents of the slots or the memory associated with the GOT.
|
|
unsigned getGOTIndexForAddr(void *addr);
|
|
|
|
/// JITCompilerFn - This function is called to resolve a stub to a compiled
|
|
/// address. If the LLVM Function corresponding to the stub has not yet
|
|
/// been compiled, this function compiles it first.
|
|
static void *JITCompilerFn(void *Stub);
|
|
};
|
|
}
|
|
|
|
JITResolver *JITResolver::TheJITResolver = 0;
|
|
|
|
/// getFunctionStub - This returns a pointer to a function stub, creating
|
|
/// one on demand as needed.
|
|
void *JITResolver::getFunctionStub(Function *F) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// If we already have a stub for this function, recycle it.
|
|
void *&Stub = state.getFunctionToStubMap(locked)[F];
|
|
if (Stub) return Stub;
|
|
|
|
// Call the lazy resolver function unless we already KNOW it is an external
|
|
// function, in which case we just skip the lazy resolution step.
|
|
void *Actual = (void*)(intptr_t)LazyResolverFn;
|
|
if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode())
|
|
Actual = TheJIT->getPointerToFunction(F);
|
|
|
|
// Otherwise, codegen a new stub. For now, the stub will call the lazy
|
|
// resolver function.
|
|
Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
|
|
*TheJIT->getCodeEmitter());
|
|
|
|
if (Actual != (void*)(intptr_t)LazyResolverFn) {
|
|
// If we are getting the stub for an external function, we really want the
|
|
// address of the stub in the GlobalAddressMap for the JIT, not the address
|
|
// of the external function.
|
|
TheJIT->updateGlobalMapping(F, Stub);
|
|
}
|
|
|
|
DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
|
|
<< F->getName() << "'\n";
|
|
|
|
// Finally, keep track of the stub-to-Function mapping so that the
|
|
// JITCompilerFn knows which function to compile!
|
|
state.getStubToFunctionMap(locked)[Stub] = F;
|
|
return Stub;
|
|
}
|
|
|
|
/// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
|
|
/// GV address.
|
|
void *JITResolver::getGlobalValueLazyPtr(GlobalValue *GV, void *GVAddress) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// If we already have a stub for this global variable, recycle it.
|
|
void *&LazyPtr = state.getGlobalToLazyPtrMap(locked)[GV];
|
|
if (LazyPtr) return LazyPtr;
|
|
|
|
// Otherwise, codegen a new lazy pointer.
|
|
LazyPtr = TheJIT->getJITInfo().emitGlobalValueLazyPtr(GV, GVAddress,
|
|
*TheJIT->getCodeEmitter());
|
|
|
|
DOUT << "JIT: Stub emitted at [" << LazyPtr << "] for GV '"
|
|
<< GV->getName() << "'\n";
|
|
|
|
return LazyPtr;
|
|
}
|
|
|
|
/// getExternalFunctionStub - Return a stub for the function at the
|
|
/// specified address, created lazily on demand.
|
|
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
|
|
// If we already have a stub for this function, recycle it.
|
|
void *&Stub = ExternalFnToStubMap[FnAddr];
|
|
if (Stub) return Stub;
|
|
|
|
Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
|
|
*TheJIT->getCodeEmitter());
|
|
|
|
DOUT << "JIT: Stub emitted at [" << Stub
|
|
<< "] for external function at '" << FnAddr << "'\n";
|
|
return Stub;
|
|
}
|
|
|
|
unsigned JITResolver::getGOTIndexForAddr(void* addr) {
|
|
unsigned idx = revGOTMap[addr];
|
|
if (!idx) {
|
|
idx = ++nextGOTIndex;
|
|
revGOTMap[addr] = idx;
|
|
DOUT << "Adding GOT entry " << idx << " for addr " << addr << "\n";
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
/// JITCompilerFn - This function is called when a lazy compilation stub has
|
|
/// been entered. It looks up which function this stub corresponds to, compiles
|
|
/// it if necessary, then returns the resultant function pointer.
|
|
void *JITResolver::JITCompilerFn(void *Stub) {
|
|
JITResolver &JR = *TheJITResolver;
|
|
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// The address given to us for the stub may not be exactly right, it might be
|
|
// a little bit after the stub. As such, use upper_bound to find it.
|
|
std::map<void*, Function*>::iterator I =
|
|
JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
|
|
assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
|
|
"This is not a known stub!");
|
|
Function *F = (--I)->second;
|
|
|
|
// If we have already code generated the function, just return the address.
|
|
void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
|
|
|
|
if (!Result) {
|
|
// Otherwise we don't have it, do lazy compilation now.
|
|
|
|
// If lazy compilation is disabled, emit a useful error message and abort.
