llvm-6502/include/llvm/Analysis/IntervalIterator.h
Chris Lattner a9a96efba4 New files due to the Intervals.h splitup
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65 91177308-0d34-0410-b5e6-96231b3b80d8
2001-06-24 04:07:37 +00:00

224 lines
8.3 KiB
C++

//===- IntervalIterator.h - Interval Iterator Declaration --------*- C++ -*--=//
//
// This file defines an iterator that enumerates the intervals in a control flow
// graph of some sort. This iterator is parametric, allowing iterator over the
// following types of graphs:
//
// TODO
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INTERVAL_ITERATOR_H
#define LLVM_INTERVAL_ITERATOR_H
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/Method.h"
#include "llvm/CFG.h"
#include <stack>
#include <set>
#include <algorithm>
namespace cfg {
// TODO: Provide an interval iterator that codifies the internals of
// IntervalPartition. Inside, it would have a stack of Interval*'s, and would
// walk the interval partition in depth first order. IntervalPartition would
// then be a client of this iterator. The iterator should work on Method*,
// const Method*, IntervalPartition*, and const IntervalPartition*.
//
// getNodeHeader - Given a source graph node and the source graph, return the
// BasicBlock that is the header node. This is the opposite of
// getSourceGraphNode.
//
inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
// getSourceGraphNode - Given a BasicBlock and the source graph, return the
// source graph node that corresponds to the BasicBlock. This is the opposite
// of getNodeHeader.
//
inline BasicBlock *getSourceGraphNode(Method *, BasicBlock *BB) {
return BB;
}
inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
return IP->getBlockInterval(BB);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval.
//
inline void addNodeToInterval(Interval *Int, BasicBlock *BB){
Int->Nodes.push_back(BB);
}
// addNodeToInterval - This method exists to assist the generic ProcessNode
// with the task of adding a node to the new interval, depending on the
// type of the source node. In the case of a CFG source graph (BasicBlock
// case), the BasicBlock itself is added to the interval. In the case of
// an IntervalPartition source graph (Interval case), all of the member
// BasicBlocks are added to the interval.
//
inline void addNodeToInterval(Interval *Int, Interval *I) {
// Add all of the nodes in I as new nodes in Int.
copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
}
template<class NodeTy, class OrigContainer_t>
class IntervalIterator {
stack<pair<Interval, typename Interval::succ_iterator> > IntStack;
set<BasicBlock*> Visited;
OrigContainer_t *OrigContainer;
public:
typedef BasicBlock* _BB;
typedef IntervalIterator<NodeTy, OrigContainer_t> _Self;
typedef forward_iterator_tag iterator_category;
IntervalIterator() {} // End iterator, empty stack
IntervalIterator(Method *M) {
OrigContainer = M;
if (!ProcessInterval(M->getBasicBlocks().front())) {
assert(0 && "ProcessInterval should never fail for first interval!");
}
}
IntervalIterator(IntervalPartition &IP) {
OrigContainer = &IP;
if (!ProcessInterval(IP.getRootInterval())) {
assert(0 && "ProcessInterval should never fail for first interval!");
}
}
inline bool operator==(const _Self& x) const { return IntStack == x.IntStack; }
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline Interval &operator*() const { return IntStack.top(); }
inline Interval *operator->() const { return &(operator*()); }
inline _Self& operator++() { // Preincrement
do {
// All of the intervals on the stack have been visited. Try visiting their
// successors now.
Interval &CurInt = IntStack.top().first;
Interval::iterator &SuccIt = IntStack.top().second,End = succ_end(&CurInt);
for (; SuccIt != End; ++SuccIt) // Loop over all interval successors
if (ProcessInterval(*SuccIt)) // Found a new interval!
return *this; // Use it!
// We ran out of successors for this interval... pop off the stack
IntStack.pop();
} while (!IntStack.empty());
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
private:
// ProcessInterval - This method is used during the construction of the
// interval graph. It walks through the source graph, recursively creating
// an interval per invokation until the entire graph is covered. This uses
// the ProcessNode method to add all of the nodes to the interval.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
bool ProcessInterval(NodeTy *Node) {
BasicBlock *Header = getNodeHeader(Node);
if (Visited.count(Header)) return false;
Interval Int(Header);
Visited.insert(Header); // The header has now been visited!
// Check all of our successors to see if they are in the interval...
for (typename NodeTy::succ_iterator I = succ_begin(Node), E = succ_end(Node);
I != E; ++I)
ProcessNode(&Int, getSourceGraphNode(OrigContainer, *I));
IntStack.push(make_pair(Int, succ_begin(&Int)));
return true;
}
// ProcessNode - This method is called by ProcessInterval to add nodes to the
// interval being constructed, and it is also called recursively as it walks
// the source graph. A node is added to the current interval only if all of
// its predecessors are already in the graph. This also takes care of keeping
// the successor set of an interval up to date.
//
// This method is templated because it may operate on two different source
// graphs: a basic block graph, or a preexisting interval graph.
//
void ProcessNode(Interval *Int, NodeTy *Node) {
assert(Int && "Null interval == bad!");
assert(Node && "Null Node == bad!");
BasicBlock *NodeHeader = getNodeHeader(Node);
if (Visited.count(NodeHeader)) { // Node already been visited?
if (Int->contains(NodeHeader)) { // Already in this interval...
return;
} else { // In another interval, add as successor
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
}
} else { // Otherwise, not in interval yet
for (typename NodeTy::pred_iterator I = pred_begin(Node),
E = pred_end(Node); I != E; ++I) {
if (!Int->contains(*I)) { // If pred not in interval, we can't be
if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
Int->Successors.push_back(NodeHeader);
return; // See you later
}
}
// If we get here, then all of the predecessors of BB are in the interval
// already. In this case, we must add BB to the interval!
addNodeToInterval(Int, Node);
Visited.insert(NodeHeader); // The node has now been visited!
if (Int->isSuccessor(NodeHeader)) {
// If we were in the successor list from before... remove from succ list
Int->Successors.erase(remove(Int->Successors.begin(),
Int->Successors.end(), NodeHeader),
Int->Successors.end());
}
// Now that we have discovered that Node is in the interval, perhaps some
// of its successors are as well?
for (typename NodeTy::succ_iterator It = succ_begin(Node),
End = succ_end(Node); It != End; ++It)
ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
}
}
};
typedef IntervalIterator<BasicBlock, Method> method_interval_iterator;
typedef IntervalIterator<Interval, IntervalPartition> interval_part_interval_iterator;
inline method_interval_iterator intervals_begin(Method *M) {
return method_interval_iterator(M);
}
inline method_interval_iterator intervals_end(Method *M) {
return method_interval_iterator();
}
inline interval_part_interval_iterator intervals_begin(IntervalPartition &IP) {
return interval_part_interval_iterator(IP);
}
inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
return interval_part_interval_iterator();
}
} // End namespace cfg
#endif