mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-25 14:32:53 +00:00
a1f00f4d48
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148934 91177308-0d34-0410-b5e6-96231b3b80d8
1130 lines
42 KiB
C++
1130 lines
42 KiB
C++
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LLVM module linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Linker.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TypeMap implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class TypeMapTy : public ValueMapTypeRemapper {
|
|
/// MappedTypes - This is a mapping from a source type to a destination type
|
|
/// to use.
|
|
DenseMap<Type*, Type*> MappedTypes;
|
|
|
|
/// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
|
|
/// we speculatively add types to MappedTypes, but keep track of them here in
|
|
/// case we need to roll back.
|
|
SmallVector<Type*, 16> SpeculativeTypes;
|
|
|
|
/// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
|
|
/// source module that are mapped to an opaque struct in the destination
|
|
/// module.
|
|
SmallVector<StructType*, 16> SrcDefinitionsToResolve;
|
|
|
|
/// DstResolvedOpaqueTypes - This is the set of opaque types in the
|
|
/// destination modules who are getting a body from the source module.
|
|
SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
|
|
public:
|
|
|
|
/// addTypeMapping - Indicate that the specified type in the destination
|
|
/// module is conceptually equivalent to the specified type in the source
|
|
/// module.
|
|
void addTypeMapping(Type *DstTy, Type *SrcTy);
|
|
|
|
/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
|
|
/// module from a type definition in the source module.
|
|
void linkDefinedTypeBodies();
|
|
|
|
/// get - Return the mapped type to use for the specified input type from the
|
|
/// source module.
|
|
Type *get(Type *SrcTy);
|
|
|
|
FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
|
|
|
|
private:
|
|
Type *getImpl(Type *T);
|
|
/// remapType - Implement the ValueMapTypeRemapper interface.
|
|
Type *remapType(Type *SrcTy) {
|
|
return get(SrcTy);
|
|
}
|
|
|
|
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
|
|
};
|
|
}
|
|
|
|
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
|
|
Type *&Entry = MappedTypes[SrcTy];
|
|
if (Entry) return;
|
|
|
|
if (DstTy == SrcTy) {
|
|
Entry = DstTy;
|
|
return;
|
|
}
|
|
|
|
// Check to see if these types are recursively isomorphic and establish a
|
|
// mapping between them if so.
|
|
if (!areTypesIsomorphic(DstTy, SrcTy)) {
|
|
// Oops, they aren't isomorphic. Just discard this request by rolling out
|
|
// any speculative mappings we've established.
|
|
for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
|
|
MappedTypes.erase(SpeculativeTypes[i]);
|
|
}
|
|
SpeculativeTypes.clear();
|
|
}
|
|
|
|
/// areTypesIsomorphic - Recursively walk this pair of types, returning true
|
|
/// if they are isomorphic, false if they are not.
|
|
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
|
|
// Two types with differing kinds are clearly not isomorphic.
|
|
if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
|
|
|
|
// If we have an entry in the MappedTypes table, then we have our answer.
|
|
Type *&Entry = MappedTypes[SrcTy];
|
|
if (Entry)
|
|
return Entry == DstTy;
|
|
|
|
// Two identical types are clearly isomorphic. Remember this
|
|
// non-speculatively.
|
|
if (DstTy == SrcTy) {
|
|
Entry = DstTy;
|
|
return true;
|
|
}
|
|
|
|
// Okay, we have two types with identical kinds that we haven't seen before.
|
|
|
|
// If this is an opaque struct type, special case it.
|
|
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
|
|
// Mapping an opaque type to any struct, just keep the dest struct.
|
|
if (SSTy->isOpaque()) {
|
|
Entry = DstTy;
|
|
SpeculativeTypes.push_back(SrcTy);
|
|
return true;
|
|
}
|
|
|
|
// Mapping a non-opaque source type to an opaque dest. If this is the first
|
|
// type that we're mapping onto this destination type then we succeed. Keep
|
|
// the dest, but fill it in later. This doesn't need to be speculative. If
|
|
// this is the second (different) type that we're trying to map onto the
|
|
// same opaque type then we fail.
|
|
if (cast<StructType>(DstTy)->isOpaque()) {
|
|
// We can only map one source type onto the opaque destination type.
|
|
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
|
|
return false;
|
|
SrcDefinitionsToResolve.push_back(SSTy);
|
|
Entry = DstTy;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If the number of subtypes disagree between the two types, then we fail.
|
|
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
|
|
return false;
|
|
|
|
// Fail if any of the extra properties (e.g. array size) of the type disagree.
|
|
if (isa<IntegerType>(DstTy))
|
|
return false; // bitwidth disagrees.
|
|
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
|
|
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
|
|
return false;
|
|
|
|
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
|
|
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
|
|
return false;
|
|
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
|
|
StructType *SSTy = cast<StructType>(SrcTy);
|
|
if (DSTy->isLiteral() != SSTy->isLiteral() ||
|
|
DSTy->isPacked() != SSTy->isPacked())
|
|
return false;
|
|
} else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
|
|
if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
|
|
return false;
|
|
} else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
|
|
if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we speculate that these two types will line up and recursively
|
|
// check the subelements.
