mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
26bc54301b
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240804 91177308-0d34-0410-b5e6-96231b3b80d8
1556 lines
56 KiB
C++
1556 lines
56 KiB
C++
//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The implementation for the loop memory dependence that was originally
|
|
// developed for the loop vectorizer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-accesses"
|
|
|
|
static cl::opt<unsigned, true>
|
|
VectorizationFactor("force-vector-width", cl::Hidden,
|
|
cl::desc("Sets the SIMD width. Zero is autoselect."),
|
|
cl::location(VectorizerParams::VectorizationFactor));
|
|
unsigned VectorizerParams::VectorizationFactor;
|
|
|
|
static cl::opt<unsigned, true>
|
|
VectorizationInterleave("force-vector-interleave", cl::Hidden,
|
|
cl::desc("Sets the vectorization interleave count. "
|
|
"Zero is autoselect."),
|
|
cl::location(
|
|
VectorizerParams::VectorizationInterleave));
|
|
unsigned VectorizerParams::VectorizationInterleave;
|
|
|
|
static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
|
|
"runtime-memory-check-threshold", cl::Hidden,
|
|
cl::desc("When performing memory disambiguation checks at runtime do not "
|
|
"generate more than this number of comparisons (default = 8)."),
|
|
cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
|
|
unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
|
|
|
|
/// Maximum SIMD width.
|
|
const unsigned VectorizerParams::MaxVectorWidth = 64;
|
|
|
|
/// \brief We collect interesting dependences up to this threshold.
|
|
static cl::opt<unsigned> MaxInterestingDependence(
|
|
"max-interesting-dependences", cl::Hidden,
|
|
cl::desc("Maximum number of interesting dependences collected by "
|
|
"loop-access analysis (default = 100)"),
|
|
cl::init(100));
|
|
|
|
bool VectorizerParams::isInterleaveForced() {
|
|
return ::VectorizationInterleave.getNumOccurrences() > 0;
|
|
}
|
|
|
|
void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
|
|
const Function *TheFunction,
|
|
const Loop *TheLoop,
|
|
const char *PassName) {
|
|
DebugLoc DL = TheLoop->getStartLoc();
|
|
if (const Instruction *I = Message.getInstr())
|
|
DL = I->getDebugLoc();
|
|
emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
|
|
*TheFunction, DL, Message.str());
|
|
}
|
|
|
|
Value *llvm::stripIntegerCast(Value *V) {
|
|
if (CastInst *CI = dyn_cast<CastInst>(V))
|
|
if (CI->getOperand(0)->getType()->isIntegerTy())
|
|
return CI->getOperand(0);
|
|
return V;
|
|
}
|
|
|
|
const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
|
|
const ValueToValueMap &PtrToStride,
|
|
Value *Ptr, Value *OrigPtr) {
|
|
|
|
const SCEV *OrigSCEV = SE->getSCEV(Ptr);
|
|
|
|
// If there is an entry in the map return the SCEV of the pointer with the
|
|
// symbolic stride replaced by one.
|
|
ValueToValueMap::const_iterator SI =
|
|
PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
|
|
if (SI != PtrToStride.end()) {
|
|
Value *StrideVal = SI->second;
|
|
|
|
// Strip casts.
|
|
StrideVal = stripIntegerCast(StrideVal);
|
|
|
|
// Replace symbolic stride by one.
|
|
Value *One = ConstantInt::get(StrideVal->getType(), 1);
|
|
ValueToValueMap RewriteMap;
|
|
RewriteMap[StrideVal] = One;
|
|
|
|
const SCEV *ByOne =
|
|
SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
|
|
DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
|
|
<< "\n");
|
|
return ByOne;
|
|
}
|
|
|
|
// Otherwise, just return the SCEV of the original pointer.
|
|
return SE->getSCEV(Ptr);
|
|
}
|
|
|
|
void LoopAccessInfo::RuntimePointerCheck::insert(
|
|
ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
|
|
unsigned ASId, const ValueToValueMap &Strides) {
|
|
// Get the stride replaced scev.