|
|
if (TheJIT->isLazyCompilationDisabled()) {
|
|
cerr << "LLVM JIT requested to do lazy compilation of function '"
|
|
<< F->getName() << "' when lazy compiles are disabled!\n";
|
|
abort();
|
|
}
|
|
|
|
// We might like to remove the stub from the StubToFunction map.
|
|
// We can't do that! Multiple threads could be stuck, waiting to acquire the
|
|
// lock above. As soon as the 1st function finishes compiling the function,
|
|
// the next one will be released, and needs to be able to find the function
|
|
// it needs to call.
|
|
//JR.state.getStubToFunctionMap(locked).erase(I);
|
|
|
|
DOUT << "JIT: Lazily resolving function '" << F->getName()
|
|
<< "' In stub ptr = " << Stub << " actual ptr = "
|
|
<< I->first << "\n";
|
|
|
|
Result = TheJIT->getPointerToFunction(F);
|
|
}
|
|
|
|
// We don't need to reuse this stub in the future, as F is now compiled.
|
|
JR.state.getFunctionToStubMap(locked).erase(F);
|
|
|
|
// FIXME: We could rewrite all references to this stub if we knew them.
|
|
|
|
// What we will do is set the compiled function address to map to the
|
|
// same GOT entry as the stub so that later clients may update the GOT
|
|
// if they see it still using the stub address.
|
|
// Note: this is done so the Resolver doesn't have to manage GOT memory
|
|
// Do this without allocating map space if the target isn't using a GOT
|
|
if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
|
|
JR.revGOTMap[Result] = JR.revGOTMap[Stub];
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function Index Support
|
|
|
|
// On MacOS we generate an index of currently JIT'd functions so that
|
|
// performance tools can determine a symbol name and accurate code range for a
|
|
// PC value. Because performance tools are generally asynchronous, the code
|
|
// below is written with the hope that it could be interrupted at any time and
|
|
// have useful answers. However, we don't go crazy with atomic operations, we
|
|
// just do a "reasonable effort".
|
|
#ifdef __APPLE__
|
|
#define ENABLE_JIT_SYMBOL_TABLE 0
|
|
#endif
|
|
|
|
/// JitSymbolEntry - Each function that is JIT compiled results in one of these
|
|
/// being added to an array of symbols. This indicates the name of the function
|
|
/// as well as the address range it occupies. This allows the client to map
|
|
/// from a PC value to the name of the function.
|
|
struct JitSymbolEntry {
|
|
const char *FnName; // FnName - a strdup'd string.
|
|
void *FnStart;
|
|
intptr_t FnSize;
|
|
};
|
|
|
|
|
|
struct JitSymbolTable {
|
|
/// NextPtr - This forms a linked list of JitSymbolTable entries. This
|
|
/// pointer is not used right now, but might be used in the future. Consider
|
|
/// it reserved for future use.
|
|
JitSymbolTable *NextPtr;
|
|
|
|
/// Symbols - This is an array of JitSymbolEntry entries. Only the first
|
|
/// 'NumSymbols' symbols are valid.
|
|
JitSymbolEntry *Symbols;
|
|
|
|
/// NumSymbols - This indicates the number entries in the Symbols array that
|
|
/// are valid.
|
|
unsigned NumSymbols;
|
|
|
|
/// NumAllocated - This indicates the amount of space we have in the Symbols
|
|
/// array. This is a private field that should not be read by external tools.
|
|
unsigned NumAllocated;
|
|
};
|
|
|
|
#if ENABLE_JIT_SYMBOL_TABLE
|
|
JitSymbolTable *__jitSymbolTable;
|
|
#endif
|
|
|
|
static void AddFunctionToSymbolTable(const char *FnName,
|
|
void *FnStart, intptr_t FnSize) {
|
|
assert(FnName != 0 && FnStart != 0 && "Bad symbol to add");
|
|
JitSymbolTable **SymTabPtrPtr = 0;
|
|
#if !ENABLE_JIT_SYMBOL_TABLE
|
|
return;
|
|
#else
|
|
SymTabPtrPtr = &__jitSymbolTable;
|
|
#endif
|
|
|
|
// If this is the first entry in the symbol table, add the JitSymbolTable
|
|
// index.
|
|
if (*SymTabPtrPtr == 0) {
|
|
JitSymbolTable *New = new JitSymbolTable();
|
|
New->NextPtr = 0;
|
|
New->Symbols = 0;
|
|
New->NumSymbols = 0;
|
|
New->NumAllocated = 0;
|
|
*SymTabPtrPtr = New;
|
|
}
|
|
|
|
JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
|
|
|
|
// If we have space in the table, reallocate the table.