|
|
Entry = DstTy;
|
|
SpeculativeTypes.push_back(SrcTy);
|
|
|
|
for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
|
|
if (!areTypesIsomorphic(DstTy->getContainedType(i),
|
|
SrcTy->getContainedType(i)))
|
|
return false;
|
|
|
|
// If everything seems to have lined up, then everything is great.
|
|
return true;
|
|
}
|
|
|
|
/// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
|
|
/// module from a type definition in the source module.
|
|
void TypeMapTy::linkDefinedTypeBodies() {
|
|
SmallVector<Type*, 16> Elements;
|
|
SmallString<16> TmpName;
|
|
|
|
// Note that processing entries in this loop (calling 'get') can add new
|
|
// entries to the SrcDefinitionsToResolve vector.
|
|
while (!SrcDefinitionsToResolve.empty()) {
|
|
StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
|
|
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
|
|
|
|
// TypeMap is a many-to-one mapping, if there were multiple types that
|
|
// provide a body for DstSTy then previous iterations of this loop may have
|
|
// already handled it. Just ignore this case.
|
|
if (!DstSTy->isOpaque()) continue;
|
|
assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
|
|
|
|
// Map the body of the source type over to a new body for the dest type.
|
|
Elements.resize(SrcSTy->getNumElements());
|
|
for (unsigned i = 0, e = Elements.size(); i != e; ++i)
|
|
Elements[i] = getImpl(SrcSTy->getElementType(i));
|
|
|
|
DstSTy->setBody(Elements, SrcSTy->isPacked());
|
|
|
|
// If DstSTy has no name or has a longer name than STy, then viciously steal
|
|
// STy's name.
|
|
if (!SrcSTy->hasName()) continue;
|
|
StringRef SrcName = SrcSTy->getName();
|
|
|
|
if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
|
|
TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
|
|
SrcSTy->setName("");
|
|
DstSTy->setName(TmpName.str());
|
|
TmpName.clear();
|
|
}
|
|
}
|
|
|
|
DstResolvedOpaqueTypes.clear();
|
|
}
|
|
|
|
|
|
/// get - Return the mapped type to use for the specified input type from the
|
|
/// source module.
|
|
Type *TypeMapTy::get(Type *Ty) {
|
|
Type *Result = getImpl(Ty);
|
|
|
|
// If this caused a reference to any struct type, resolve it before returning.
|
|
if (!SrcDefinitionsToResolve.empty())
|
|
linkDefinedTypeBodies();
|
|
return Result;
|
|
}
|
|
|
|
/// getImpl - This is the recursive version of get().
|
|
Type *TypeMapTy::getImpl(Type *Ty) {
|
|
// If we already have an entry for this type, return it.
|
|
Type **Entry = &MappedTypes[Ty];
|
|
if (*Entry) return *Entry;
|
|
|
|
// If this is not a named struct type, then just map all of the elements and
|
|
// then rebuild the type from inside out.
|
|
if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
|
|
// If there are no element types to map, then the type is itself. This is
|
|
// true for the anonymous {} struct, things like 'float', integers, etc.
|
|
if (Ty->getNumContainedTypes() == 0)
|
|
return *Entry = Ty;
|
|
|
|
// Remap all of the elements, keeping track of whether any of them change.
|
|
bool AnyChange = false;
|
|
SmallVector<Type*, 4> ElementTypes;
|
|
ElementTypes.resize(Ty->getNumContainedTypes());
|
|
for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
|
|
ElementTypes[i] = getImpl(Ty->getContainedType(i));
|
|
AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
|
|
}
|
|
|
|
// If we found our type while recursively processing stuff, just use it.
|
|
Entry = &MappedTypes[Ty];
|
|
if (*Entry) return *Entry;
|
|
|
|
// If all of the element types mapped directly over, then the type is usable
|
|
// as-is.
|
|
if (!AnyChange)
|
|
return *Entry = Ty;
|
|
|
|
// Otherwise, rebuild a modified type.
|
|
switch (Ty->getTypeID()) {
|
|
default: assert(0 && "unknown derived type to remap");
|
|
case Type::ArrayTyID:
|
|
return *Entry = ArrayType::get(ElementTypes[0],
|
|
cast<ArrayType>(Ty)->getNumElements());
|
|
case Type::VectorTyID:
|
|
return *Entry = VectorType::get(ElementTypes[0],
|
|
cast<VectorType>(Ty)->getNumElements());
|
|
case Type::PointerTyID:
|
|
return *Entry = PointerType::get(ElementTypes[0],
|
|
cast<PointerType>(Ty)->getAddressSpace());
|
|
case Type::FunctionTyID:
|
|
return *Entry = FunctionType::get(ElementTypes[0],
|
|
makeArrayRef(ElementTypes).slice(1),
|
|
cast<FunctionType>(Ty)->isVarArg());
|
|
case Type::StructTyID:
|
|
// Note that this is only reached for anonymous structs.