|
|
const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
|
|
assert(AR && "Invalid addrec expression");
|
|
const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
|
|
const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
|
|
Pointers.push_back(Ptr);
|
|
Starts.push_back(AR->getStart());
|
|
Ends.push_back(ScEnd);
|
|
IsWritePtr.push_back(WritePtr);
|
|
DependencySetId.push_back(DepSetId);
|
|
AliasSetId.push_back(ASId);
|
|
}
|
|
|
|
bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
|
|
unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const {
|
|
// No need to check if two readonly pointers intersect.
|
|
if (!IsWritePtr[I] && !IsWritePtr[J])
|
|
return false;
|
|
|
|
// Only need to check pointers between two different dependency sets.
|
|
if (DependencySetId[I] == DependencySetId[J])
|
|
return false;
|
|
|
|
// Only need to check pointers in the same alias set.
|
|
if (AliasSetId[I] != AliasSetId[J])
|
|
return false;
|
|
|
|
// If PtrPartition is set omit checks between pointers of the same partition.
|
|
// Partition number -1 means that the pointer is used in multiple partitions.
|
|
// In this case we can't omit the check.
|
|
if (PtrPartition && (*PtrPartition)[I] != -1 &&
|
|
(*PtrPartition)[I] == (*PtrPartition)[J])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void LoopAccessInfo::RuntimePointerCheck::print(
|
|
raw_ostream &OS, unsigned Depth,
|
|
const SmallVectorImpl<int> *PtrPartition) const {
|
|
unsigned NumPointers = Pointers.size();
|
|
if (NumPointers == 0)
|
|
return;
|
|
|
|
OS.indent(Depth) << "Run-time memory checks:\n";
|
|
unsigned N = 0;
|
|
for (unsigned I = 0; I < NumPointers; ++I)
|
|
for (unsigned J = I + 1; J < NumPointers; ++J)
|
|
if (needsChecking(I, J, PtrPartition)) {
|
|
OS.indent(Depth) << N++ << ":\n";
|
|
OS.indent(Depth + 2) << *Pointers[I];
|
|
if (PtrPartition)
|
|
OS << " (Partition: " << (*PtrPartition)[I] << ")";
|
|
OS << "\n";
|
|
OS.indent(Depth + 2) << *Pointers[J];
|
|
if (PtrPartition)
|
|
OS << " (Partition: " << (*PtrPartition)[J] << ")";
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks(
|
|
const SmallVectorImpl<int> *PtrPartition) const {
|
|
unsigned NumPointers = Pointers.size();
|
|
unsigned CheckCount = 0;
|
|
|
|
for (unsigned I = 0; I < NumPointers; ++I)
|
|
for (unsigned J = I + 1; J < NumPointers; ++J)
|
|
if (needsChecking(I, J, PtrPartition))
|
|
CheckCount++;
|
|
return CheckCount;
|
|
}
|
|
|
|
bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking(
|
|
const SmallVectorImpl<int> *PtrPartition) const {
|
|
return getNumberOfChecks(PtrPartition) != 0;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Analyses memory accesses in a loop.
|
|
///
|
|
/// Checks whether run time pointer checks are needed and builds sets for data
|
|
/// dependence checking.
|
|
class AccessAnalysis {
|
|
public:
|
|
/// \brief Read or write access location.
|
|
typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
|
|
typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
|
|
|
|
AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
|
|
MemoryDepChecker::DepCandidates &DA)
|
|
: DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckNeeded(false) {}
|
|
|
|
/// \brief Register a load and whether it is only read from.
|
|
void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
|
|
Value *Ptr = const_cast<Value*>(Loc.Ptr);
|
|
AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
|
|
Accesses.insert(MemAccessInfo(Ptr, false));
|
|
if (IsReadOnly)
|
|
ReadOnlyPtr.insert(Ptr);
|
|
}
|
|
|
|
/// \brief Register a store.
|
|
void addStore(MemoryLocation &Loc) {
|
|
Value *Ptr = const_cast<Value*>(Loc.Ptr);
|
|
AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
|
|
Accesses.insert(MemAccessInfo(Ptr, true));
|
|
}
|
|
|
|
/// \brief Check whether we can check the pointers at runtime for
|
|
/// non-intersection. Returns true when we have 0 pointers
|
|
/// (a check on 0 pointers for non-intersection will always return true).