|
|
if (SymTabPtr->NumSymbols >= SymTabPtr->NumAllocated) {
|
|
// If we don't have space, reallocate the table.
|
|
unsigned NewSize = std::max(64U, SymTabPtr->NumAllocated*2);
|
|
JitSymbolEntry *NewSymbols = new JitSymbolEntry[NewSize];
|
|
JitSymbolEntry *OldSymbols = SymTabPtr->Symbols;
|
|
|
|
// Copy the old entries over.
|
|
memcpy(NewSymbols, OldSymbols,
|
|
SymTabPtr->NumSymbols*sizeof(OldSymbols[0]));
|
|
|
|
// Swap the new symbols in, delete the old ones.
|
|
SymTabPtr->Symbols = NewSymbols;
|
|
SymTabPtr->NumAllocated = NewSize;
|
|
delete [] OldSymbols;
|
|
}
|
|
|
|
// Otherwise, we have enough space, just tack it onto the end of the array.
|
|
JitSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols];
|
|
Entry.FnName = strdup(FnName);
|
|
Entry.FnStart = FnStart;
|
|
Entry.FnSize = FnSize;
|
|
++SymTabPtr->NumSymbols;
|
|
}
|
|
|
|
static void RemoveFunctionFromSymbolTable(void *FnStart) {
|
|
assert(FnStart && "Invalid function pointer");
|
|
JitSymbolTable **SymTabPtrPtr = 0;
|
|
#if !ENABLE_JIT_SYMBOL_TABLE
|
|
return;
|
|
#else
|
|
SymTabPtrPtr = &__jitSymbolTable;
|
|
#endif
|
|
|
|
JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
|
|
JitSymbolEntry *Symbols = SymTabPtr->Symbols;
|
|
|
|
// Scan the table to find its index. The table is not sorted, so do a linear
|
|
// scan.
|
|
unsigned Index;
|
|
for (Index = 0; Symbols[Index].FnStart != FnStart; ++Index)
|
|
assert(Index != SymTabPtr->NumSymbols && "Didn't find function!");
|
|
|
|
// Once we have an index, we know to nuke this entry, overwrite it with the
|
|
// entry at the end of the array, making the last entry redundant.
|
|
const char *OldName = Symbols[Index].FnName;
|
|
Symbols[Index] = Symbols[SymTabPtr->NumSymbols-1];
|
|
free((void*)OldName);
|
|
|
|
// Drop the number of symbols in the table.
|
|
--SymTabPtr->NumSymbols;
|
|
|
|
// Finally, if we deleted the final symbol, deallocate the table itself.
|
|
if (SymTabPtr->NumSymbols != 0)
|
|
return;
|
|
|
|
*SymTabPtrPtr = 0;
|
|
delete [] Symbols;
|
|
delete SymTabPtr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JITEmitter code.
|
|
//
|
|
namespace {
|
|
/// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
|
|
/// used to output functions to memory for execution.
|
|
class JITEmitter : public MachineCodeEmitter {
|
|
JITMemoryManager *MemMgr;
|
|
|
|
// When outputting a function stub in the context of some other function, we
|
|
// save BufferBegin/BufferEnd/CurBufferPtr here.
|
|
unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
|
|
|
|
/// Relocations - These are the relocations that the function needs, as
|
|
/// emitted.
|
|
std::vector<MachineRelocation> Relocations;
|
|
|
|
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
|
|
/// It is filled in by the StartMachineBasicBlock callback and queried by
|
|
/// the getMachineBasicBlockAddress callback.
|
|
std::vector<intptr_t> MBBLocations;
|
|
|
|
/// ConstantPool - The constant pool for the current function.
|
|
///
|
|
MachineConstantPool *ConstantPool;
|
|
|
|
/// ConstantPoolBase - A pointer to the first entry in the constant pool.
|
|
///
|
|
void *ConstantPoolBase;
|
|
|
|
/// JumpTable - The jump tables for the current function.
|
|
///
|
|
MachineJumpTableInfo *JumpTable;
|
|
|
|
/// JumpTableBase - A pointer to the first entry in the jump table.
|
|
///
|
|
void *JumpTableBase;
|
|
|
|
/// Resolver - This contains info about the currently resolved functions.
|
|
JITResolver Resolver;
|
|
|
|
/// DE - The dwarf emitter for the jit.
|
|
JITDwarfEmitter *DE;
|
|
|
|
/// LabelLocations - This vector is a mapping from Label ID's to their
|
|
/// address.