|
|
return *Entry = StructType::get(Ty->getContext(), ElementTypes,
|
|
cast<StructType>(Ty)->isPacked());
|
|
}
|
|
}
|
|
|
|
// Otherwise, this is an unmapped named struct. If the struct can be directly
|
|
// mapped over, just use it as-is. This happens in a case when the linked-in
|
|
// module has something like:
|
|
// %T = type {%T*, i32}
|
|
// @GV = global %T* null
|
|
// where T does not exist at all in the destination module.
|
|
//
|
|
// The other case we watch for is when the type is not in the destination
|
|
// module, but that it has to be rebuilt because it refers to something that
|
|
// is already mapped. For example, if the destination module has:
|
|
// %A = type { i32 }
|
|
// and the source module has something like
|
|
// %A' = type { i32 }
|
|
// %B = type { %A'* }
|
|
// @GV = global %B* null
|
|
// then we want to create a new type: "%B = type { %A*}" and have it take the
|
|
// pristine "%B" name from the source module.
|
|
//
|
|
// To determine which case this is, we have to recursively walk the type graph
|
|
// speculating that we'll be able to reuse it unmodified. Only if this is
|
|
// safe would we map the entire thing over. Because this is an optimization,
|
|
// and is not required for the prettiness of the linked module, we just skip
|
|
// it and always rebuild a type here.
|
|
StructType *STy = cast<StructType>(Ty);
|
|
|
|
// If the type is opaque, we can just use it directly.
|
|
if (STy->isOpaque())
|
|
return *Entry = STy;
|
|
|
|
// Otherwise we create a new type and resolve its body later. This will be
|
|
// resolved by the top level of get().
|
|
SrcDefinitionsToResolve.push_back(STy);
|
|
StructType *DTy = StructType::create(STy->getContext());
|
|
DstResolvedOpaqueTypes.insert(DTy);
|
|
return *Entry = DTy;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ModuleLinker implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// ModuleLinker - This is an implementation class for the LinkModules
|
|
/// function, which is the entrypoint for this file.
|
|
class ModuleLinker {
|
|
Module *DstM, *SrcM;
|
|
|
|
TypeMapTy TypeMap;
|
|
|
|
/// ValueMap - Mapping of values from what they used to be in Src, to what
|
|
/// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
|
|
/// some overhead due to the use of Value handles which the Linker doesn't
|
|
/// actually need, but this allows us to reuse the ValueMapper code.
|
|
ValueToValueMapTy ValueMap;
|
|
|
|
struct AppendingVarInfo {
|
|
GlobalVariable *NewGV; // New aggregate global in dest module.
|
|
Constant *DstInit; // Old initializer from dest module.
|
|
Constant *SrcInit; // Old initializer from src module.
|
|
};
|
|
|
|
std::vector<AppendingVarInfo> AppendingVars;
|
|
|
|
unsigned Mode; // Mode to treat source module.
|
|
|
|
// Set of items not to link in from source.
|
|
SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
|
|
|
|
// Vector of functions to lazily link in.
|
|
std::vector<Function*> LazilyLinkFunctions;
|
|
|
|
public:
|
|
std::string ErrorMsg;
|
|
|
|
ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
|
|
: DstM(dstM), SrcM(srcM), Mode(mode) { }
|
|
|
|
bool run();
|
|
|
|
private:
|
|
/// emitError - Helper method for setting a message and returning an error
|
|
/// code.
|
|
bool emitError(const Twine &Message) {
|
|
ErrorMsg = Message.str();
|
|
return true;
|
|
}
|
|
|
|
/// getLinkageResult - This analyzes the two global values and determines
|
|
/// what the result will look like in the destination module.
|
|
bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
|
|
GlobalValue::LinkageTypes <,
|
|
GlobalValue::VisibilityTypes &Vis,
|
|
bool &LinkFromSrc);
|
|
|
|
/// getLinkedToGlobal - Given a global in the source module, return the
|
|
/// global in the destination module that is being linked to, if any.
|
|
GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
|
|
// If the source has no name it can't link. If it has local linkage,
|
|
// there is no name match-up going on.
|
|
if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
|
|
return 0;
|
|
|
|
// Otherwise see if we have a match in the destination module's symtab.
|
|
GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
|
|
if (DGV == 0) return 0;
|
|
|
|
// If we found a global with the same name in the dest module, but it has
|
|
// internal linkage, we are really not doing any linkage here.
|
|
if (DGV->hasLocalLinkage())
|
|
return 0;
|
|
|
|
// Otherwise, we do in fact link to the destination global.
|
|
return DGV;
|
|
}
|
|
|
|
void computeTypeMapping();
|
|
|
|
bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
|
|
bool linkGlobalProto(GlobalVariable *SrcGV);
|
|
bool linkFunctionProto(Function *SrcF);
|
|
bool linkAliasProto(GlobalAlias *SrcA);
|
|
|
|
void linkAppendingVarInit(const AppendingVarInfo &AVI);
|
|
void linkGlobalInits();
|
|
void linkFunctionBody(Function *Dst, Function *Src);
|
|
void linkAliasBodies();
|
|
void linkNamedMDNodes();
|
|
};
|
|
}
|
|
|
|
|
|
|
|
/// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
|
|
/// in the symbol table. This is good for all clients except for us. Go
|
|
/// through the trouble to force this back.