|
|
bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
|
|
bool &NeedRTCheck, ScalarEvolution *SE, Loop *TheLoop,
|
|
const ValueToValueMap &Strides,
|
|
bool ShouldCheckStride = false);
|
|
|
|
/// \brief Goes over all memory accesses, checks whether a RT check is needed
|
|
/// and builds sets of dependent accesses.
|
|
void buildDependenceSets() {
|
|
processMemAccesses();
|
|
}
|
|
|
|
bool isRTCheckNeeded() { return IsRTCheckNeeded; }
|
|
|
|
bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
|
|
|
|
/// We decided that no dependence analysis would be used. Reset the state.
|
|
void resetDepChecks(MemoryDepChecker &DepChecker) {
|
|
CheckDeps.clear();
|
|
DepChecker.clearInterestingDependences();
|
|
}
|
|
|
|
MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
|
|
|
|
private:
|
|
typedef SetVector<MemAccessInfo> PtrAccessSet;
|
|
|
|
/// \brief Go over all memory access and check whether runtime pointer checks
|
|
/// are needed /// and build sets of dependency check candidates.
|
|
void processMemAccesses();
|
|
|
|
/// Set of all accesses.
|
|
PtrAccessSet Accesses;
|
|
|
|
const DataLayout &DL;
|
|
|
|
/// Set of accesses that need a further dependence check.
|
|
MemAccessInfoSet CheckDeps;
|
|
|
|
/// Set of pointers that are read only.
|
|
SmallPtrSet<Value*, 16> ReadOnlyPtr;
|
|
|
|
/// An alias set tracker to partition the access set by underlying object and
|
|
//intrinsic property (such as TBAA metadata).
|
|
AliasSetTracker AST;
|
|
|
|
LoopInfo *LI;
|
|
|
|
/// Sets of potentially dependent accesses - members of one set share an
|
|
/// underlying pointer. The set "CheckDeps" identfies which sets really need a
|
|
/// dependence check.
|
|
MemoryDepChecker::DepCandidates &DepCands;
|
|
|
|
bool IsRTCheckNeeded;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// \brief Check whether a pointer can participate in a runtime bounds check.
|
|
static bool hasComputableBounds(ScalarEvolution *SE,
|
|
const ValueToValueMap &Strides, Value *Ptr) {
|
|
const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
|
|
if (!AR)
|
|
return false;
|
|
|
|
return AR->isAffine();
|
|
}
|
|
|
|
bool AccessAnalysis::canCheckPtrAtRT(
|
|
LoopAccessInfo::RuntimePointerCheck &RtCheck, bool &NeedRTCheck,
|
|
ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap,
|
|
bool ShouldCheckStride) {
|
|
// Find pointers with computable bounds. We are going to use this information
|
|
// to place a runtime bound check.
|
|
bool CanDoRT = true;
|
|
|
|
NeedRTCheck = false;
|
|
if (!IsRTCheckNeeded) return true;
|
|
|
|
bool IsDepCheckNeeded = isDependencyCheckNeeded();
|
|
|
|
// We assign a consecutive id to access from different alias sets.
|
|
// Accesses between different groups doesn't need to be checked.
|
|
unsigned ASId = 1;
|
|
for (auto &AS : AST) {
|
|
// We assign consecutive id to access from different dependence sets.
|
|
// Accesses within the same set don't need a runtime check.
|
|
unsigned RunningDepId = 1;
|
|
DenseMap<Value *, unsigned> DepSetId;
|
|
|
|
for (auto A : AS) {
|
|
Value *Ptr = A.getValue();
|
|
bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
|
|
MemAccessInfo Access(Ptr, IsWrite);
|
|
|
|
if (hasComputableBounds(SE, StridesMap, Ptr) &&
|
|
// When we run after a failing dependency check we have to make sure
|
|
// we don't have wrapping pointers.
|
|
(!ShouldCheckStride ||
|
|
isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) {
|
|
// The id of the dependence set.