|
|
std::vector<intptr_t> LabelLocations;
|
|
|
|
/// MMI - Machine module info for exception informations
|
|
MachineModuleInfo* MMI;
|
|
|
|
// GVSet - a set to keep track of which globals have been seen
|
|
std::set<const GlobalVariable*> GVSet;
|
|
|
|
public:
|
|
JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) {
|
|
MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
|
|
if (jit.getJITInfo().needsGOT()) {
|
|
MemMgr->AllocateGOT();
|
|
DOUT << "JIT is managing a GOT\n";
|
|
}
|
|
|
|
if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
|
|
}
|
|
~JITEmitter() {
|
|
delete MemMgr;
|
|
if (ExceptionHandling) delete DE;
|
|
}
|
|
|
|
JITResolver &getJITResolver() { return Resolver; }
|
|
|
|
virtual void startFunction(MachineFunction &F);
|
|
virtual bool finishFunction(MachineFunction &F);
|
|
|
|
void emitConstantPool(MachineConstantPool *MCP);
|
|
void initJumpTableInfo(MachineJumpTableInfo *MJTI);
|
|
void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
|
|
|
|
virtual void startFunctionStub(const GlobalValue* F, unsigned StubSize,
|
|
unsigned Alignment = 1);
|
|
virtual void* finishFunctionStub(const GlobalValue *F);
|
|
|
|
virtual void addRelocation(const MachineRelocation &MR) {
|
|
Relocations.push_back(MR);
|
|
}
|
|
|
|
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
|
|
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
|
|
MBBLocations.resize((MBB->getNumber()+1)*2);
|
|
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
|
|
}
|
|
|
|
virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
|
|
virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
|
|
|
|
virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
|
|
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
|
|
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
|
|
return MBBLocations[MBB->getNumber()];
|
|
}
|
|
|
|
/// deallocateMemForFunction - Deallocate all memory for the specified
|
|
/// function body.
|
|
void deallocateMemForFunction(Function *F) {
|
|
MemMgr->deallocateMemForFunction(F);
|
|
}
|
|
|
|
virtual void emitLabel(uint64_t LabelID) {
|
|
if (LabelLocations.size() <= LabelID)
|
|
LabelLocations.resize((LabelID+1)*2);
|
|
LabelLocations[LabelID] = getCurrentPCValue();
|
|
}
|
|
|
|
virtual intptr_t getLabelAddress(uint64_t LabelID) const {
|
|
assert(LabelLocations.size() > (unsigned)LabelID &&
|
|
LabelLocations[LabelID] && "Label not emitted!");
|
|
return LabelLocations[LabelID];
|
|
}
|
|
|
|
virtual void setModuleInfo(MachineModuleInfo* Info) {
|
|
MMI = Info;
|
|
if (ExceptionHandling) DE->setModuleInfo(Info);
|
|
}
|
|
|
|
private:
|
|
void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
|
|
void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
|
|
bool NoNeedStub);
|
|
unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
|
|
unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
|
|
unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
|
|
unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
|
|
};
|
|
}
|
|
|
|
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
|
|
bool DoesntNeedStub) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
|
|
/// FIXME: If we straightened things out, this could actually emit the
|
|
/// global immediately instead of queuing it for codegen later!
|
|
return TheJIT->getOrEmitGlobalVariable(GV);
|
|
}
|
|
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
|
|
return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal());
|
|
|
|
// If we have already compiled the function, return a pointer to its body.
|
|
Function *F = cast<Function>(V);
|
|
void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
|
|
if (ResultPtr) return ResultPtr;
|
|
|
|
if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
|
|
// If this is an external function pointer, we can force the JIT to
|
|
// 'compile' it, which really just adds it to the map.
|
|
if (DoesntNeedStub)
|
|
return TheJIT->getPointerToFunction(F);
|
|
|
|
return Resolver.getFunctionStub(F);
|
|
}
|
|
|
|
// Okay, the function has not been compiled yet, if the target callback
|
|
// mechanism is capable of rewriting the instruction directly, prefer to do
|
|
// that instead of emitting a stub.
|
|
if (DoesntNeedStub)
|
|
return Resolver.AddCallbackAtLocation(F, Reference);
|
|
|
|
// Otherwise, we have to emit a lazy resolving stub.
|
|
return Resolver.getFunctionStub(F);
|
|
}
|
|
|
|
void *JITEmitter::getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
|
|
bool DoesntNeedStub) {
|
|
// Make sure GV is emitted first.
|
|
// FIXME: For now, if the GV is an external function we force the JIT to
|
|
// compile it so the lazy pointer will contain the fully resolved address.