|
|
static void forceRenaming(GlobalValue *GV, StringRef Name) {
|
|
// If the global doesn't force its name or if it already has the right name,
|
|
// there is nothing for us to do.
|
|
if (GV->hasLocalLinkage() || GV->getName() == Name)
|
|
return;
|
|
|
|
Module *M = GV->getParent();
|
|
|
|
// If there is a conflict, rename the conflict.
|
|
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
|
|
GV->takeName(ConflictGV);
|
|
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
|
|
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
|
|
} else {
|
|
GV->setName(Name); // Force the name back
|
|
}
|
|
}
|
|
|
|
/// CopyGVAttributes - copy additional attributes (those not needed to construct
|
|
/// a GlobalValue) from the SrcGV to the DestGV.
|
|
static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
|
|
// Use the maximum alignment, rather than just copying the alignment of SrcGV.
|
|
unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
|
|
DestGV->copyAttributesFrom(SrcGV);
|
|
DestGV->setAlignment(Alignment);
|
|
|
|
forceRenaming(DestGV, SrcGV->getName());
|
|
}
|
|
|
|
static bool isLessConstraining(GlobalValue::VisibilityTypes a,
|
|
GlobalValue::VisibilityTypes b) {
|
|
if (a == GlobalValue::HiddenVisibility)
|
|
return false;
|
|
if (b == GlobalValue::HiddenVisibility)
|
|
return true;
|
|
if (a == GlobalValue::ProtectedVisibility)
|
|
return false;
|
|
if (b == GlobalValue::ProtectedVisibility)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// getLinkageResult - This analyzes the two global values and determines what
|
|
/// the result will look like in the destination module. In particular, it
|
|
/// computes the resultant linkage type and visibility, computes whether the
|
|
/// global in the source should be copied over to the destination (replacing
|
|
/// the existing one), and computes whether this linkage is an error or not.
|
|
bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
|
|
GlobalValue::LinkageTypes <,
|
|
GlobalValue::VisibilityTypes &Vis,
|
|
bool &LinkFromSrc) {
|
|
assert(Dest && "Must have two globals being queried");
|
|
assert(!Src->hasLocalLinkage() &&
|
|
"If Src has internal linkage, Dest shouldn't be set!");
|
|
|
|
bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
|
|
bool DestIsDeclaration = Dest->isDeclaration();
|
|
|
|
if (SrcIsDeclaration) {
|
|
// If Src is external or if both Src & Dest are external.. Just link the
|
|
// external globals, we aren't adding anything.
|
|
if (Src->hasDLLImportLinkage()) {
|
|
// If one of GVs has DLLImport linkage, result should be dllimport'ed.
|
|
if (DestIsDeclaration) {
|
|
LinkFromSrc = true;
|
|
LT = Src->getLinkage();
|
|
}
|
|
} else if (Dest->hasExternalWeakLinkage()) {
|
|
// If the Dest is weak, use the source linkage.
|
|
LinkFromSrc = true;
|
|
LT = Src->getLinkage();
|
|
} else {
|
|
LinkFromSrc = false;
|
|
LT = Dest->getLinkage();
|
|
}
|
|
} else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
|
|
// If Dest is external but Src is not:
|
|
LinkFromSrc = true;
|
|
LT = Src->getLinkage();
|
|
} else if (Src->isWeakForLinker()) {
|
|
// At this point we know that Dest has LinkOnce, External*, Weak, Common,
|
|
// or DLL* linkage.
|
|
if (Dest->hasExternalWeakLinkage() ||
|
|
Dest->hasAvailableExternallyLinkage() ||
|
|
(Dest->hasLinkOnceLinkage() &&
|
|
(Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
|
|
LinkFromSrc = true;
|
|
LT = Src->getLinkage();
|
|
} else {
|
|
LinkFromSrc = false;
|
|
LT = Dest->getLinkage();
|
|
}
|
|
} else if (Dest->isWeakForLinker()) {
|
|
// At this point we know that Src has External* or DLL* linkage.
|
|
if (Src->hasExternalWeakLinkage()) {
|
|
LinkFromSrc = false;
|
|
LT = Dest->getLinkage();
|
|
} else {
|
|
LinkFromSrc = true;
|
|
LT = GlobalValue::ExternalLinkage;
|
|
}
|
|
} else {
|
|
assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() ||
|
|
Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
|
|
(Src->hasExternalLinkage() || Src->hasDLLImportLinkage() ||
|
|
Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) &&
|
|
"Unexpected linkage type!");
|
|
return emitError("Linking globals named '" + Src->getName() +
|
|
"': symbol multiply defined!");
|
|
}
|
|
|
|
// Compute the visibility. We follow the rules in the System V Application
|
|
// Binary Interface.