|
|
unsigned DepId;
|
|
|
|
if (IsDepCheckNeeded) {
|
|
Value *Leader = DepCands.getLeaderValue(Access).getPointer();
|
|
unsigned &LeaderId = DepSetId[Leader];
|
|
if (!LeaderId)
|
|
LeaderId = RunningDepId++;
|
|
DepId = LeaderId;
|
|
} else
|
|
// Each access has its own dependence set.
|
|
DepId = RunningDepId++;
|
|
|
|
RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
|
|
|
|
DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
|
|
} else {
|
|
DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
|
|
CanDoRT = false;
|
|
}
|
|
}
|
|
|
|
++ASId;
|
|
}
|
|
|
|
// We need a runtime check if there are any accesses that need checking.
|
|
// However, some accesses cannot be checked (for example because we
|
|
// can't determine their bounds). In these cases we would need a check
|
|
// but wouldn't be able to add it.
|
|
NeedRTCheck = !CanDoRT || RtCheck.needsAnyChecking(nullptr);
|
|
|
|
// If the pointers that we would use for the bounds comparison have different
|
|
// address spaces, assume the values aren't directly comparable, so we can't
|
|
// use them for the runtime check. We also have to assume they could
|
|
// overlap. In the future there should be metadata for whether address spaces
|
|
// are disjoint.
|
|
unsigned NumPointers = RtCheck.Pointers.size();
|
|
for (unsigned i = 0; i < NumPointers; ++i) {
|
|
for (unsigned j = i + 1; j < NumPointers; ++j) {
|
|
// Only need to check pointers between two different dependency sets.
|
|
if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
|
|
continue;
|
|
// Only need to check pointers in the same alias set.
|
|
if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
|
|
continue;
|
|
|
|
Value *PtrI = RtCheck.Pointers[i];
|
|
Value *PtrJ = RtCheck.Pointers[j];
|
|
|
|
unsigned ASi = PtrI->getType()->getPointerAddressSpace();
|
|
unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
|
|
if (ASi != ASj) {
|
|
DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
|
|
" different address spaces\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return CanDoRT;
|
|
}
|
|
|
|
void AccessAnalysis::processMemAccesses() {
|
|
// We process the set twice: first we process read-write pointers, last we
|
|
// process read-only pointers. This allows us to skip dependence tests for
|
|
// read-only pointers.
|
|
|
|
DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
|
|
DEBUG(dbgs() << " AST: "; AST.dump());
|
|
DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
|
|
DEBUG({
|
|
for (auto A : Accesses)
|
|
dbgs() << "\t" << *A.getPointer() << " (" <<
|
|
(A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
|
|
"read-only" : "read")) << ")\n";
|
|
});
|
|
|
|
// The AliasSetTracker has nicely partitioned our pointers by metadata
|
|
// compatibility and potential for underlying-object overlap. As a result, we
|
|
// only need to check for potential pointer dependencies within each alias
|
|
// set.
|
|
for (auto &AS : AST) {
|
|
// Note that both the alias-set tracker and the alias sets themselves used
|
|
// linked lists internally and so the iteration order here is deterministic
|
|
// (matching the original instruction order within each set).
|
|
|
|
bool SetHasWrite = false;
|
|
|
|
// Map of pointers to last access encountered.
|
|
typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
|
|
UnderlyingObjToAccessMap ObjToLastAccess;
|
|
|
|
// Set of access to check after all writes have been processed.
|
|
PtrAccessSet DeferredAccesses;
|
|
|
|
// Iterate over each alias set twice, once to process read/write pointers,
|
|
// and then to process read-only pointers.
|
|
for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
|
|
bool UseDeferred = SetIteration > 0;
|
|
PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
|
|
|
|
for (auto AV : AS) {
|
|
Value *Ptr = AV.getValue();
|
|
|
|
// For a single memory access in AliasSetTracker, Accesses may contain
|
|
// both read and write, and they both need to be handled for CheckDeps.
|
|
for (auto AC : S) {
|
|
if (AC.getPointer() != Ptr)
|
|
continue;
|
|
|
|
bool IsWrite = AC.getInt();
|
|
|
|
// If we're using the deferred access set, then it contains only
|
|
// reads.