|
|
void *GVAddress = getPointerToGlobal(V, Reference, true);
|
|
return Resolver.getGlobalValueLazyPtr(V, GVAddress);
|
|
}
|
|
|
|
static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP) {
|
|
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
|
|
if (Constants.empty()) return 0;
|
|
|
|
MachineConstantPoolEntry CPE = Constants.back();
|
|
unsigned Size = CPE.Offset;
|
|
const Type *Ty = CPE.isMachineConstantPoolEntry()
|
|
? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
|
|
Size += TheJIT->getTargetData()->getABITypeSize(Ty);
|
|
return Size;
|
|
}
|
|
|
|
static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return 0;
|
|
|
|
unsigned NumEntries = 0;
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i)
|
|
NumEntries += JT[i].MBBs.size();
|
|
|
|
unsigned EntrySize = MJTI->getEntrySize();
|
|
|
|
return NumEntries * EntrySize;
|
|
}
|
|
|
|
static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
|
|
if (Alignment == 0) Alignment = 1;
|
|
// Since we do not know where the buffer will be allocated, be pessimistic.
|
|
return Size + Alignment;
|
|
}
|
|
|
|
/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
|
|
/// into the running total Size.
|
|
|
|
unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
|
|
const Type *ElTy = GV->getType()->getElementType();
|
|
size_t GVSize = (size_t)TheJIT->getTargetData()->getABITypeSize(ElTy);
|
|
size_t GVAlign =
|
|
(size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
|
|
DOUT << "Adding in size " << GVSize << " alignment " << GVAlign;
|
|
DEBUG(GV->dump());
|
|
// Assume code section ends with worst possible alignment, so first
|
|
// variable needs maximal padding.
|
|
if (Size==0)
|
|
Size = 1;
|
|
Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
|
|
Size += GVSize;
|
|
return Size;
|
|
}
|
|
|
|
/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
|
|
/// but are referenced from the constant; put them in GVSet and add their
|
|
/// size into the running total Size.
|
|
|
|
unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
|
|
unsigned Size) {
|
|
// If its undefined, return the garbage.
|
|
if (isa<UndefValue>(C))
|
|
return Size;
|
|
|
|
// If the value is a ConstantExpr
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
Constant *Op0 = CE->getOperand(0);
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast: {
|
|
Size = addSizeOfGlobalsInConstantVal(Op0, Size);
|
|
break;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
Size = addSizeOfGlobalsInConstantVal(Op0, Size);
|
|
Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
|
|
break;
|
|
}
|
|
default: {
|
|
cerr << "ConstantExpr not handled: " << *CE << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (C->getType()->getTypeID() == Type::PointerTyID)
|
|
if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
|
|
if (GVSet.insert(GV).second)
|
|
Size = addSizeOfGlobal(GV, Size);
|
|
|
|
return Size;
|
|
}
|
|
|
|
/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
|
|
/// but are referenced from the given initializer.
|
|
|
|
unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
|
|
unsigned Size) {
|
|
if (!isa<UndefValue>(Init) &&
|
|
!isa<ConstantVector>(Init) &&
|
|
!isa<ConstantAggregateZero>(Init) &&
|
|
!isa<ConstantArray>(Init) &&
|
|
!isa<ConstantStruct>(Init) &&
|
|
Init->getType()->isFirstClassType())
|
|
Size = addSizeOfGlobalsInConstantVal(Init, Size);
|
|
return Size;
|
|
}
|
|
|
|
/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
|
|
/// globals; then walk the initializers of those globals looking for more.
|
|
/// If their size has not been considered yet, add it into the running total
|
|
/// Size.
|
|
|
|
unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
|
|
unsigned Size = 0;
|
|
GVSet.clear();
|
|
|
|
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
|
|
MBB != E; ++MBB) {
|
|
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ++I) {
|
|
const TargetInstrDesc &Desc = I->getDesc();
|
|
const MachineInstr &MI = *I;
|
|
unsigned NumOps = Desc.getNumOperands();
|
|
for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
|
|
const MachineOperand &MO = MI.getOperand(CurOp);
|
|
if (MO.isGlobalAddress()) {
|
|
GlobalValue* V = MO.getGlobal();
|
|
const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
|
|
if (!GV)
|
|
continue;
|
|
// If seen in previous function, it will have an entry here.
|
|
if (TheJIT->getPointerToGlobalIfAvailable(GV))
|
|
continue;
|
|
// If seen earlier in this function, it will have an entry here.
|
|
// FIXME: it should be possible to combine these tables, by
|
|
// assuming the addresses of the new globals in this module
|
|
// start at 0 (or something) and adjusting them after codegen
|
|
// complete. Another possibility is to grab a marker bit in GV.
|
|
if (GVSet.insert(GV).second)
|
|
// A variable as yet unseen. Add in its size.
|
|
Size = addSizeOfGlobal(GV, Size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DOUT << "About to look through initializers\n";
|
|
// Look for more globals that are referenced only from initializers.