|
|
Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
|
|
Dest->getVisibility() : Src->getVisibility();
|
|
return false;
|
|
}
|
|
|
|
/// computeTypeMapping - Loop over all of the linked values to compute type
|
|
/// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
|
|
/// we have two struct types 'Foo' but one got renamed when the module was
|
|
/// loaded into the same LLVMContext.
|
|
void ModuleLinker::computeTypeMapping() {
|
|
// Incorporate globals.
|
|
for (Module::global_iterator I = SrcM->global_begin(),
|
|
E = SrcM->global_end(); I != E; ++I) {
|
|
GlobalValue *DGV = getLinkedToGlobal(I);
|
|
if (DGV == 0) continue;
|
|
|
|
if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
|
|
TypeMap.addTypeMapping(DGV->getType(), I->getType());
|
|
continue;
|
|
}
|
|
|
|
// Unify the element type of appending arrays.
|
|
ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
|
|
ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
|
|
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
|
|
}
|
|
|
|
// Incorporate functions.
|
|
for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
|
|
if (GlobalValue *DGV = getLinkedToGlobal(I))
|
|
TypeMap.addTypeMapping(DGV->getType(), I->getType());
|
|
}
|
|
|
|
// Incorporate types by name, scanning all the types in the source module.
|
|
// At this point, the destination module may have a type "%foo = { i32 }" for
|
|
// example. When the source module got loaded into the same LLVMContext, if
|
|
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
|
|
// Though it isn't required for correctness, attempt to link these up to clean
|
|
// up the IR.
|
|
std::vector<StructType*> SrcStructTypes;
|
|
SrcM->findUsedStructTypes(SrcStructTypes);
|
|
|
|
SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
|
|
SrcStructTypes.end());
|
|
|
|
for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
|
|
StructType *ST = SrcStructTypes[i];
|
|
if (!ST->hasName()) continue;
|
|
|
|
// Check to see if there is a dot in the name followed by a digit.
|
|
size_t DotPos = ST->getName().rfind('.');
|
|
if (DotPos == 0 || DotPos == StringRef::npos ||
|
|
ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
|
|
continue;
|
|
|
|
// Check to see if the destination module has a struct with the prefix name.
|
|
if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
|
|
// Don't use it if this actually came from the source module. They're in
|
|
// the same LLVMContext after all.
|
|
if (!SrcStructTypesSet.count(DST))
|
|
TypeMap.addTypeMapping(DST, ST);
|
|
}
|
|
|
|
|
|
// Don't bother incorporating aliases, they aren't generally typed well.
|
|
|
|
// Now that we have discovered all of the type equivalences, get a body for
|
|
// any 'opaque' types in the dest module that are now resolved.
|
|
TypeMap.linkDefinedTypeBodies();
|
|
}
|
|
|
|
/// linkAppendingVarProto - If there were any appending global variables, link
|
|
/// them together now. Return true on error.
|
|
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
|
|
GlobalVariable *SrcGV) {
|
|
|
|
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
|
|
return emitError("Linking globals named '" + SrcGV->getName() +
|
|
"': can only link appending global with another appending global!");
|
|
|
|
ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
|
|
ArrayType *SrcTy =
|
|
cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
|
|
Type *EltTy = DstTy->getElementType();
|
|
|
|
// Check to see that they two arrays agree on type.
|
|
if (EltTy != SrcTy->getElementType())
|
|
return emitError("Appending variables with different element types!");
|
|
if (DstGV->isConstant() != SrcGV->isConstant())
|
|
return emitError("Appending variables linked with different const'ness!");
|
|
|
|
if (DstGV->getAlignment() != SrcGV->getAlignment())
|
|
return emitError(
|
|
"Appending variables with different alignment need to be linked!");
|
|
|
|
if (DstGV->getVisibility() != SrcGV->getVisibility())
|
|
return emitError(
|
|
"Appending variables with different visibility need to be linked!");
|
|
|
|
if (DstGV->getSection() != SrcGV->getSection())
|
|
return emitError(
|
|
"Appending variables with different section name need to be linked!");
|
|
|
|
uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
|
|
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
|
|
|
|
// Create the new global variable.
|
|
GlobalVariable *NG =
|
|
new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
|
|
DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
|
|
DstGV->isThreadLocal(),
|
|
DstGV->getType()->getAddressSpace());
|
|
|
|
// Propagate alignment, visibility and section info.
|
|
CopyGVAttributes(NG, DstGV);
|
|
|
|
AppendingVarInfo AVI;
|
|
AVI.NewGV = NG;
|
|
AVI.DstInit = DstGV->getInitializer();
|
|
AVI.SrcInit = SrcGV->getInitializer();
|
|
AppendingVars.push_back(AVI);
|
|
|
|
// Replace any uses of the two global variables with uses of the new
|
|
// global.
|
|
ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
|
|
|
|
DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
|
|
DstGV->eraseFromParent();
|
|
|
|
// Track the source variable so we don't try to link it.
|
|
DoNotLinkFromSource.insert(SrcGV);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// linkGlobalProto - Loop through the global variables in the src module and
|
|
/// merge them into the dest module.
