mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-29 10:32:47 +00:00
487a5b786f
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119884 91177308-0d34-0410-b5e6-96231b3b80d8
1731 lines
58 KiB
C++
1731 lines
58 KiB
C++
//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a coalescing interval map for small objects.
|
|
//
|
|
// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
|
|
// same value are represented in a compressed form.
|
|
//
|
|
// Iterators provide ordered access to the compressed intervals rather than the
|
|
// individual keys, and insert and erase operations use key intervals as well.
|
|
//
|
|
// Like SmallVector, IntervalMap will store the first N intervals in the map
|
|
// object itself without any allocations. When space is exhausted it switches to
|
|
// a B+-tree representation with very small overhead for small key and value
|
|
// objects.
|
|
//
|
|
// A Traits class specifies how keys are compared. It also allows IntervalMap to
|
|
// work with both closed and half-open intervals.
|
|
//
|
|
// Keys and values are not stored next to each other in a std::pair, so we don't
|
|
// provide such a value_type. Dereferencing iterators only returns the mapped
|
|
// value. The interval bounds are accessible through the start() and stop()
|
|
// iterator methods.
|
|
//
|
|
// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
|
|
// is the optimal size. For large objects use std::map instead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Synopsis:
|
|
//
|
|
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
// class IntervalMap {
|
|
// public:
|
|
// typedef KeyT key_type;
|
|
// typedef ValT mapped_type;
|
|
// typedef RecyclingAllocator<...> Allocator;
|
|
// class iterator;
|
|
// class const_iterator;
|
|
//
|
|
// explicit IntervalMap(Allocator&);
|
|
// ~IntervalMap():
|
|
//
|
|
// bool empty() const;
|
|
// KeyT start() const;
|
|
// KeyT stop() const;
|
|
// ValT lookup(KeyT x, Value NotFound = Value()) const;
|
|
//
|
|
// const_iterator begin() const;
|
|
// const_iterator end() const;
|
|
// iterator begin();
|
|
// iterator end();
|
|
// const_iterator find(KeyT x) const;
|
|
// iterator find(KeyT x);
|
|
//
|
|
// void insert(KeyT a, KeyT b, ValT y);
|
|
// void clear();
|
|
// };
|
|
//
|
|
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
// class IntervalMap::const_iterator :
|
|
// public std::iterator<std::bidirectional_iterator_tag, ValT> {
|
|
// public:
|
|
// bool operator==(const const_iterator &) const;
|
|
// bool operator!=(const const_iterator &) const;
|
|
// bool valid() const;
|
|
//
|
|
// const KeyT &start() const;
|
|
// const KeyT &stop() const;
|
|
// const ValT &value() const;
|
|
// const ValT &operator*() const;
|
|
// const ValT *operator->() const;
|
|
//
|
|
// const_iterator &operator++();
|
|
// const_iterator &operator++(int);
|
|
// const_iterator &operator--();
|
|
// const_iterator &operator--(int);
|
|
// void goToBegin();
|
|
// void goToEnd();
|
|
// void find(KeyT x);
|
|
// void advanceTo(KeyT x);
|
|
// };
|
|
//
|
|
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
// class IntervalMap::iterator : public const_iterator {
|
|
// public:
|
|
// void insert(KeyT a, KeyT b, Value y);
|
|
// void erase();
|
|
// };
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_INTERVALMAP_H
|
|
#define LLVM_ADT_INTERVALMAP_H
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include <limits>
|
|
#include <iterator>
|
|
|
|
// FIXME: Remove debugging code.
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
namespace llvm {
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- Key traits ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The IntervalMap works with closed or half-open intervals.
|
|
// Adjacent intervals that map to the same value are coalesced.
|
|
//
|
|
// The IntervalMapInfo traits class is used to determine if a key is contained
|
|
// in an interval, and if two intervals are adjacent so they can be coalesced.
|
|
// The provided implementation works for closed integer intervals, other keys
|
|
// probably need a specialized version.
|
|
//
|
|
// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
|
|
//
|
|
// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
|
|
// allowed. This is so that stopLess(a, b) can be used to determine if two
|
|
// intervals overlap.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T>
|
|
struct IntervalMapInfo {
|
|
|
|
/// startLess - Return true if x is not in [a;b].
|
|
/// This is x < a both for closed intervals and for [a;b) half-open intervals.
|
|
static inline bool startLess(const T &x, const T &a) {
|
|
return x < a;
|
|
}
|
|
|
|
/// stopLess - Return true if x is not in [a;b].
|
|
/// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
|
|
static inline bool stopLess(const T &b, const T &x) {
|
|
return b < x;
|
|
}
|
|
|
|
/// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
|
|
/// This is a+1 == b for closed intervals, a == b for half-open intervals.
|
|
static inline bool adjacent(const T &a, const T &b) {
|
|
return a+1 == b;
|
|
}
|
|
|
|
};
|
|
|
|
/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
|
|
/// It should be considered private to the implementation.
|
|
namespace IntervalMapImpl {
|
|
|
|
// Forward declarations.
|
|
template <typename, typename, unsigned, typename> class LeafNode;
|
|
template <typename, typename, unsigned, typename> class BranchNode;
|
|
|
|
typedef std::pair<unsigned,unsigned> IdxPair;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- Node Storage ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Both leaf and branch nodes store vectors of pairs.
|
|
// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
|
|
//
|
|
// Keys and values are stored in separate arrays to avoid padding caused by
|
|
// different object alignments. This also helps improve locality of reference
|
|
// when searching the keys.
|
|
//
|
|
// The nodes don't know how many elements they contain - that information is
|
|
// stored elsewhere. Omitting the size field prevents padding and allows a node
|
|
// to fill the allocated cache lines completely.
|
|
//
|
|
// These are typical key and value sizes, the node branching factor (N), and
|
|
// wasted space when nodes are sized to fit in three cache lines (192 bytes):
|
|
//
|
|
// T1 T2 N Waste Used by
|
|
// 4 4 24 0 Branch<4> (32-bit pointers)
|
|
// 8 4 16 0 Leaf<4,4>, Branch<4>
|
|
// 8 8 12 0 Leaf<4,8>, Branch<8>
|
|
// 16 4 9 12 Leaf<8,4>
|
|
// 16 8 8 0 Leaf<8,8>
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T1, typename T2, unsigned N>
|
|
class NodeBase {
|
|
public:
|
|
enum { Capacity = N };
|
|
|
|
T1 first[N];
|
|
T2 second[N];
|
|
|
|
/// copy - Copy elements from another node.
|
|
/// @param Other Node elements are copied from.
|
|
/// @param i Beginning of the source range in other.
|
|
/// @param j Beginning of the destination range in this.
|
|
/// @param Count Number of elements to copy.
|
|
template <unsigned M>
|
|
void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
|
|
unsigned j, unsigned Count) {
|
|
assert(i + Count <= M && "Invalid source range");
|
|
assert(j + Count <= N && "Invalid dest range");
|
|
std::copy(Other.first + i, Other.first + i + Count, first + j);
|
|
std::copy(Other.second + i, Other.second + i + Count, second + j);
|
|
}
|
|
|
|
/// moveLeft - Move elements to the left.
|
|
/// @param i Beginning of the source range.
|
|
/// @param j Beginning of the destination range.
|
|
/// @param Count Number of elements to copy.
|
|
void moveLeft(unsigned i, unsigned j, unsigned Count) {
|
|
assert(j <= i && "Use moveRight shift elements right");
|
|
copy(*this, i, j, Count);
|
|
}
|
|
|
|
/// moveRight - Move elements to the right.
|
|
/// @param i Beginning of the source range.