|
|
bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
|
|
if (UseDeferred && !IsReadOnlyPtr)
|
|
continue;
|
|
// Otherwise, the pointer must be in the PtrAccessSet, either as a
|
|
// read or a write.
|
|
assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
|
|
S.count(MemAccessInfo(Ptr, false))) &&
|
|
"Alias-set pointer not in the access set?");
|
|
|
|
MemAccessInfo Access(Ptr, IsWrite);
|
|
DepCands.insert(Access);
|
|
|
|
// Memorize read-only pointers for later processing and skip them in
|
|
// the first round (they need to be checked after we have seen all
|
|
// write pointers). Note: we also mark pointer that are not
|
|
// consecutive as "read-only" pointers (so that we check
|
|
// "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
|
|
if (!UseDeferred && IsReadOnlyPtr) {
|
|
DeferredAccesses.insert(Access);
|
|
continue;
|
|
}
|
|
|
|
// If this is a write - check other reads and writes for conflicts. If
|
|
// this is a read only check other writes for conflicts (but only if
|
|
// there is no other write to the ptr - this is an optimization to
|
|
// catch "a[i] = a[i] + " without having to do a dependence check).
|
|
if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
|
|
CheckDeps.insert(Access);
|
|
IsRTCheckNeeded = true;
|
|
}
|
|
|
|
if (IsWrite)
|
|
SetHasWrite = true;
|
|
|
|
// Create sets of pointers connected by a shared alias set and
|
|
// underlying object.
|
|
typedef SmallVector<Value *, 16> ValueVector;
|
|
ValueVector TempObjects;
|
|
|
|
GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
|
|
DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
|
|
for (Value *UnderlyingObj : TempObjects) {
|
|
UnderlyingObjToAccessMap::iterator Prev =
|
|
ObjToLastAccess.find(UnderlyingObj);
|
|
if (Prev != ObjToLastAccess.end())
|
|
DepCands.unionSets(Access, Prev->second);
|
|
|
|
ObjToLastAccess[UnderlyingObj] = Access;
|
|
DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isInBoundsGep(Value *Ptr) {
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
|
|
return GEP->isInBounds();
|
|
return false;
|
|
}
|
|
|
|
/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
|
|
/// i.e. monotonically increasing/decreasing.
|
|
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
|
|
ScalarEvolution *SE, const Loop *L) {
|
|
// FIXME: This should probably only return true for NUW.
|
|
if (AR->getNoWrapFlags(SCEV::NoWrapMask))
|
|
return true;
|
|
|
|
// Scalar evolution does not propagate the non-wrapping flags to values that
|
|
// are derived from a non-wrapping induction variable because non-wrapping
|
|
// could be flow-sensitive.
|
|
//
|
|
// Look through the potentially overflowing instruction to try to prove
|
|
// non-wrapping for the *specific* value of Ptr.
|
|
|
|
// The arithmetic implied by an inbounds GEP can't overflow.
|
|
auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
|
|
if (!GEP || !GEP->isInBounds())
|
|
return false;
|
|
|
|
// Make sure there is only one non-const index and analyze that.
|
|
Value *NonConstIndex = nullptr;
|
|
for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
|
|
if (!isa<ConstantInt>(*Index)) {
|
|
if (NonConstIndex)
|
|
return false;
|
|
NonConstIndex = *Index;
|
|
}
|
|
if (!NonConstIndex)
|
|
// The recurrence is on the pointer, ignore for now.
|
|
return false;
|
|
|
|
// The index in GEP is signed. It is non-wrapping if it's derived from a NSW
|
|
// AddRec using a NSW operation.
|
|
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
|
|
if (OBO->hasNoSignedWrap() &&
|
|
// Assume constant for other the operand so that the AddRec can be
|
|
// easily found.
|
|
isa<ConstantInt>(OBO->getOperand(1))) {
|
|
auto *OpScev = SE->getSCEV(OBO->getOperand(0));
|
|
|
|
if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
|
|
return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check whether the access through \p Ptr has a constant stride.
|
|
int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
|
|
const ValueToValueMap &StridesMap) {
|
|
const Type *Ty = Ptr->getType();
|
|
assert(Ty->isPointerTy() && "Unexpected non-ptr");
|
|
|
|
// Make sure that the pointer does not point to aggregate types.