|
|
bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
|
|
GlobalValue *DGV = getLinkedToGlobal(SGV);
|
|
llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
|
|
|
|
if (DGV) {
|
|
// Concatenation of appending linkage variables is magic and handled later.
|
|
if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
|
|
return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
|
|
|
|
// Determine whether linkage of these two globals follows the source
|
|
// module's definition or the destination module's definition.
|
|
GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
|
|
GlobalValue::VisibilityTypes NV;
|
|
bool LinkFromSrc = false;
|
|
if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
|
|
return true;
|
|
NewVisibility = NV;
|
|
|
|
// If we're not linking from the source, then keep the definition that we
|
|
// have.
|
|
if (!LinkFromSrc) {
|
|
// Special case for const propagation.
|
|
if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
|
|
if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
|
|
DGVar->setConstant(true);
|
|
|
|
// Set calculated linkage and visibility.
|
|
DGV->setLinkage(NewLinkage);
|
|
DGV->setVisibility(*NewVisibility);
|
|
|
|
// Make sure to remember this mapping.
|
|
ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
|
|
|
|
// Track the source global so that we don't attempt to copy it over when
|
|
// processing global initializers.
|
|
DoNotLinkFromSource.insert(SGV);
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// No linking to be performed or linking from the source: simply create an
|
|
// identical version of the symbol over in the dest module... the
|
|
// initializer will be filled in later by LinkGlobalInits.
|
|
GlobalVariable *NewDGV =
|
|
new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
|
|
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
|
|
SGV->getName(), /*insertbefore*/0,
|
|
SGV->isThreadLocal(),
|
|
SGV->getType()->getAddressSpace());
|
|
// Propagate alignment, visibility and section info.
|
|
CopyGVAttributes(NewDGV, SGV);
|
|
if (NewVisibility)
|
|
NewDGV->setVisibility(*NewVisibility);
|
|
|
|
if (DGV) {
|
|
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
|
|
DGV->eraseFromParent();
|
|
}
|
|
|
|
// Make sure to remember this mapping.
|
|
ValueMap[SGV] = NewDGV;
|
|
return false;
|
|
}
|
|
|
|
/// linkFunctionProto - Link the function in the source module into the
|
|
/// destination module if needed, setting up mapping information.
|
|
bool ModuleLinker::linkFunctionProto(Function *SF) {
|
|
GlobalValue *DGV = getLinkedToGlobal(SF);
|
|
llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
|
|
|
|
if (DGV) {
|
|
GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
|
|
bool LinkFromSrc = false;
|
|
GlobalValue::VisibilityTypes NV;
|
|
if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
|
|
return true;
|
|
NewVisibility = NV;
|
|
|
|
if (!LinkFromSrc) {
|
|
// Set calculated linkage
|
|
DGV->setLinkage(NewLinkage);
|
|
DGV->setVisibility(*NewVisibility);
|
|
|
|
// Make sure to remember this mapping.
|
|
ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
|
|
|
|
// Track the function from the source module so we don't attempt to remap
|
|
// it.
|
|
DoNotLinkFromSource.insert(SF);
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If there is no linkage to be performed or we are linking from the source,
|
|
// bring SF over.
|
|
Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
|
|
SF->getLinkage(), SF->getName(), DstM);
|
|
CopyGVAttributes(NewDF, SF);
|
|
if (NewVisibility)
|
|
NewDF->setVisibility(*NewVisibility);
|
|
|
|
if (DGV) {
|
|
// Any uses of DF need to change to NewDF, with cast.
|
|
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
|
|
DGV->eraseFromParent();
|
|
} else {
|
|
// Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
|
|
if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
|
|
SF->hasAvailableExternallyLinkage()) {
|
|
DoNotLinkFromSource.insert(SF);
|
|
LazilyLinkFunctions.push_back(SF);
|
|
}
|
|
}
|
|
|
|
ValueMap[SF] = NewDF;
|
|
return false;
|
|
}
|
|
|
|
/// LinkAliasProto - Set up prototypes for any aliases that come over from the
|
|
/// source module.
|
|
bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
|
|
GlobalValue *DGV = getLinkedToGlobal(SGA);
|
|
llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
|
|
|
|
if (DGV) {
|
|
GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
|
|
GlobalValue::VisibilityTypes NV;
|
|
bool LinkFromSrc = false;
|
|
if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
|
|
return true;
|
|
NewVisibility = NV;
|
|
|
|
if (!LinkFromSrc) {
|
|
// Set calculated linkage.
|
|
DGV->setLinkage(NewLinkage);
|
|
DGV->setVisibility(*NewVisibility);
|
|
|
|
// Make sure to remember this mapping.
|
|
ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
|
|
|
|
// Track the alias from the source module so we don't attempt to remap it.
|
|
DoNotLinkFromSource.insert(SGA);
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If there is no linkage to be performed or we're linking from the source,
|
|
// bring over SGA.
|
|
GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
|
|
SGA->getLinkage(), SGA->getName(),
|
|
/*aliasee*/0, DstM);
|
|
CopyGVAttributes(NewDA, SGA);
|
|
if (NewVisibility)
|
|
NewDA->setVisibility(*NewVisibility);
|
|
|
|
if (DGV) {
|
|
// Any uses of DGV need to change to NewDA, with cast.