|
|
/// @param j Beginning of the destination range.
|
|
/// @param Count Number of elements to copy.
|
|
void moveRight(unsigned i, unsigned j, unsigned Count) {
|
|
assert(i <= j && "Use moveLeft shift elements left");
|
|
assert(j + Count <= N && "Invalid range");
|
|
std::copy_backward(first + i, first + i + Count, first + j + Count);
|
|
std::copy_backward(second + i, second + i + Count, second + j + Count);
|
|
}
|
|
|
|
/// erase - Erase elements [i;j).
|
|
/// @param i Beginning of the range to erase.
|
|
/// @param j End of the range. (Exclusive).
|
|
/// @param Size Number of elements in node.
|
|
void erase(unsigned i, unsigned j, unsigned Size) {
|
|
moveLeft(j, i, Size - j);
|
|
}
|
|
|
|
/// shift - Shift elements [i;size) 1 position to the right.
|
|
/// @param i Beginning of the range to move.
|
|
/// @param Size Number of elements in node.
|
|
void shift(unsigned i, unsigned Size) {
|
|
moveRight(i, i + 1, Size - i);
|
|
}
|
|
|
|
/// transferToLeftSib - Transfer elements to a left sibling node.
|
|
/// @param Size Number of elements in this.
|
|
/// @param Sib Left sibling node.
|
|
/// @param SSize Number of elements in sib.
|
|
/// @param Count Number of elements to transfer.
|
|
void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
|
|
unsigned Count) {
|
|
Sib.copy(*this, 0, SSize, Count);
|
|
erase(0, Count, Size);
|
|
}
|
|
|
|
/// transferToRightSib - Transfer elements to a right sibling node.
|
|
/// @param Size Number of elements in this.
|
|
/// @param Sib Right sibling node.
|
|
/// @param SSize Number of elements in sib.
|
|
/// @param Count Number of elements to transfer.
|
|
void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
|
|
unsigned Count) {
|
|
Sib.moveRight(0, Count, SSize);
|
|
Sib.copy(*this, Size-Count, 0, Count);
|
|
}
|
|
|
|
/// adjustFromLeftSib - Adjust the number if elements in this node by moving
|
|
/// elements to or from a left sibling node.
|
|
/// @param Size Number of elements in this.
|
|
/// @param Sib Right sibling node.
|
|
/// @param SSize Number of elements in sib.
|
|
/// @param Add The number of elements to add to this node, possibly < 0.
|
|
/// @return Number of elements added to this node, possibly negative.
|
|
int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
|
|
if (Add > 0) {
|
|
// We want to grow, copy from sib.
|
|
unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
|
|
Sib.transferToRightSib(SSize, *this, Size, Count);
|
|
return Count;
|
|
} else {
|
|
// We want to shrink, copy to sib.
|
|
unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
|
|
transferToLeftSib(Size, Sib, SSize, Count);
|
|
return -Count;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- NodeSizer ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Compute node sizes from key and value types.
|
|
//
|
|
// The branching factors are chosen to make nodes fit in three cache lines.
|
|
// This may not be possible if keys or values are very large. Such large objects
|
|
// are handled correctly, but a std::map would probably give better performance.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
enum {
|
|
// Cache line size. Most architectures have 32 or 64 byte cache lines.
|
|
// We use 64 bytes here because it provides good branching factors.
|
|
Log2CacheLine = 6,
|
|
CacheLineBytes = 1 << Log2CacheLine,
|
|
DesiredNodeBytes = 3 * CacheLineBytes
|
|
};
|
|
|
|
template <typename KeyT, typename ValT>
|
|
struct NodeSizer {
|
|
enum {
|
|
// Compute the leaf node branching factor that makes a node fit in three
|
|
// cache lines. The branching factor must be at least 3, or some B+-tree
|
|
// balancing algorithms won't work.
|
|
// LeafSize can't be larger than CacheLineBytes. This is required by the
|
|
// PointerIntPair used by NodeRef.
|
|
DesiredLeafSize = DesiredNodeBytes /
|
|
static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
|
|
MinLeafSize = 3,
|
|
LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
|
|
};
|
|
|
|
typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
|
|
|
|
enum {
|
|
// Now that we have the leaf branching factor, compute the actual allocation
|
|
// unit size by rounding up to a whole number of cache lines.
|
|
AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
|
|
|
|
// Determine the branching factor for branch nodes.
|
|
BranchSize = AllocBytes /
|
|
static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
|
|
};
|
|
|
|
/// Allocator - The recycling allocator used for both branch and leaf nodes.
|
|
/// This typedef is very likely to be identical for all IntervalMaps with
|
|
/// reasonably sized entries, so the same allocator can be shared among
|
|
/// different kinds of maps.
|
|
typedef RecyclingAllocator<BumpPtrAllocator, char,
|
|
AllocBytes, CacheLineBytes> Allocator;
|
|
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- NodeRef ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// B+-tree nodes can be leaves or branches, so we need a polymorphic node
|
|
// pointer that can point to both kinds.
|
|
//
|
|
// All nodes are cache line aligned and the low 6 bits of a node pointer are
|
|
// always 0. These bits are used to store the number of elements in the
|
|
// referenced node. Besides saving space, placing node sizes in the parents
|
|
// allow tree balancing algorithms to run without faulting cache lines for nodes
|
|
// that may not need to be modified.
|
|
//
|
|
// A NodeRef doesn't know whether it references a leaf node or a branch node.
|
|
// It is the responsibility of the caller to use the correct types.
|
|
//
|
|
// Nodes are never supposed to be empty, and it is invalid to store a node size
|
|
// of 0 in a NodeRef. The valid range of sizes is 1-64.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct CacheAlignedPointerTraits {
|
|
static inline void *getAsVoidPointer(void *P) { return P; }
|
|
static inline void *getFromVoidPointer(void *P) { return P; }
|
|
enum { NumLowBitsAvailable = Log2CacheLine };
|
|
};
|
|
|
|
class NodeRef {
|
|
PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
|
|
|
|
public:
|
|
/// NodeRef - Create a null ref.
|
|
NodeRef() {}
|
|
|
|
/// operator bool - Detect a null ref.
|
|
operator bool() const { return pip.getOpaqueValue(); }
|
|
|
|
/// NodeRef - Create a reference to the node p with n elements.
|
|
template <typename NodeT>
|
|
NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
|
|
assert(n <= NodeT::Capacity && "Size too big for node");
|
|
}
|
|
|
|
/// size - Return the number of elements in the referenced node.
|
|
unsigned size() const { return pip.getInt() + 1; }
|
|
|
|
/// setSize - Update the node size.
|
|
void setSize(unsigned n) { pip.setInt(n - 1); }
|
|
|
|
/// subtree - Access the i'th subtree reference in a branch node.
|
|
/// This depends on branch nodes storing the NodeRef array as their first
|
|
/// member.
|
|
NodeRef &subtree(unsigned i) {
|
|
return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
|
|
}
|
|
|
|
/// get - Dereference as a NodeT reference.
|
|
template <typename NodeT>
|
|
NodeT &get() const {
|
|
return *reinterpret_cast<NodeT*>(pip.getPointer());
|
|
}
|
|
|
|
bool operator==(const NodeRef &RHS) const {
|
|
if (pip == RHS.pip)
|
|
return true;
|
|
assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
|
|
return false;
|
|
}
|
|
|
|
bool operator!=(const NodeRef &RHS) const {
|
|
return !operator==(RHS);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- Leaf nodes ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Leaf nodes store up to N disjoint intervals with corresponding values.
|
|
//
|
|
// The intervals are kept sorted and fully coalesced so there are no adjacent
|
|
// intervals mapping to the same value.
