mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 04:30:23 +00:00
0b8c9a80f2
into their new header subdirectory: include/llvm/IR. This matches the directory structure of lib, and begins to correct a long standing point of file layout clutter in LLVM. There are still more header files to move here, but I wanted to handle them in separate commits to make tracking what files make sense at each layer easier. The only really questionable files here are the target intrinsic tablegen files. But that's a battle I'd rather not fight today. I've updated both CMake and Makefile build systems (I think, and my tests think, but I may have missed something). I've also re-sorted the includes throughout the project. I'll be committing updates to Clang, DragonEgg, and Polly momentarily. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
375 lines
15 KiB
C++
375 lines
15 KiB
C++
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements some loop unrolling utilities for loops with run-time
|
|
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
|
|
// trip counts.
|
|
//
|
|
// The functions in this file are used to generate extra code when the
|
|
// run-time trip count modulo the unroll factor is not 0. When this is the
|
|
// case, we need to generate code to execute these 'left over' iterations.
|
|
//
|
|
// The current strategy generates an if-then-else sequence prior to the
|
|
// unrolled loop to execute the 'left over' iterations. Other strategies
|
|
// include generate a loop before or after the unrolled loop.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumRuntimeUnrolled,
|
|
"Number of loops unrolled with run-time trip counts");
|
|
|
|
/// Connect the unrolling prolog code to the original loop.
|
|
/// The unrolling prolog code contains code to execute the
|
|
/// 'extra' iterations if the run-time trip count modulo the
|
|
/// unroll count is non-zero.
|
|
///
|
|
/// This function performs the following:
|
|
/// - Create PHI nodes at prolog end block to combine values
|
|
/// that exit the prolog code and jump around the prolog.
|
|
/// - Add a PHI operand to a PHI node at the loop exit block
|
|
/// for values that exit the prolog and go around the loop.
|
|
/// - Branch around the original loop if the trip count is less
|
|
/// than the unroll factor.
|
|
///
|
|
static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
|
|
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
|
|
BasicBlock *OrigPH, BasicBlock *NewPH,
|
|
ValueToValueMapTy &LVMap, Pass *P) {
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
assert(Latch != 0 && "Loop must have a latch");
|
|
|
|
// Create a PHI node for each outgoing value from the original loop
|
|
// (which means it is an outgoing value from the prolog code too).
|
|
// The new PHI node is inserted in the prolog end basic block.
|
|
// The new PHI name is added as an operand of a PHI node in either
|
|
// the loop header or the loop exit block.
|
|
for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
|
|
SBI != SBE; ++SBI) {
|
|
for (BasicBlock::iterator BBI = (*SBI)->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
|
|
|
|
// Add a new PHI node to the prolog end block and add the
|
|
// appropriate incoming values.
|
|
PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
|
|
PrologEnd->getTerminator());
|
|
// Adding a value to the new PHI node from the original loop preheader.
|
|
// This is the value that skips all the prolog code.
|
|
if (L->contains(PN)) {
|
|
NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
|
|
} else {
|
|
NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
|
|
}
|
|
|
|
Value *V = PN->getIncomingValueForBlock(Latch);
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (L->contains(I)) {
|
|
V = LVMap[I];
|
|
}
|
|
}
|
|
// Adding a value to the new PHI node from the last prolog block
|
|
// that was created.
|
|
NewPN->addIncoming(V, LastPrologBB);
|
|
|
|
// Update the existing PHI node operand with the value from the
|
|
// new PHI node. How this is done depends on if the existing
|
|
// PHI node is in the original loop block, or the exit block.
|
|
if (L->contains(PN)) {
|
|
PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
|
|
} else {
|
|
PN->addIncoming(NewPN, PrologEnd);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a branch around the orignal loop, which is taken if the
|
|
// trip count is less than the unroll factor.
|
|
Instruction *InsertPt = PrologEnd->getTerminator();
|
|
Instruction *BrLoopExit =
|
|
new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
|
|
ConstantInt::get(TripCount->getType(), Count));
|
|
BasicBlock *Exit = L->getUniqueExitBlock();
|
|
assert(Exit != 0 && "Loop must have a single exit block only");
|
|
// Split the exit to maintain loop canonicalization guarantees
|
|
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
|
|
if (!Exit->isLandingPad()) {
|
|
SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
|
|
} else {
|
|
SmallVector<BasicBlock*, 2> NewBBs;
|
|
SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
|
|
P, NewBBs);
|
|
}
|
|
// Add the branch to the exit block (around the unrolled loop)
|
|
BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
|
|
InsertPt->eraseFromParent();
|
|
}
|
|
|
|
/// Create a clone of the blocks in a loop and connect them together.
|
|
/// This function doesn't create a clone of the loop structure.