|
|
// GVSet.end is computed each time because the set can grow as we go.
|
|
for (std::set<const GlobalVariable *>::iterator I = GVSet.begin();
|
|
I != GVSet.end(); I++) {
|
|
const GlobalVariable* GV = *I;
|
|
if (GV->hasInitializer())
|
|
Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
void JITEmitter::startFunction(MachineFunction &F) {
|
|
uintptr_t ActualSize = 0;
|
|
if (MemMgr->NeedsExactSize()) {
|
|
DOUT << "ExactSize\n";
|
|
const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
|
|
MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
|
|
MachineConstantPool *MCP = F.getConstantPool();
|
|
|
|
// Ensure the constant pool/jump table info is at least 4-byte aligned.
|
|
ActualSize = RoundUpToAlign(ActualSize, 16);
|
|
|
|
// Add the alignment of the constant pool
|
|
ActualSize = RoundUpToAlign(ActualSize,
|
|
1 << MCP->getConstantPoolAlignment());
|
|
|
|
// Add the constant pool size
|
|
ActualSize += GetConstantPoolSizeInBytes(MCP);
|
|
|
|
// Add the aligment of the jump table info
|
|
ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
|
|
|
|
// Add the jump table size
|
|
ActualSize += GetJumpTableSizeInBytes(MJTI);
|
|
|
|
// Add the alignment for the function
|
|
ActualSize = RoundUpToAlign(ActualSize,
|
|
std::max(F.getFunction()->getAlignment(), 8U));
|
|
|
|
// Add the function size
|
|
ActualSize += TII->GetFunctionSizeInBytes(F);
|
|
|
|
DOUT << "ActualSize before globals " << ActualSize << "\n";
|
|
// Add the size of the globals that will be allocated after this function.
|
|
// These are all the ones referenced from this function that were not
|
|
// previously allocated.
|
|
ActualSize += GetSizeOfGlobalsInBytes(F);
|
|
DOUT << "ActualSize after globals " << ActualSize << "\n";
|
|
}
|
|
|
|
BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
|
|
ActualSize);
|
|
BufferEnd = BufferBegin+ActualSize;
|
|
|
|
// Ensure the constant pool/jump table info is at least 4-byte aligned.
|
|
emitAlignment(16);
|
|
|
|
emitConstantPool(F.getConstantPool());
|
|
initJumpTableInfo(F.getJumpTableInfo());
|
|
|
|
// About to start emitting the machine code for the function.
|
|
emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
|
|
TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
|
|
|
|
MBBLocations.clear();
|
|
}
|
|
|
|
bool JITEmitter::finishFunction(MachineFunction &F) {
|
|
if (CurBufferPtr == BufferEnd) {
|
|
// FIXME: Allocate more space, then try again.
|
|
cerr << "JIT: Ran out of space for generated machine code!\n";
|
|
abort();
|
|
}
|
|
|
|
emitJumpTableInfo(F.getJumpTableInfo());
|
|
|
|
// FnStart is the start of the text, not the start of the constant pool and
|
|
// other per-function data.
|
|
unsigned char *FnStart =
|
|
(unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
|
|
|
|
if (!Relocations.empty()) {
|
|
NumRelos += Relocations.size();
|
|
|
|
// Resolve the relocations to concrete pointers.
|
|
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
|
|
MachineRelocation &MR = Relocations[i];
|
|
void *ResultPtr;
|
|
if (MR.isString()) {
|
|
ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
|
|
|
|
// If the target REALLY wants a stub for this function, emit it now.
|
|
if (!MR.doesntNeedStub())
|
|
ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
|
|
} else if (MR.isGlobalValue()) {
|
|
ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
|
|
BufferBegin+MR.getMachineCodeOffset(),
|
|
MR.doesntNeedStub());
|
|
} else if (MR.isGlobalValueLazyPtr()) {
|
|
ResultPtr = getPointerToGVLazyPtr(MR.getGlobalValue(),
|
|
BufferBegin+MR.getMachineCodeOffset(),
|
|
MR.doesntNeedStub());
|
|
} else if (MR.isBasicBlock()) {
|
|
ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
|
|
} else if (MR.isConstantPoolIndex()) {
|
|
ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
|
|
} else {
|
|
assert(MR.isJumpTableIndex());
|
|
ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
|
|
}
|
|
|
|
MR.setResultPointer(ResultPtr);
|
|
|
|
// if we are managing the GOT and the relocation wants an index,
|
|
// give it one
|
|
if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
|
|
unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
|
|
MR.setGOTIndex(idx);
|
|
if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
|
|
DOUT << "GOT was out of date for " << ResultPtr
|
|
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
|
|
<< "\n";
|
|
((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
|
|
}
|
|
}
|
|
}
|
|
|
|
TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
|
|
Relocations.size(), MemMgr->getGOTBase());
|
|
}
|
|
|
|
unsigned char *FnEnd = CurBufferPtr;
|
|
|
|
MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
|
|
NumBytes += FnEnd-FnStart;
|
|
|
|
// Update the GOT entry for F to point to the new code.