|
|
//
|
|
// These constraints are always satisfied:
|
|
//
|
|
// - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
|
|
//
|
|
// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
|
|
//
|
|
// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
|
|
// - Fully coalesced.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
|
|
public:
|
|
const KeyT &start(unsigned i) const { return this->first[i].first; }
|
|
const KeyT &stop(unsigned i) const { return this->first[i].second; }
|
|
const ValT &value(unsigned i) const { return this->second[i]; }
|
|
|
|
KeyT &start(unsigned i) { return this->first[i].first; }
|
|
KeyT &stop(unsigned i) { return this->first[i].second; }
|
|
ValT &value(unsigned i) { return this->second[i]; }
|
|
|
|
/// findFrom - Find the first interval after i that may contain x.
|
|
/// @param i Starting index for the search.
|
|
/// @param Size Number of elements in node.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i].stop, x), or size.
|
|
/// This is the first interval that can possibly contain x.
|
|
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
|
|
assert(i <= Size && Size <= N && "Bad indices");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index is past the needed point");
|
|
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
|
|
return i;
|
|
}
|
|
|
|
/// safeFind - Find an interval that is known to exist. This is the same as
|
|
/// findFrom except is it assumed that x is at least within range of the last
|
|
/// interval.
|
|
/// @param i Starting index for the search.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i].stop, x), never size.
|
|
/// This is the first interval that can possibly contain x.
|
|
unsigned safeFind(unsigned i, KeyT x) const {
|
|
assert(i < N && "Bad index");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index is past the needed point");
|
|
while (Traits::stopLess(stop(i), x)) ++i;
|
|
assert(i < N && "Unsafe intervals");
|
|
return i;
|
|
}
|
|
|
|
/// safeLookup - Lookup mapped value for a safe key.
|
|
/// It is assumed that x is within range of the last entry.
|
|
/// @param x Key to search for.
|
|
/// @param NotFound Value to return if x is not in any interval.
|
|
/// @return The mapped value at x or NotFound.
|
|
ValT safeLookup(KeyT x, ValT NotFound) const {
|
|
unsigned i = safeFind(0, x);
|
|
return Traits::startLess(x, start(i)) ? NotFound : value(i);
|
|
}
|
|
|
|
IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
|
|
unsigned extendStop(unsigned i, unsigned Size, KeyT b);
|
|
|
|
#ifndef NDEBUG
|
|
void dump(unsigned Size) {
|
|
errs() << " N" << this << " [shape=record label=\"{ " << Size << '/' << N;
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
errs() << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
|
|
errs() << "}\"];\n";
|
|
}
|
|
#endif
|
|
|
|
};
|
|
|
|
/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
|
|
/// possible. This may cause the node to grow by 1, or it may cause the node
|
|
/// to shrink because of coalescing.
|
|
/// @param i Starting index = insertFrom(0, size, a)
|
|
/// @param Size Number of elements in node.
|
|
/// @param a Interval start.
|
|
/// @param b Interval stop.
|
|
/// @param y Value be mapped.
|
|
/// @return (insert position, new size), or (i, Capacity+1) on overflow.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
IdxPair LeafNode<KeyT, ValT, N, Traits>::
|
|
insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
|
|
assert(i <= Size && Size <= N && "Invalid index");
|
|
assert(!Traits::stopLess(b, a) && "Invalid interval");
|
|
|
|
// Verify the findFrom invariant.
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
|
|
assert((i == Size || !Traits::stopLess(stop(i), a)));
|
|
|
|
// Coalesce with previous interval.
|
|
if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
|
|
return IdxPair(i - 1, extendStop(i - 1, Size, b));
|
|
|
|
// Detect overflow.
|
|
if (i == N)
|
|
return IdxPair(i, N + 1);
|
|
|
|
// Add new interval at end.
|
|
if (i == Size) {
|
|
start(i) = a;
|
|
stop(i) = b;
|
|
value(i) = y;
|
|
return IdxPair(i, Size + 1);
|
|
}
|
|
|
|
// Overlapping intervals?
|
|
if (!Traits::stopLess(b, start(i))) {
|
|
assert(value(i) == y && "Inconsistent values in overlapping intervals");
|
|
if (Traits::startLess(a, start(i)))
|
|
start(i) = a;
|
|
return IdxPair(i, extendStop(i, Size, b));
|
|
}
|
|
|
|
// Try to coalesce with following interval.
|
|
if (value(i) == y && Traits::adjacent(b, start(i))) {
|
|
start(i) = a;
|
|
return IdxPair(i, Size);
|
|
}
|
|
|
|
// We must insert before i. Detect overflow.
|
|
if (Size == N)
|
|
return IdxPair(i, N + 1);
|
|
|
|
// Insert before i.
|
|
this->shift(i, Size);
|
|
start(i) = a;
|
|
stop(i) = b;
|
|
value(i) = y;
|
|
return IdxPair(i, Size + 1);
|
|
}
|
|
|
|
/// extendStop - Extend stop(i) to b, coalescing with following intervals.
|
|
/// @param i Interval to extend.
|
|
/// @param Size Number of elements in node.
|
|
/// @param b New interval end point.
|
|
/// @return New node size after coalescing.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
unsigned LeafNode<KeyT, ValT, N, Traits>::
|
|
extendStop(unsigned i, unsigned Size, KeyT b) {
|
|
assert(i < Size && Size <= N && "Bad indices");
|
|
|
|
// Are we even extending the interval?
|
|
if (Traits::startLess(b, stop(i)))
|
|
return Size;
|
|
|
|
// Find the first interval that may be preserved.
|
|
unsigned j = findFrom(i + 1, Size, b);
|
|
if (j < Size) {
|
|
// Would key[i] overlap key[j] after the extension?
|
|
if (Traits::stopLess(b, start(j))) {
|
|
// Not overlapping. Perhaps adjacent and coalescable?
|
|
if (value(i) == value(j) && Traits::adjacent(b, start(j)))
|
|
b = stop(j++);
|
|
} else {
|
|
// Overlap. Include key[j] in the new interval.
|
|
assert(value(i) == value(j) && "Overlapping values");
|
|
b = stop(j++);
|
|
}
|
|
}
|
|
stop(i) = b;
|
|
|
|
// Entries [i+1;j) were coalesced.
|
|
if (i + 1 < j && j < Size)
|
|
this->erase(i + 1, j, Size);
|
|
return Size - (j - (i + 1));
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- Branch nodes ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A branch node stores references to 1--N subtrees all of the same height.
|
|
//
|
|
// The key array in a branch node holds the rightmost stop key of each subtree.
|
|
// It is redundant to store the last stop key since it can be found in the
|
|
// parent node, but doing so makes tree balancing a lot simpler.
|
|
//
|
|
// It is unusual for a branch node to only have one subtree, but it can happen
|
|
// in the root node if it is smaller than the normal nodes.
|
|
//
|
|
// When all of the leaf nodes from all the subtrees are concatenated, they must
|
|
// satisfy the same constraints as a single leaf node. They must be sorted,
|
|
// sane, and fully coalesced.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class BranchNode : public NodeBase<NodeRef, KeyT, N> {
|
|
public:
|
|
const KeyT &stop(unsigned i) const { return this->second[i]; }
|
|
const NodeRef &subtree(unsigned i) const { return this->first[i]; }
|
|
|
|
KeyT &stop(unsigned i) { return this->second[i]; }
|
|
NodeRef &subtree(unsigned i) { return this->first[i]; }
|
|
|
|
/// findFrom - Find the first subtree after i that may contain x.