|
|
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
|
|
DGV->eraseFromParent();
|
|
}
|
|
|
|
ValueMap[SGA] = NewDA;
|
|
return false;
|
|
}
|
|
|
|
static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
|
|
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
|
|
|
|
for (unsigned i = 0; i != NumElements; ++i)
|
|
Dest.push_back(C->getAggregateElement(i));
|
|
}
|
|
|
|
void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
|
|
// Merge the initializer.
|
|
SmallVector<Constant*, 16> Elements;
|
|
getArrayElements(AVI.DstInit, Elements);
|
|
|
|
Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
|
|
getArrayElements(SrcInit, Elements);
|
|
|
|
ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
|
|
AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
|
|
}
|
|
|
|
|
|
// linkGlobalInits - Update the initializers in the Dest module now that all
|
|
// globals that may be referenced are in Dest.
|
|
void ModuleLinker::linkGlobalInits() {
|
|
// Loop over all of the globals in the src module, mapping them over as we go
|
|
for (Module::const_global_iterator I = SrcM->global_begin(),
|
|
E = SrcM->global_end(); I != E; ++I) {
|
|
|
|
// Only process initialized GV's or ones not already in dest.
|
|
if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
|
|
|
|
// Grab destination global variable.
|
|
GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
|
|
// Figure out what the initializer looks like in the dest module.
|
|
DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
|
|
RF_None, &TypeMap));
|
|
}
|
|
}
|
|
|
|
// linkFunctionBody - Copy the source function over into the dest function and
|
|
// fix up references to values. At this point we know that Dest is an external
|
|
// function, and that Src is not.
|
|
void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
|
|
assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
|
|
|
|
// Go through and convert function arguments over, remembering the mapping.
|
|
Function::arg_iterator DI = Dst->arg_begin();
|
|
for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
|
|
I != E; ++I, ++DI) {
|
|
DI->setName(I->getName()); // Copy the name over.
|
|
|
|
// Add a mapping to our mapping.
|
|
ValueMap[I] = DI;
|
|
}
|
|
|
|
if (Mode == Linker::DestroySource) {
|
|
// Splice the body of the source function into the dest function.
|
|
Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
|
|
|
|
// At this point, all of the instructions and values of the function are now
|
|
// copied over. The only problem is that they are still referencing values in
|
|
// the Source function as operands. Loop through all of the operands of the
|
|
// functions and patch them up to point to the local versions.
|
|
for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
|
|
|
|
} else {
|
|
// Clone the body of the function into the dest function.
|
|
SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
|
|
CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
|
|
}
|
|
|
|
// There is no need to map the arguments anymore.
|
|
for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
|
|
I != E; ++I)
|
|
ValueMap.erase(I);
|
|
|
|
}
|
|
|
|
|
|
void ModuleLinker::linkAliasBodies() {
|
|
for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
|
|
I != E; ++I) {
|
|
if (DoNotLinkFromSource.count(I))
|
|
continue;
|
|
if (Constant *Aliasee = I->getAliasee()) {
|
|
GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
|
|
DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
|
|
/// module.
|
|
void ModuleLinker::linkNamedMDNodes() {
|
|
for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
|
|
E = SrcM->named_metadata_end(); I != E; ++I) {
|
|
NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
|
|
// Add Src elements into Dest node.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
|
|
RF_None, &TypeMap));
|
|
}
|
|
}
|
|
|
|
bool ModuleLinker::run() {
|
|
assert(DstM && "Null Destination module");
|
|
assert(SrcM && "Null Source Module");
|
|
|
|
// Inherit the target data from the source module if the destination module
|
|
// doesn't have one already.
|
|
if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
|
|
DstM->setDataLayout(SrcM->getDataLayout());
|
|
|
|
// Copy the target triple from the source to dest if the dest's is empty.
|
|
if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
|
|
DstM->setTargetTriple(SrcM->getTargetTriple());
|
|
|
|
if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
|
|
SrcM->getDataLayout() != DstM->getDataLayout())
|
|
errs() << "WARNING: Linking two modules of different data layouts!\n";
|
|
if (!SrcM->getTargetTriple().empty() &&
|
|
DstM->getTargetTriple() != SrcM->getTargetTriple()) {
|
|
errs() << "WARNING: Linking two modules of different target triples: ";
|
|
if (!SrcM->getModuleIdentifier().empty())
|
|
errs() << SrcM->getModuleIdentifier() << ": ";
|
|
errs() << "'" << SrcM->getTargetTriple() << "' and '"
|
|
<< DstM->getTargetTriple() << "'\n";
|
|
}
|
|
|
|
// Append the module inline asm string.
|
|
if (!SrcM->getModuleInlineAsm().empty()) {
|
|
if (DstM->getModuleInlineAsm().empty())
|
|
DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
|
|
else
|
|
DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
|
|
SrcM->getModuleInlineAsm());
|
|
}
|
|
|
|
// Update the destination module's dependent libraries list with the libraries
|
|
// from the source module. There's no opportunity for duplicates here as the
|
|
// Module ensures that duplicate insertions are discarded.