|
|
///
|
|
/// There are two value maps that are defined and used. VMap is
|
|
/// for the values in the current loop instance. LVMap contains
|
|
/// the values from the last loop instance. We need the LVMap values
|
|
/// to update the initial values for the current loop instance.
|
|
///
|
|
static void CloneLoopBlocks(Loop *L,
|
|
bool FirstCopy,
|
|
BasicBlock *InsertTop,
|
|
BasicBlock *InsertBot,
|
|
std::vector<BasicBlock *> &NewBlocks,
|
|
LoopBlocksDFS &LoopBlocks,
|
|
ValueToValueMapTy &VMap,
|
|
ValueToValueMapTy &LVMap,
|
|
LoopInfo *LI) {
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
BasicBlock *Header = L->getHeader();
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
Function *F = Header->getParent();
|
|
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
|
|
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
|
|
// For each block in the original loop, create a new copy,
|
|
// and update the value map with the newly created values.
|
|
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
|
|
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
|
|
NewBlocks.push_back(NewBB);
|
|
|
|
if (Loop *ParentLoop = L->getParentLoop())
|
|
ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
|
|
|
|
VMap[*BB] = NewBB;
|
|
if (Header == *BB) {
|
|
// For the first block, add a CFG connection to this newly
|
|
// created block
|
|
InsertTop->getTerminator()->setSuccessor(0, NewBB);
|
|
|
|
// Change the incoming values to the ones defined in the
|
|
// previously cloned loop.
|
|
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *NewPHI = cast<PHINode>(VMap[I]);
|
|
if (FirstCopy) {
|
|
// We replace the first phi node with the value from the preheader
|
|
VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
|
|
NewBB->getInstList().erase(NewPHI);
|
|
} else {
|
|
// Update VMap with values from the previous block
|
|
unsigned idx = NewPHI->getBasicBlockIndex(Latch);
|
|
Value *InVal = NewPHI->getIncomingValue(idx);
|
|
if (Instruction *I = dyn_cast<Instruction>(InVal))
|
|
if (L->contains(I))
|
|
InVal = LVMap[InVal];
|
|
NewPHI->setIncomingValue(idx, InVal);
|
|
NewPHI->setIncomingBlock(idx, InsertTop);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Latch == *BB) {
|
|
VMap.erase((*BB)->getTerminator());
|
|
NewBB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(InsertBot, NewBB);
|
|
}
|
|
}
|
|
// LastValueMap is updated with the values for the current loop
|
|
// which are used the next time this function is called.
|
|
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
|
|
VI != VE; ++VI) {
|
|
LVMap[VI->first] = VI->second;
|
|
}
|
|
}
|
|
|
|
/// Insert code in the prolog code when unrolling a loop with a
|
|
/// run-time trip-count.
|
|
///
|
|
/// This method assumes that the loop unroll factor is total number
|
|
/// of loop bodes in the loop after unrolling. (Some folks refer
|
|
/// to the unroll factor as the number of *extra* copies added).
|
|
/// We assume also that the loop unroll factor is a power-of-two. So, after
|
|
/// unrolling the loop, the number of loop bodies executed is 2,
|
|
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
|
|
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
|
|
/// the switch instruction is generated.
|
|
///
|
|
/// extraiters = tripcount % loopfactor
|
|
/// if (extraiters == 0) jump Loop:
|
|
/// if (extraiters == loopfactor) jump L1
|
|
/// if (extraiters == loopfactor-1) jump L2
|
|
/// ...
|
|
/// L1: LoopBody;
|
|
/// L2: LoopBody;
|
|
/// ...
|
|
/// if tripcount < loopfactor jump End
|
|
/// Loop:
|
|
/// ...
|
|
/// End:
|
|
///
|
|
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
|
|
LPPassManager *LPM) {
|
|
// for now, only unroll loops that contain a single exit
|
|
if (!L->getExitingBlock())
|
|
return false;
|
|
|
|
// Make sure the loop is in canonical form, and there is a single
|
|
// exit block only.
|
|
if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0)
|
|
return false;
|
|
|
|
// Use Scalar Evolution to compute the trip count. This allows more
|
|
// loops to be unrolled than relying on induction var simplification
|
|
if (!LPM)
|
|
return false;
|
|
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
|
|
if (SE == 0)
|
|
return false;
|
|
|
|
// Only unroll loops with a computable trip count and the trip count needs
|
|
// to be an int value (allowing a pointer type is a TODO item)
|
|
const SCEV *BECount = SE->getBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
|
|
return false;
|
|
|
|
// Add 1 since the backedge count doesn't include the first loop iteration
|
|
const SCEV *TripCountSC =
|
|
SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
|
|
if (isa<SCEVCouldNotCompute>(TripCountSC))
|
|
return false;
|
|
|
|
// We only handle cases when the unroll factor is a power of 2.