|
|
/// @param i Starting index for the search.
|
|
/// @param Size Number of elements in node.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i], x), or size.
|
|
/// This is the first subtree that can possibly contain x.
|
|
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
|
|
assert(i <= Size && Size <= N && "Bad indices");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index to findFrom is past the needed point");
|
|
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
|
|
return i;
|
|
}
|
|
|
|
/// safeFind - Find a subtree that is known to exist. This is the same as
|
|
/// findFrom except is it assumed that x is in range.
|
|
/// @param i Starting index for the search.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i], x), never size.
|
|
/// This is the first subtree that can possibly contain x.
|
|
unsigned safeFind(unsigned i, KeyT x) const {
|
|
assert(i < N && "Bad index");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index is past the needed point");
|
|
while (Traits::stopLess(stop(i), x)) ++i;
|
|
assert(i < N && "Unsafe intervals");
|
|
return i;
|
|
}
|
|
|
|
/// safeLookup - Get the subtree containing x, Assuming that x is in range.
|
|
/// @param x Key to search for.
|
|
/// @return Subtree containing x
|
|
NodeRef safeLookup(KeyT x) const {
|
|
return subtree(safeFind(0, x));
|
|
}
|
|
|
|
/// insert - Insert a new (subtree, stop) pair.
|
|
/// @param i Insert position, following entries will be shifted.
|
|
/// @param Size Number of elements in node.
|
|
/// @param Node Subtree to insert.
|
|
/// @param Stop Last key in subtree.
|
|
void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
|
|
assert(Size < N && "branch node overflow");
|
|
assert(i <= Size && "Bad insert position");
|
|
this->shift(i, Size);
|
|
subtree(i) = Node;
|
|
stop(i) = Stop;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void dump(unsigned Size) {
|
|
errs() << " N" << this << " [shape=record label=\"" << Size << '/' << N;
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
errs() << " | <s" << i << "> " << stop(i);
|
|
errs() << "\"];\n";
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
errs() << " N" << this << ":s" << i << " -> N"
|
|
<< &subtree(i).template get<BranchNode>() << ";\n";
|
|
}
|
|
#endif
|
|
|
|
};
|
|
|
|
} // namespace IntervalMapImpl
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMap ----//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT,
|
|
unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
|
|
typename Traits = IntervalMapInfo<KeyT> >
|
|
class IntervalMap {
|
|
typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
|
|
typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
|
|
typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
|
|
Branch;
|
|
typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
|
|
typedef IntervalMapImpl::IdxPair IdxPair;
|
|
|
|
// The RootLeaf capacity is given as a template parameter. We must compute the
|
|
// corresponding RootBranch capacity.
|
|
enum {
|
|
DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
|
|
(sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
|
|
RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
|
|
};
|
|
|
|
typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
|
|
RootBranch;
|
|
|
|
// When branched, we store a global start key as well as the branch node.
|
|
struct RootBranchData {
|
|
KeyT start;
|
|
RootBranch node;
|
|
};
|
|
|
|
enum {
|
|
RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
|
|
sizeof(RootBranchData) : sizeof(RootLeaf)
|
|
};
|
|
|
|
public:
|
|
typedef typename Sizer::Allocator Allocator;
|
|
|
|
private:
|
|
// The root data is either a RootLeaf or a RootBranchData instance.
|
|
// We can't put them in a union since C++03 doesn't allow non-trivial
|
|
// constructors in unions.
|
|
// Instead, we use a char array with pointer alignment. The alignment is
|
|
// ensured by the allocator member in the class, but still verified in the
|
|
// constructor. We don't support keys or values that are more aligned than a
|
|
// pointer.
|
|
char data[RootDataSize];
|
|
|
|
// Tree height.
|
|
// 0: Leaves in root.
|
|
// 1: Root points to leaf.
|
|
// 2: root->branch->leaf ...
|
|
unsigned height;
|
|
|
|
// Number of entries in the root node.
|
|
unsigned rootSize;
|
|
|
|
// Allocator used for creating external nodes.
|
|
Allocator &allocator;
|
|
|
|
/// dataAs - Represent data as a node type without breaking aliasing rules.
|
|
template <typename T>
|
|
T &dataAs() const {
|
|
union {
|
|
const char *d;
|
|
T *t;
|
|
} u;
|
|
u.d = data;
|
|
return *u.t;
|
|
}
|
|
|
|
const RootLeaf &rootLeaf() const {
|
|
assert(!branched() && "Cannot acces leaf data in branched root");
|
|
return dataAs<RootLeaf>();
|
|
}
|
|
RootLeaf &rootLeaf() {
|
|
assert(!branched() && "Cannot acces leaf data in branched root");
|
|
return dataAs<RootLeaf>();
|
|
}
|
|
RootBranchData &rootBranchData() const {
|
|
assert(branched() && "Cannot access branch data in non-branched root");
|
|
return dataAs<RootBranchData>();
|
|
}
|
|
RootBranchData &rootBranchData() {
|
|
assert(branched() && "Cannot access branch data in non-branched root");
|
|
return dataAs<RootBranchData>();
|
|
}
|
|
const RootBranch &rootBranch() const { return rootBranchData().node; }
|
|
RootBranch &rootBranch() { return rootBranchData().node; }
|
|
KeyT rootBranchStart() const { return rootBranchData().start; }
|
|
KeyT &rootBranchStart() { return rootBranchData().start; }
|
|
|
|
Leaf *allocLeaf() {
|
|
return new(allocator.template Allocate<Leaf>()) Leaf();
|
|
}
|
|
void deleteLeaf(Leaf *P) {
|
|
P->~Leaf();
|
|
allocator.Deallocate(P);
|
|
}
|
|
|
|
Branch *allocBranch() {
|
|
return new(allocator.template Allocate<Branch>()) Branch();
|
|
}
|
|
void deleteBranch(Branch *P) {
|
|
P->~Branch();
|
|
allocator.Deallocate(P);
|
|
}
|
|
|
|
|
|
IdxPair branchRoot(unsigned Position);
|
|
IdxPair splitRoot(unsigned Position);
|
|
|
|
void switchRootToBranch() {
|
|
rootLeaf().~RootLeaf();
|
|
height = 1;
|
|
new (&rootBranchData()) RootBranchData();
|
|
}
|
|
|
|
void switchRootToLeaf() {
|
|
rootBranchData().~RootBranchData();
|
|
height = 0;
|
|
new(&rootLeaf()) RootLeaf();
|
|
}
|
|
|
|
bool branched() const { return height > 0; }
|
|
|
|
ValT treeSafeLookup(KeyT x, ValT NotFound) const;
|
|
void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
|
|
unsigned Level));
|
|
void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
|
|
|
|
public:
|
|
explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
|
|
assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
|
|
"Insufficient alignment");
|
|
new(&rootLeaf()) RootLeaf();
|
|
}
|
|
|
|
~IntervalMap() {
|
|
clear();
|
|
rootLeaf().~RootLeaf();
|
|
}
|
|
|
|
/// empty - Return true when no intervals are mapped.
|
|
bool empty() const {
|
|
return rootSize == 0;
|
|
}
|
|
|
|
/// start - Return the smallest mapped key in a non-empty map.
|
|
KeyT start() const {
|
|
assert(!empty() && "Empty IntervalMap has no start");
|
|
return !branched() ? rootLeaf().start(0) : rootBranchStart();
|
|
}
|
|
|
|
/// stop - Return the largest mapped key in a non-empty map.