|
|
if (MemMgr->isManagingGOT()) {
|
|
unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
|
|
if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
|
|
DOUT << "GOT was out of date for " << (void*)BufferBegin
|
|
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
|
|
((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
|
|
}
|
|
}
|
|
|
|
// Invalidate the icache if necessary.
|
|
sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
|
|
|
|
// Add it to the JIT symbol table if the host wants it.
|
|
AddFunctionToSymbolTable(F.getFunction()->getNameStart(),
|
|
FnStart, FnEnd-FnStart);
|
|
|
|
DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
|
|
<< "] Function: " << F.getFunction()->getName()
|
|
<< ": " << (FnEnd-FnStart) << " bytes of text, "
|
|
<< Relocations.size() << " relocations\n";
|
|
Relocations.clear();
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
DOUT << std::hex;
|
|
int i;
|
|
unsigned char* q = FnStart;
|
|
for (i=1; q!=FnEnd; q++, i++) {
|
|
if (i%8==1)
|
|
DOUT << "0x" << (long)q << ": ";
|
|
DOUT<< (unsigned short)*q << " ";
|
|
if (i%8==0)
|
|
DOUT<<"\n";
|
|
}
|
|
DOUT << std::dec;
|
|
if (sys::hasDisassembler())
|
|
DOUT << "Disassembled code:\n"
|
|
<< sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
|
|
}
|
|
#endif
|
|
if (ExceptionHandling) {
|
|
uintptr_t ActualSize = 0;
|
|
SavedBufferBegin = BufferBegin;
|
|
SavedBufferEnd = BufferEnd;
|
|
SavedCurBufferPtr = CurBufferPtr;
|
|
|
|
if (MemMgr->NeedsExactSize()) {
|
|
ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
|
|
}
|
|
|
|
BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
|
|
ActualSize);
|
|
BufferEnd = BufferBegin+ActualSize;
|
|
unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
|
|
MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
|
|
FrameRegister);
|
|
BufferBegin = SavedBufferBegin;
|
|
BufferEnd = SavedBufferEnd;
|
|
CurBufferPtr = SavedCurBufferPtr;
|
|
|
|
TheJIT->RegisterTable(FrameRegister);
|
|
}
|
|
MMI->EndFunction();
|
|
|
|
return false;
|
|
}
|
|
|
|
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
|
|
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
|
|
if (Constants.empty()) return;
|
|
|
|
MachineConstantPoolEntry CPE = Constants.back();
|
|
unsigned Size = CPE.Offset;
|
|
const Type *Ty = CPE.isMachineConstantPoolEntry()
|
|
? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
|
|
Size += TheJIT->getTargetData()->getABITypeSize(Ty);
|
|
|
|
unsigned Align = 1 << MCP->getConstantPoolAlignment();
|
|
ConstantPoolBase = allocateSpace(Size, Align);
|
|
ConstantPool = MCP;
|
|
|
|
if (ConstantPoolBase == 0) return; // Buffer overflow.
|
|
|
|
DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
|
|
<< "] (size: " << Size << ", alignment: " << Align << ")\n";
|
|
|
|
// Initialize the memory for all of the constant pool entries.
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
|
|
void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
|
|
if (Constants[i].isMachineConstantPoolEntry()) {
|
|
// FIXME: add support to lower machine constant pool values into bytes!
|
|
cerr << "Initialize memory with machine specific constant pool entry"
|
|
<< " has not been implemented!\n";
|
|
abort();
|
|
}
|
|
TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
|
|
DOUT << "JIT: CP" << i << " at [" << CAddr << "]\n";
|
|
}
|
|
}
|
|
|
|
void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return;
|
|
|
|
unsigned NumEntries = 0;
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i)
|
|
NumEntries += JT[i].MBBs.size();
|
|
|
|
unsigned EntrySize = MJTI->getEntrySize();
|
|
|
|
// Just allocate space for all the jump tables now. We will fix up the actual
|
|
// MBB entries in the tables after we emit the code for each block, since then
|
|
// we will know the final locations of the MBBs in memory.
|
|
JumpTable = MJTI;
|
|
JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
|
|
}
|
|
|
|
void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty() || JumpTableBase == 0) return;
|
|
|
|
if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
|
|
assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
|
|
// For each jump table, place the offset from the beginning of the table
|
|
// to the target address.