|
|
for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
|
|
SI != SE; ++SI)
|
|
DstM->addLibrary(*SI);
|
|
|
|
// If the source library's module id is in the dependent library list of the
|
|
// destination library, remove it since that module is now linked in.
|
|
StringRef ModuleId = SrcM->getModuleIdentifier();
|
|
if (!ModuleId.empty())
|
|
DstM->removeLibrary(sys::path::stem(ModuleId));
|
|
|
|
// Loop over all of the linked values to compute type mappings.
|
|
computeTypeMapping();
|
|
|
|
// Insert all of the globals in src into the DstM module... without linking
|
|
// initializers (which could refer to functions not yet mapped over).
|
|
for (Module::global_iterator I = SrcM->global_begin(),
|
|
E = SrcM->global_end(); I != E; ++I)
|
|
if (linkGlobalProto(I))
|
|
return true;
|
|
|
|
// Link the functions together between the two modules, without doing function
|
|
// bodies... this just adds external function prototypes to the DstM
|
|
// function... We do this so that when we begin processing function bodies,
|
|
// all of the global values that may be referenced are available in our
|
|
// ValueMap.
|
|
for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
|
|
if (linkFunctionProto(I))
|
|
return true;
|
|
|
|
// If there were any aliases, link them now.
|
|
for (Module::alias_iterator I = SrcM->alias_begin(),
|
|
E = SrcM->alias_end(); I != E; ++I)
|
|
if (linkAliasProto(I))
|
|
return true;
|
|
|
|
for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
|
|
linkAppendingVarInit(AppendingVars[i]);
|
|
|
|
// Update the initializers in the DstM module now that all globals that may
|
|
// be referenced are in DstM.
|
|
linkGlobalInits();
|
|
|
|
// Link in the function bodies that are defined in the source module into
|
|
// DstM.
|
|
for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
|
|
|
|
// Skip if not linking from source.
|
|
if (DoNotLinkFromSource.count(SF)) continue;
|
|
|
|
// Skip if no body (function is external) or materialize.
|
|
if (SF->isDeclaration()) {
|
|
if (!SF->isMaterializable())
|
|
continue;
|
|
if (SF->Materialize(&ErrorMsg))
|
|
return true;
|
|
}
|
|
|
|
linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
|
|
}
|
|
|
|
// Resolve all uses of aliases with aliasees.
|
|
linkAliasBodies();
|
|
|
|
// Remap all of the named mdnoes in Src into the DstM module. We do this
|
|
// after linking GlobalValues so that MDNodes that reference GlobalValues
|
|
// are properly remapped.
|
|
linkNamedMDNodes();
|
|
|
|
// Process vector of lazily linked in functions.
|
|
bool LinkedInAnyFunctions;
|
|
do {
|
|
LinkedInAnyFunctions = false;
|
|
|
|
for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
|
|
E = LazilyLinkFunctions.end(); I != E; ++I) {
|
|
if (!*I)
|
|
continue;
|
|
|
|
Function *SF = *I;
|
|
Function *DF = cast<Function>(ValueMap[SF]);
|
|
|
|
if (!DF->use_empty()) {
|
|
|
|
// Materialize if necessary.
|
|
if (SF->isDeclaration()) {
|
|
if (!SF->isMaterializable())
|
|
continue;
|
|
if (SF->Materialize(&ErrorMsg))
|
|
return true;
|
|
}
|
|
|
|
// Link in function body.
|
|
linkFunctionBody(DF, SF);
|
|
|
|
// "Remove" from vector by setting the element to 0.
|
|
*I = 0;
|
|
|
|
// Set flag to indicate we may have more functions to lazily link in
|
|
// since we linked in a function.
|
|
LinkedInAnyFunctions = true;
|
|
}
|
|
}
|
|
} while (LinkedInAnyFunctions);
|
|
|
|
// Remove any prototypes of functions that were not actually linked in.
|
|
for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
|
|
E = LazilyLinkFunctions.end(); I != E; ++I) {
|
|
if (!*I)
|
|
continue;
|
|
|
|
Function *SF = *I;
|
|
Function *DF = cast<Function>(ValueMap[SF]);
|
|
if (DF->use_empty())
|
|
DF->eraseFromParent();
|
|
}
|
|
|
|
// Now that all of the types from the source are used, resolve any structs
|
|
// copied over to the dest that didn't exist there.
|
|
TypeMap.linkDefinedTypeBodies();
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LinkModules entrypoint.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// LinkModules - This function links two modules together, with the resulting
|
|
// left module modified to be the composite of the two input modules. If an
|
|
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
|
|
// the problem. Upon failure, the Dest module could be in a modified state, and
|
|
// shouldn't be relied on to be consistent.
|
|
bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
|
|
std::string *ErrorMsg) {
|
|
ModuleLinker TheLinker(Dest, Src, Mode);
|
|
if (TheLinker.run()) {
|
|
if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|