|
|
KeyT stop() const {
|
|
assert(!empty() && "Empty IntervalMap has no stop");
|
|
return !branched() ? rootLeaf().stop(rootSize - 1) :
|
|
rootBranch().stop(rootSize - 1);
|
|
}
|
|
|
|
/// lookup - Return the mapped value at x or NotFound.
|
|
ValT lookup(KeyT x, ValT NotFound = ValT()) const {
|
|
if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
|
|
return NotFound;
|
|
return branched() ? treeSafeLookup(x, NotFound) :
|
|
rootLeaf().safeLookup(x, NotFound);
|
|
}
|
|
|
|
/// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
|
|
/// It is assumed that no key in the interval is mapped to another value, but
|
|
/// overlapping intervals already mapped to y will be coalesced.
|
|
void insert(KeyT a, KeyT b, ValT y) {
|
|
find(a).insert(a, b, y);
|
|
}
|
|
|
|
/// clear - Remove all entries.
|
|
void clear();
|
|
|
|
class const_iterator;
|
|
class iterator;
|
|
friend class const_iterator;
|
|
friend class iterator;
|
|
|
|
const_iterator begin() const {
|
|
iterator I(*this);
|
|
I.goToBegin();
|
|
return I;
|
|
}
|
|
|
|
iterator begin() {
|
|
iterator I(*this);
|
|
I.goToBegin();
|
|
return I;
|
|
}
|
|
|
|
const_iterator end() const {
|
|
iterator I(*this);
|
|
I.goToEnd();
|
|
return I;
|
|
}
|
|
|
|
iterator end() {
|
|
iterator I(*this);
|
|
I.goToEnd();
|
|
return I;
|
|
}
|
|
|
|
/// find - Return an iterator pointing to the first interval ending at or
|
|
/// after x, or end().
|
|
const_iterator find(KeyT x) const {
|
|
iterator I(*this);
|
|
I.find(x);
|
|
return I;
|
|
}
|
|
|
|
iterator find(KeyT x) {
|
|
iterator I(*this);
|
|
I.find(x);
|
|
return I;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void dump();
|
|
void dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height);
|
|
#endif
|
|
};
|
|
|
|
/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
|
|
/// branched root.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
ValT IntervalMap<KeyT, ValT, N, Traits>::
|
|
treeSafeLookup(KeyT x, ValT NotFound) const {
|
|
assert(branched() && "treeLookup assumes a branched root");
|
|
|
|
IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
|
|
for (unsigned h = height-1; h; --h)
|
|
NR = NR.get<Branch>().safeLookup(x);
|
|
return NR.get<Leaf>().safeLookup(x, NotFound);
|
|
}
|
|
|
|
|
|
// branchRoot - Switch from a leaf root to a branched root.
|
|
// Return the new (root offset, node offset) corresponding to Position.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
|
|
branchRoot(unsigned Position) {
|
|
using namespace IntervalMapImpl;
|
|
// How many external leaf nodes to hold RootLeaf+1?
|
|
const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
|
|
|
|
// Compute element distribution among new nodes.
|
|
unsigned size[Nodes];
|
|
IdxPair NewOffset(0, Position);
|
|
|
|
// Is is very common for the root node to be smaller than external nodes.
|
|
if (Nodes == 1)
|
|
size[0] = rootSize;
|
|
else
|
|
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
|
|
Position, true);
|
|
|
|
// Allocate new nodes.
|
|
unsigned pos = 0;
|
|
NodeRef node[Nodes];
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
node[n] = NodeRef(allocLeaf(), size[n]);
|
|
node[n].template get<Leaf>().copy(rootLeaf(), pos, 0, size[n]);
|
|
pos += size[n];
|
|
}
|
|
|
|
// Destroy the old leaf node, construct branch node instead.
|
|
switchRootToBranch();
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
|
|
rootBranch().subtree(n) = node[n];
|
|
}
|
|
rootBranchStart() = node[0].template get<Leaf>().start(0);
|
|
rootSize = Nodes;
|
|
return NewOffset;
|
|
}
|
|
|
|
// splitRoot - Split the current BranchRoot into multiple Branch nodes.
|
|
// Return the new (root offset, node offset) corresponding to Position.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
|
|
splitRoot(unsigned Position) {
|
|
using namespace IntervalMapImpl;
|
|
// How many external leaf nodes to hold RootBranch+1?
|
|
const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
|
|
|
|
// Compute element distribution among new nodes.
|
|
unsigned Size[Nodes];
|
|
IdxPair NewOffset(0, Position);
|
|
|
|
// Is is very common for the root node to be smaller than external nodes.
|
|
if (Nodes == 1)
|
|
Size[0] = rootSize;
|
|
else
|
|
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size,
|
|
Position, true);
|
|
|
|
// Allocate new nodes.
|
|
unsigned Pos = 0;
|
|
NodeRef Node[Nodes];
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
Node[n] = NodeRef(allocBranch(), Size[n]);
|
|
Node[n].template get<Branch>().copy(rootBranch(), Pos, 0, Size[n]);
|
|
Pos += Size[n];
|
|
}
|
|
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
|
|
rootBranch().subtree(n) = Node[n];
|
|
}
|
|
rootSize = Nodes;
|
|
return NewOffset;
|
|
}
|
|
|
|
/// visitNodes - Visit each external node.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
|
|
if (!branched())
|
|
return;
|
|
SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
|
|
|
|
// Collect level 0 nodes from the root.
|
|
for (unsigned i = 0; i != rootSize; ++i)
|
|
Refs.push_back(rootBranch().subtree(i));
|
|
|
|
// Visit all branch nodes.
|
|
for (unsigned h = height - 1; h; --h) {
|
|
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
|
|
for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
|
|
NextRefs.push_back(Refs[i].subtree(j));
|
|
(this->*f)(Refs[i], h);
|
|
}
|
|
Refs.clear();
|
|
Refs.swap(NextRefs);
|
|
}
|
|
|
|
// Visit all leaf nodes.
|
|
for (unsigned i = 0, e = Refs.size(); i != e; ++i)
|
|
(this->*f)(Refs[i], 0);
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
|
|
if (Level)
|
|
deleteBranch(&Node.get<Branch>());
|
|
else
|
|
deleteLeaf(&Node.get<Leaf>());
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
clear() {
|
|
if (branched()) {
|
|
visitNodes(&IntervalMap::deleteNode);
|
|
switchRootToLeaf();
|
|
}
|
|
rootSize = 0;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height) {
|
|
if (Height)
|
|
Node.get<Branch>().dump(Node.size());
|
|
else
|
|
Node.get<Leaf>().dump(Node.size());
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
dump() {
|
|
errs() << "digraph {\n";
|
|
if (branched())
|
|
rootBranch().dump(rootSize);
|
|
else
|
|
rootLeaf().dump(rootSize);
|
|
visitNodes(&IntervalMap::dumpNode);
|
|
errs() << "}\n";
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- const_iterator ----//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
|
|
public std::iterator<std::bidirectional_iterator_tag, ValT> {
|
|
protected:
|
|
friend class IntervalMap;
|
|
typedef std::pair<IntervalMapImpl::NodeRef, unsigned> PathEntry;
|
|
typedef SmallVector<PathEntry, 4> Path;
|
|
|
|
// The map referred to.
|
|
IntervalMap *map;
|
|
|
|
// The offset into map's root node.
|
|
unsigned rootOffset;
|
|
|
|
// We store a full path from the root to the current position.
|
|
//
|
|
// When rootOffset == map->rootSize, we are at end() and path() is empty.
|
|
// Otherwise, when branched these conditions hold:
|
|
//
|
|
// 1. path.front().first == rootBranch().subtree(rootOffset)
|
|
// 2. path[i].first == path[i-1].first.subtree(path[i-1].second)
|
|
// 3. path.size() == map->height.