|
|
int *SlotPtr = (int*)JumpTableBase;
|
|
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
|
|
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
|
|
// Store the offset of the basic block for this jump table slot in the
|
|
// memory we allocated for the jump table in 'initJumpTableInfo'
|
|
intptr_t Base = (intptr_t)SlotPtr;
|
|
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
|
|
intptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
|
|
*SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
|
|
}
|
|
}
|
|
} else {
|
|
assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
|
|
|
|
// For each jump table, map each target in the jump table to the address of
|
|
// an emitted MachineBasicBlock.
|
|
intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
|
|
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
|
|
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
|
|
// Store the address of the basic block for this jump table slot in the
|
|
// memory we allocated for the jump table in 'initJumpTableInfo'
|
|
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
|
|
*SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void JITEmitter::startFunctionStub(const GlobalValue* F, unsigned StubSize,
|
|
unsigned Alignment) {
|
|
SavedBufferBegin = BufferBegin;
|
|
SavedBufferEnd = BufferEnd;
|
|
SavedCurBufferPtr = CurBufferPtr;
|
|
|
|
BufferBegin = CurBufferPtr = MemMgr->allocateStub(F, StubSize, Alignment);
|
|
BufferEnd = BufferBegin+StubSize+1;
|
|
}
|
|
|
|
void *JITEmitter::finishFunctionStub(const GlobalValue* F) {
|
|
NumBytes += getCurrentPCOffset();
|
|
std::swap(SavedBufferBegin, BufferBegin);
|
|
BufferEnd = SavedBufferEnd;
|
|
CurBufferPtr = SavedCurBufferPtr;
|
|
return SavedBufferBegin;
|
|
}
|
|
|
|
// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
|
|
// in the constant pool that was last emitted with the 'emitConstantPool'
|
|
// method.
|
|
//
|
|
intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
|
|
assert(ConstantNum < ConstantPool->getConstants().size() &&
|
|
"Invalid ConstantPoolIndex!");
|
|
return (intptr_t)ConstantPoolBase +
|
|
ConstantPool->getConstants()[ConstantNum].Offset;
|
|
}
|
|
|
|
// getJumpTableEntryAddress - Return the address of the JumpTable with index
|
|
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
|
|
//
|
|
intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
|
|
const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
|
|
assert(Index < JT.size() && "Invalid jump table index!");
|
|
|
|
unsigned Offset = 0;
|
|
unsigned EntrySize = JumpTable->getEntrySize();
|
|
|
|
for (unsigned i = 0; i < Index; ++i)
|
|
Offset += JT[i].MBBs.size();
|
|
|
|
Offset *= EntrySize;
|
|
|
|
return (intptr_t)((char *)JumpTableBase + Offset);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public interface to this file
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
|
|
return new JITEmitter(jit, JMM);
|
|
}
|
|
|
|
// getPointerToNamedFunction - This function is used as a global wrapper to
|
|
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
|
|
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
|
|
// need to resolve function(s) that are being mis-codegenerated, so we need to
|
|
// resolve their addresses at runtime, and this is the way to do it.
|
|
extern "C" {
|
|
void *getPointerToNamedFunction(const char *Name) {
|
|
if (Function *F = TheJIT->FindFunctionNamed(Name))
|
|
return TheJIT->getPointerToFunction(F);
|
|
return TheJIT->getPointerToNamedFunction(Name);
|
|
}
|
|
}
|
|
|
|
// getPointerToFunctionOrStub - If the specified function has been
|
|
// code-gen'd, return a pointer to the function. If not, compile it, or use
|
|
// a stub to implement lazy compilation if available.
|
|
//
|
|
void *JIT::getPointerToFunctionOrStub(Function *F) {
|
|
// If we have already code generated the function, just return the address.
|
|
if (void *Addr = getPointerToGlobalIfAvailable(F))
|
|
return Addr;
|
|
|
|
// Get a stub if the target supports it.
|
|
assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
|
|
JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
|
|
return JE->getJITResolver().getFunctionStub(F);
|
|
}
|
|
|
|
/// freeMachineCodeForFunction - release machine code memory for given Function.
|
|
///
|
|
void JIT::freeMachineCodeForFunction(Function *F) {
|
|
|
|
// Delete translation for this from the ExecutionEngine, so it will get
|
|
// retranslated next time it is used.
|
|
void *OldPtr = updateGlobalMapping(F, 0);
|
|
|
|
if (OldPtr)
|
|
RemoveFunctionFromSymbolTable(OldPtr);
|
|
|
|
// Free the actual memory for the function body and related stuff.
|
|
assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
|
|
static_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
|
|
}
|
|
|