|
|
// Count is the loop unroll factor, the number of extra copies added + 1.
|
|
if ((Count & (Count-1)) != 0)
|
|
return false;
|
|
|
|
// If this loop is nested, then the loop unroller changes the code in
|
|
// parent loop, so the Scalar Evolution pass needs to be run again
|
|
if (Loop *ParentLoop = L->getParentLoop())
|
|
SE->forgetLoop(ParentLoop);
|
|
|
|
BasicBlock *PH = L->getLoopPreheader();
|
|
BasicBlock *Header = L->getHeader();
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
// It helps to splits the original preheader twice, one for the end of the
|
|
// prolog code and one for a new loop preheader
|
|
BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
|
|
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
|
|
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
|
|
|
|
// Compute the number of extra iterations required, which is:
|
|
// extra iterations = run-time trip count % (loop unroll factor + 1)
|
|
SCEVExpander Expander(*SE, "loop-unroll");
|
|
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
|
|
PreHeaderBR);
|
|
Type *CountTy = TripCount->getType();
|
|
BinaryOperator *ModVal =
|
|
BinaryOperator::CreateURem(TripCount,
|
|
ConstantInt::get(CountTy, Count),
|
|
"xtraiter");
|
|
ModVal->insertBefore(PreHeaderBR);
|
|
|
|
// Check if for no extra iterations, then jump to unrolled loop
|
|
Value *BranchVal = new ICmpInst(PreHeaderBR,
|
|
ICmpInst::ICMP_NE, ModVal,
|
|
ConstantInt::get(CountTy, 0), "lcmp");
|
|
// Branch to either the extra iterations or the unrolled loop
|
|
// We will fix up the true branch label when adding loop body copies
|
|
BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
|
|
assert(PreHeaderBR->isUnconditional() &&
|
|
PreHeaderBR->getSuccessor(0) == PEnd &&
|
|
"CFG edges in Preheader are not correct");
|
|
PreHeaderBR->eraseFromParent();
|
|
|
|
ValueToValueMapTy LVMap;
|
|
Function *F = Header->getParent();
|
|
// These variables are used to update the CFG links in each iteration
|
|
BasicBlock *CompareBB = 0;
|
|
BasicBlock *LastLoopBB = PH;
|
|
// Get an ordered list of blocks in the loop to help with the ordering of the
|
|
// cloned blocks in the prolog code
|
|
LoopBlocksDFS LoopBlocks(L);
|
|
LoopBlocks.perform(LI);
|
|
|
|
//
|
|
// For each extra loop iteration, create a copy of the loop's basic blocks
|
|
// and generate a condition that branches to the copy depending on the
|
|
// number of 'left over' iterations.
|
|
//
|
|
for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
|
|
std::vector<BasicBlock*> NewBlocks;
|
|
ValueToValueMapTy VMap;
|
|
|
|
// Clone all the basic blocks in the loop, but we don't clone the loop
|
|
// This function adds the appropriate CFG connections.
|
|
CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
|
|
LoopBlocks, VMap, LVMap, LI);
|
|
LastLoopBB = cast<BasicBlock>(VMap[Latch]);
|
|
|
|
// Insert the cloned blocks into function just before the original loop
|
|
F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
|
|
NewBlocks[0], F->end());
|
|
|
|
// Generate the code for the comparison which determines if the loop
|
|
// prolog code needs to be executed.
|
|
if (leftOverIters == Count-1) {
|
|
// There is no compare block for the fall-thru case when for the last
|
|
// left over iteration
|
|
CompareBB = NewBlocks[0];
|
|
} else {
|
|
// Create a new block for the comparison
|
|
BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
|
|
F, CompareBB);
|
|
if (Loop *ParentLoop = L->getParentLoop()) {
|
|
// Add the new block to the parent loop, if needed
|
|
ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
|
|
}
|
|
|
|
// The comparison w/ the extra iteration value and branch
|
|
Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
|
|
ConstantInt::get(CountTy, leftOverIters),
|
|
"un.tmp");
|
|
// Branch to either the extra iterations or the unrolled loop
|
|
BranchInst::Create(NewBlocks[0], CompareBB,
|
|
BranchVal, NewBB);
|
|
CompareBB = NewBB;
|
|
PH->getTerminator()->setSuccessor(0, NewBB);
|
|
VMap[NewPH] = CompareBB;
|
|
}
|
|
|
|
// Rewrite the cloned instruction operands to use the values
|
|
// created when the clone is created.
|
|
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
|
|
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
|
|
E = NewBlocks[i]->end(); I != E; ++I) {
|
|
RemapInstruction(I, VMap,
|
|
RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Connect the prolog code to the original loop and update the
|
|
// PHI functions.
|
|
ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
|
|
LPM->getAsPass());
|
|
NumRuntimeUnrolled++;
|
|
return true;
|
|
}
|