|
|
//
|
|
// Thus, path.back() always refers to the current leaf node unless the root is
|
|
// unbranched.
|
|
//
|
|
// The path may be partially filled, but never between iterator calls.
|
|
Path path;
|
|
|
|
explicit const_iterator(IntervalMap &map)
|
|
: map(&map), rootOffset(map.rootSize) {}
|
|
|
|
bool branched() const {
|
|
assert(map && "Invalid iterator");
|
|
return map->branched();
|
|
}
|
|
|
|
IntervalMapImpl::NodeRef pathNode(unsigned h) const { return path[h].first; }
|
|
IntervalMapImpl::NodeRef &pathNode(unsigned h) { return path[h].first; }
|
|
unsigned pathOffset(unsigned h) const { return path[h].second; }
|
|
unsigned &pathOffset(unsigned h) { return path[h].second; }
|
|
|
|
Leaf &treeLeaf() const {
|
|
assert(branched() && path.size() == map->height);
|
|
return path.back().first.template get<Leaf>();
|
|
}
|
|
unsigned treeLeafSize() const {
|
|
assert(branched() && path.size() == map->height);
|
|
return path.back().first.size();
|
|
}
|
|
unsigned &treeLeafOffset() {
|
|
assert(branched() && path.size() == map->height);
|
|
return path.back().second;
|
|
}
|
|
unsigned treeLeafOffset() const {
|
|
assert(branched() && path.size() == map->height);
|
|
return path.back().second;
|
|
}
|
|
|
|
// Get the next node ptr for an incomplete path.
|
|
IntervalMapImpl::NodeRef pathNextDown() {
|
|
assert(path.size() < map->height && "Path is already complete");
|
|
|
|
if (path.empty())
|
|
return map->rootBranch().subtree(rootOffset);
|
|
else
|
|
return path.back().first.subtree(path.back().second);
|
|
}
|
|
|
|
void pathFillLeft();
|
|
void pathFillFind(KeyT x);
|
|
void pathFillRight();
|
|
|
|
IntervalMapImpl::NodeRef leftSibling(unsigned level) const;
|
|
IntervalMapImpl::NodeRef rightSibling(unsigned level) const;
|
|
|
|
void treeIncrement();
|
|
void treeDecrement();
|
|
void treeFind(KeyT x);
|
|
|
|
public:
|
|
/// valid - Return true if the current position is valid, false for end().
|
|
bool valid() const {
|
|
assert(map && "Invalid iterator");
|
|
return rootOffset < map->rootSize;
|
|
}
|
|
|
|
/// start - Return the beginning of the current interval.
|
|
const KeyT &start() const {
|
|
assert(valid() && "Cannot access invalid iterator");
|
|
return branched() ? treeLeaf().start(treeLeafOffset()) :
|
|
map->rootLeaf().start(rootOffset);
|
|
}
|
|
|
|
/// stop - Return the end of the current interval.
|
|
const KeyT &stop() const {
|
|
assert(valid() && "Cannot access invalid iterator");
|
|
return branched() ? treeLeaf().stop(treeLeafOffset()) :
|
|
map->rootLeaf().stop(rootOffset);
|
|
}
|
|
|
|
/// value - Return the mapped value at the current interval.
|
|
const ValT &value() const {
|
|
assert(valid() && "Cannot access invalid iterator");
|
|
return branched() ? treeLeaf().value(treeLeafOffset()) :
|
|
map->rootLeaf().value(rootOffset);
|
|
}
|
|
|
|
const ValT &operator*() const {
|
|
return value();
|
|
}
|
|
|
|
bool operator==(const const_iterator &RHS) const {
|
|
assert(map == RHS.map && "Cannot compare iterators from different maps");
|
|
return rootOffset == RHS.rootOffset &&
|
|
(!valid() || !branched() || path.back() == RHS.path.back());
|
|
}
|
|
|
|
bool operator!=(const const_iterator &RHS) const {
|
|
return !operator==(RHS);
|
|
}
|
|
|
|
/// goToBegin - Move to the first interval in map.
|
|
void goToBegin() {
|
|
rootOffset = 0;
|
|
path.clear();
|
|
if (branched())
|
|
pathFillLeft();
|
|
}
|
|
|
|
/// goToEnd - Move beyond the last interval in map.
|
|
void goToEnd() {
|
|
rootOffset = map->rootSize;
|
|
path.clear();
|
|
}
|
|
|
|
/// preincrement - move to the next interval.
|
|
const_iterator &operator++() {
|
|
assert(valid() && "Cannot increment end()");
|
|
if (!branched())
|
|
++rootOffset;
|
|
else if (treeLeafOffset() != treeLeafSize() - 1)
|
|
++treeLeafOffset();
|
|
else
|
|
treeIncrement();
|
|
return *this;
|
|
}
|
|
|
|
/// postincrement - Dont do that!
|
|
const_iterator operator++(int) {
|
|
const_iterator tmp = *this;
|
|
operator++();
|
|
return tmp;
|
|
}
|
|
|
|
/// predecrement - move to the previous interval.
|
|
const_iterator &operator--() {
|
|
if (!branched()) {
|
|
assert(rootOffset && "Cannot decrement begin()");
|
|
--rootOffset;
|
|
} else if (valid() && treeLeafOffset())
|
|
--treeLeafOffset();
|
|
else
|
|
treeDecrement();
|
|
return *this;
|
|
}
|
|
|
|
/// postdecrement - Dont do that!
|
|
const_iterator operator--(int) {
|
|
const_iterator tmp = *this;
|
|
operator--();
|
|
return tmp;
|
|
}
|
|
|
|
/// find - Move to the first interval with stop >= x, or end().
|
|
/// This is a full search from the root, the current position is ignored.
|
|
void find(KeyT x) {
|
|
if (branched())
|
|
treeFind(x);
|
|
else
|
|
rootOffset = map->rootLeaf().findFrom(0, map->rootSize, x);
|
|
}
|
|
|
|
/// advanceTo - Move to the first interval with stop >= x, or end().
|
|
/// The search is started from the current position, and no earlier positions
|
|
/// can be found. This is much faster than find() for small moves.
|
|
void advanceTo(KeyT x) {
|
|
if (branched())
|
|
treeAdvanceTo(x);
|
|
else
|
|
rootOffset = map->rootLeaf().findFrom(rootOffset, map->rootSize, x);
|
|
}
|
|
|
|
};
|
|
|
|
// pathFillLeft - Complete path by following left-most branches.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::pathFillLeft() {
|
|
IntervalMapImpl::NodeRef NR = pathNextDown();
|
|
for (unsigned i = map->height - path.size() - 1; i; --i) {
|
|
path.push_back(PathEntry(NR, 0));
|
|
NR = NR.subtree(0);
|
|
}
|
|
path.push_back(PathEntry(NR, 0));
|
|
}
|
|
|
|
// pathFillFind - Complete path by searching for x.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::pathFillFind(KeyT x) {
|
|
IntervalMapImpl::NodeRef NR = pathNextDown();
|
|
for (unsigned i = map->height - path.size() - 1; i; --i) {
|
|
unsigned p = NR.get<Branch>().safeFind(0, x);
|
|
path.push_back(PathEntry(NR, p));
|
|
NR = NR.subtree(p);
|
|
}
|
|
path.push_back(PathEntry(NR, NR.get<Leaf>().safeFind(0, x)));
|
|
}
|
|
|
|
// pathFillRight - Complete path by adding rightmost entries.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::pathFillRight() {
|
|
IntervalMapImpl::NodeRef NR = pathNextDown();
|
|
for (unsigned i = map->height - path.size() - 1; i; --i) {
|
|
unsigned p = NR.size() - 1;
|
|
path.push_back(PathEntry(NR, p));
|
|
NR = NR.subtree(p);
|
|
}
|
|
path.push_back(PathEntry(NR, NR.size() - 1));
|
|
}
|
|
|
|
/// leftSibling - find the left sibling node to path[level].
|
|
/// @param level 0 is just below the root, map->height - 1 for the leaves.
|
|
/// @return The left sibling NodeRef, or NULL.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
IntervalMapImpl::NodeRef IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::leftSibling(unsigned level) const {
|
|
using namespace IntervalMapImpl;
|
|
assert(branched() && "Not at a branched node");
|
|
assert(level <= path.size() && "Bad level");
|
|
|
|
// Go up the tree until we can go left.
|
|
unsigned h = level;
|
|
while (h && pathOffset(h - 1) == 0)
|
|
--h;
|
|
|
|
// We are at the first leaf node, no left sibling.
|
|
if (!h && rootOffset == 0)
|
|
return NodeRef();
|
|
|
|
// NR is the subtree containing our left sibling.
|
|
NodeRef NR = h ?
|
|
pathNode(h - 1).subtree(pathOffset(h - 1) - 1) :
|
|
map->rootBranch().subtree(rootOffset - 1);
|
|
|
|
// Keep right all the way down.
|
|
for (; h != level; ++h)
|
|
NR = NR.subtree(NR.size() - 1);
|
|
return NR;
|
|
}
|
|
|
|
/// rightSibling - find the right sibling node to path[level].
|
|
/// @param level 0 is just below the root, map->height - 1 for the leaves.
|
|
/// @return The right sibling NodeRef, or NULL.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
IntervalMapImpl::NodeRef IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::rightSibling(unsigned level) const {
|
|
using namespace IntervalMapImpl;
|
|
assert(branched() && "Not at a branched node");
|
|
assert(level <= this->path.size() && "Bad level");
|
|
|
|
// Go up the tree until we can go right.
|
|
unsigned h = level;
|
|
while (h && pathOffset(h - 1) == pathNode(h - 1).size() - 1)
|
|
--h;
|
|
|
|
// We are at the last leaf node, no right sibling.
|
|
if (!h && rootOffset == map->rootSize - 1)
|
|
return NodeRef();
|
|
|
|
// NR is the subtree containing our right sibling.
|
|
NodeRef NR = h ?
|
|
pathNode(h - 1).subtree(pathOffset(h - 1) + 1) :
|
|
map->rootBranch().subtree(rootOffset + 1);
|
|
|
|
// Keep left all the way down.
|
|
for (; h != level; ++h)
|
|
NR = NR.subtree(0);
|
|
return NR;
|
|
}
|
|
|
|
// treeIncrement - Move to the beginning of the next leaf node.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::treeIncrement() {
|
|
assert(branched() && "treeIncrement is not for small maps");
|
|
assert(path.size() == map->height && "inconsistent iterator");
|
|
do path.pop_back();
|
|
while (!path.empty() && path.back().second == path.back().first.size() - 1);
|
|
if (path.empty()) {
|
|
++rootOffset;
|
|
if (!valid())
|
|
return;
|
|
} else
|
|
++path.back().second;
|
|
pathFillLeft();
|
|
}
|
|
|
|
// treeDecrement - Move to the end of the previous leaf node.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::treeDecrement() {
|
|
assert(branched() && "treeDecrement is not for small maps");
|
|
if (valid()) {
|
|
assert(path.size() == map->height && "inconsistent iterator");
|
|
do path.pop_back();
|
|
while (!path.empty() && path.back().second == 0);
|
|
}
|
|
if (path.empty()) {
|
|
assert(rootOffset && "cannot treeDecrement() on begin()");
|
|
--rootOffset;
|
|
} else
|
|
--path.back().second;
|
|
pathFillRight();
|
|
}
|
|
|
|
// treeFind - Find in a branched tree.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::treeFind(KeyT x) {
|
|
path.clear();
|
|
rootOffset = map->rootBranch().findFrom(0, map->rootSize, x);
|
|
if (valid())
|
|
pathFillFind(x);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- iterator ----//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace IntervalMapImpl {
|
|
|
|
/// distribute - Compute a new distribution of node elements after an overflow
|
|
/// or underflow. Reserve space for a new element at Position, and compute the
|
|
/// node that will hold Position after redistributing node elements.
|
|
///
|
|
/// It is required that
|
|
///
|
|
/// Elements == sum(CurSize), and
|
|
/// Elements + Grow <= Nodes * Capacity.
|
|
///
|
|
/// NewSize[] will be filled in such that:
|
|
///
|
|
/// sum(NewSize) == Elements, and
|
|
/// NewSize[i] <= Capacity.
|
|
///
|
|
/// The returned index is the node where Position will go, so:
|
|
///
|
|
/// sum(NewSize[0..idx-1]) <= Position
|
|
/// sum(NewSize[0..idx]) >= Position
|
|
///
|
|
/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
|
|
/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
|
|
/// before the one holding the Position'th element where there is room for an
|
|
/// insertion.
|
|
///
|
|
/// @param Nodes The number of nodes.
|
|
/// @param Elements Total elements in all nodes.
|
|
/// @param Capacity The capacity of each node.
|
|
/// @param CurSize Array[Nodes] of current node sizes, or NULL.
|
|
/// @param NewSize Array[Nodes] to receive the new node sizes.
|
|
/// @param Position Insert position.
|
|
/// @param Grow Reserve space for a new element at Position.
|
|
/// @return (node, offset) for Position.
|
|
IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
|
|
const unsigned *CurSize, unsigned NewSize[],
|
|
unsigned Position, bool Grow);
|
|
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
|
|
friend class IntervalMap;
|
|
typedef IntervalMapImpl::IdxPair IdxPair;
|
|
|
|
explicit iterator(IntervalMap &map) : const_iterator(map) {}
|
|
|
|
void setNodeSize(unsigned Level, unsigned Size);
|
|
void setNodeStop(unsigned Level, KeyT Stop);
|
|
void insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
|
|
void overflowLeaf();
|
|
void treeInsert(KeyT a, KeyT b, ValT y);
|
|
|
|
public:
|
|
/// insert - Insert mapping [a;b] -> y before the current position.
|
|
void insert(KeyT a, KeyT b, ValT y);
|
|
|
|
};
|
|
|
|
/// setNodeSize - Set the size of the node at path[level], updating both path
|
|
/// and the real tree.
|
|
/// @param level 0 is just below the root, map->height - 1 for the leaves.
|
|
/// @param size New node size.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::setNodeSize(unsigned Level, unsigned Size) {
|
|
this->pathNode(Level).setSize(Size);
|
|
if (Level)
|
|
this->pathNode(Level-1).subtree(this->pathOffset(Level-1)).setSize(Size);
|
|
else
|
|
this->map->rootBranch().subtree(this->rootOffset).setSize(Size);
|
|
}
|
|
|
|
/// setNodeStop - Update the stop key of the current node at level and above.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::setNodeStop(unsigned Level, KeyT Stop) {
|
|
while (Level--) {
|
|
this->pathNode(Level).template get<Branch>()
|
|
.stop(this->pathOffset(Level)) = Stop;
|
|
if (this->pathOffset(Level) != this->pathNode(Level).size() - 1)
|
|
return;
|
|
}
|
|
this->map->rootBranch().stop(this->rootOffset) = Stop;
|
|
}
|
|
|
|
/// insertNode - insert a node before the current path at level.
|
|
/// Leave the current path pointing at the new node.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
|
|
if (!Level) {
|
|
// Insert into the root branch node.
|
|
IntervalMap &IM = *this->map;
|
|
if (IM.rootSize < RootBranch::Capacity) {
|
|
IM.rootBranch().insert(this->rootOffset, IM.rootSize, Node, Stop);
|
|
++IM.rootSize;
|
|
return;
|
|
}
|
|
|
|
// We need to split the root while keeping our position.
|
|
IdxPair Offset = IM.splitRoot(this->rootOffset);
|
|
this->rootOffset = Offset.first;
|
|
this->path.insert(this->path.begin(),std::make_pair(
|
|
this->map->rootBranch().subtree(Offset.first), Offset.second));
|
|
Level = 1;
|
|
}
|
|
|
|
// When inserting before end(), make sure we have a valid path.
|
|
if (!this->valid()) {
|
|
this->treeDecrement();
|
|
++this->pathOffset(Level-1);
|
|
}
|
|
|
|
// Insert into the branch node at level-1.
|
|
IntervalMapImpl::NodeRef NR = this->pathNode(Level-1);
|
|
unsigned Offset = this->pathOffset(Level-1);
|
|
assert(NR.size() < Branch::Capacity && "Branch overflow");
|
|
NR.get<Branch>().insert(Offset, NR.size(), Node, Stop);
|
|
setNodeSize(Level - 1, NR.size() + 1);
|
|
}
|
|
|
|
// insert
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::insert(KeyT a, KeyT b, ValT y) {
|
|
if (this->branched())
|
|
return treeInsert(a, b, y);
|
|
IdxPair IP = this->map->rootLeaf().insertFrom(this->rootOffset,
|
|
this->map->rootSize,
|
|
a, b, y);
|
|
if (IP.second <= RootLeaf::Capacity) {
|
|
this->rootOffset = IP.first;
|
|
this->map->rootSize = IP.second;
|
|
return;
|
|
}
|
|
IdxPair Offset = this->map->branchRoot(this->rootOffset);
|
|
this->rootOffset = Offset.first;
|
|
this->path.push_back(std::make_pair(
|
|
this->map->rootBranch().subtree(Offset.first), Offset.second));
|
|
treeInsert(a, b, y);
|
|
}
|
|
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::treeInsert(KeyT a, KeyT b, ValT y) {
|
|
if (!this->valid()) {
|
|
// end() has an empty path. Go back to the last leaf node and use an
|
|
// invalid offset instead.
|
|
this->treeDecrement();
|
|
++this->treeLeafOffset();
|
|
}
|
|
IdxPair IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
|
|
this->treeLeafSize(), a, b, y);
|
|
this->treeLeafOffset() = IP.first;
|
|
if (IP.second <= Leaf::Capacity) {
|
|
setNodeSize(this->map->height - 1, IP.second);
|
|
if (IP.first == IP.second - 1)
|
|
setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
|
|
return;
|
|
}
|
|
// Leaf node has no space.
|
|
overflowLeaf();
|
|
IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
|
|
this->treeLeafSize(), a, b, y);
|
|
this->treeLeafOffset() = IP.first;
|
|
setNodeSize(this->map->height-1, IP.second);
|
|
if (IP.first == IP.second - 1)
|
|
setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
|
|
|
|
// FIXME: Handle cross-node coalescing.
|
|
}
|
|
|
|
// overflowLeaf - Distribute entries of the current leaf node evenly among
|
|
// its siblings and ensure that the current node is not full.
|
|
// This may require allocating a new node.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::overflowLeaf() {
|
|
using namespace IntervalMapImpl;
|
|
unsigned CurSize[4];
|
|
Leaf *Node[4];
|
|
unsigned Nodes = 0;
|
|
unsigned Elements = 0;
|
|
unsigned Offset = this->treeLeafOffset();
|
|
|
|
// Do we have a left sibling?
|
|
NodeRef LeftSib = this->leftSibling(this->map->height-1);
|
|
if (LeftSib) {
|
|
Offset += Elements = CurSize[Nodes] = LeftSib.size();
|
|
Node[Nodes++] = &LeftSib.get<Leaf>();
|
|
}
|
|
|
|
// Current leaf node.
|
|
Elements += CurSize[Nodes] = this->treeLeafSize();
|
|
Node[Nodes++] = &this->treeLeaf();
|
|
|
|
// Do we have a right sibling?
|
|
NodeRef RightSib = this->rightSibling(this->map->height-1);
|
|
if (RightSib) {
|
|
Offset += Elements = CurSize[Nodes] = RightSib.size();
|
|
Node[Nodes++] = &RightSib.get<Leaf>();
|
|
}
|
|
|
|
// Do we need to allocate a new node?
|
|
unsigned NewNode = 0;
|
|
if (Elements + 1 > Nodes * Leaf::Capacity) {
|
|
// Insert NewNode at the penultimate position, or after a single node.
|
|
NewNode = Nodes == 1 ? 1 : Nodes - 1;
|
|
CurSize[Nodes] = CurSize[NewNode];
|
|
Node[Nodes] = Node[NewNode];
|
|
CurSize[NewNode] = 0;
|
|
Node[NewNode] = this->map->allocLeaf();
|
|
++Nodes;
|
|
}
|
|
|
|
// Compute the new element distribution.
|
|
unsigned NewSize[4];
|
|
IdxPair NewOffset = distribute(Nodes, Elements, Leaf::Capacity,
|
|
CurSize, NewSize, Offset, true);
|
|
|
|
// Move current location to the leftmost node.
|
|
if (LeftSib)
|
|
this->treeDecrement();
|
|
|
|
// Move elements right.
|
|
for (int n = Nodes - 1; n; --n) {
|
|
if (CurSize[n] == NewSize[n])
|
|
continue;
|
|
for (int m = n - 1; m != -1; --m) {
|
|
int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
|
|
NewSize[n] - CurSize[n]);
|
|
CurSize[m] -= d;
|
|
CurSize[n] += d;
|
|
// Keep going if the current node was exhausted.
|
|
if (CurSize[n] >= NewSize[n])
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Move elements left.
|
|
for (unsigned n = 0; n != Nodes - 1; ++n) {
|
|
if (CurSize[n] == NewSize[n])
|
|
continue;
|
|
for (unsigned m = n + 1; m != Nodes; ++m) {
|
|
int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
|
|
CurSize[n] - NewSize[n]);
|
|
CurSize[m] += d;
|
|
CurSize[n] -= d;
|
|
// Keep going if the current node was exhausted.
|
|
if (CurSize[n] >= NewSize[n])
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned n = 0; n != Nodes; n++)
|
|
assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
|
|
#endif
|
|
|
|
// Elements have been rearranged, now update node sizes and stops.
|
|
unsigned Pos = 0;
|
|
for (;;) {
|
|
KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
|
|
if (NewNode && Pos == NewNode)
|
|
insertNode(this->map->height - 1, NodeRef(Node[Pos], NewSize[Pos]), Stop);
|
|
else {
|
|
setNodeSize(this->map->height - 1, NewSize[Pos]);
|
|
setNodeStop(this->map->height - 1, Stop);
|
|
}
|
|
if (Pos + 1 == Nodes)
|
|
break;
|
|
this->treeIncrement();
|
|
++Pos;
|
|
}
|
|
|
|
// Where was I? Find NewOffset.
|
|
while(Pos != NewOffset.first) {
|
|
this->treeDecrement();
|
|
--Pos;
|
|
}
|
|
this->treeLeafOffset() = NewOffset.second;
|
|
}
|
|
|
|
} // namespace llvm
|
|
|
|
#endif
|