|
|
const PointerType *PtrTy = cast<PointerType>(Ty);
|
|
if (PtrTy->getElementType()->isAggregateType()) {
|
|
DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
|
|
<< *Ptr << "\n");
|
|
return 0;
|
|
}
|
|
|
|
const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
|
|
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
|
|
if (!AR) {
|
|
DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
|
|
<< *Ptr << " SCEV: " << *PtrScev << "\n");
|
|
return 0;
|
|
}
|
|
|
|
// The accesss function must stride over the innermost loop.
|
|
if (Lp != AR->getLoop()) {
|
|
DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
|
|
*Ptr << " SCEV: " << *PtrScev << "\n");
|
|
}
|
|
|
|
// The address calculation must not wrap. Otherwise, a dependence could be
|
|
// inverted.
|
|
// An inbounds getelementptr that is a AddRec with a unit stride
|
|
// cannot wrap per definition. The unit stride requirement is checked later.
|
|
// An getelementptr without an inbounds attribute and unit stride would have
|
|
// to access the pointer value "0" which is undefined behavior in address
|
|
// space 0, therefore we can also vectorize this case.
|
|
bool IsInBoundsGEP = isInBoundsGep(Ptr);
|
|
bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
|
|
bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
|
|
if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
|
|
DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
|
|
<< *Ptr << " SCEV: " << *PtrScev << "\n");
|
|
return 0;
|
|
}
|
|
|
|
// Check the step is constant.
|
|
const SCEV *Step = AR->getStepRecurrence(*SE);
|
|
|
|
// Calculate the pointer stride and check if it is consecutive.
|
|
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
|
|
if (!C) {
|
|
DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
|
|
" SCEV: " << *PtrScev << "\n");
|
|
return 0;
|
|
}
|
|
|
|
auto &DL = Lp->getHeader()->getModule()->getDataLayout();
|
|
int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
|
|
const APInt &APStepVal = C->getValue()->getValue();
|
|
|
|
// Huge step value - give up.
|
|
if (APStepVal.getBitWidth() > 64)
|
|
return 0;
|
|
|
|
int64_t StepVal = APStepVal.getSExtValue();
|
|
|
|
// Strided access.
|
|
int64_t Stride = StepVal / Size;
|
|
int64_t Rem = StepVal % Size;
|
|
if (Rem)
|
|
return 0;
|
|
|
|
// If the SCEV could wrap but we have an inbounds gep with a unit stride we
|
|
// know we can't "wrap around the address space". In case of address space
|
|
// zero we know that this won't happen without triggering undefined behavior.
|
|
if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
|
|
Stride != 1 && Stride != -1)
|
|
return 0;
|
|
|
|
return Stride;
|
|
}
|
|
|
|
bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
|
|
switch (Type) {
|
|
case NoDep:
|
|
case Forward:
|
|
case BackwardVectorizable:
|
|
return true;
|
|
|
|
case Unknown:
|
|
case ForwardButPreventsForwarding:
|
|
case Backward:
|
|
case BackwardVectorizableButPreventsForwarding:
|
|
return false;
|
|
}
|
|
llvm_unreachable("unexpected DepType!");
|
|
}
|
|
|
|
bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
|
|
switch (Type) {
|
|
case NoDep:
|
|
case Forward:
|
|
return false;
|
|
|
|
case BackwardVectorizable:
|
|
case Unknown:
|
|
case ForwardButPreventsForwarding:
|
|
case Backward:
|
|
case BackwardVectorizableButPreventsForwarding:
|
|
return true;
|
|
}
|
|
llvm_unreachable("unexpected DepType!");
|
|
}
|
|
|
|
bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
|
|
switch (Type) {
|
|
case NoDep:
|
|
case Forward:
|
|
case ForwardButPreventsForwarding:
|
|
return false;
|
|
|
|
case Unknown:
|
|
case BackwardVectorizable:
|
|
case Backward:
|
|
case BackwardVectorizableButPreventsForwarding:
|
|
return true;
|
|
}
|
|
llvm_unreachable("unexpected DepType!");
|
|
}
|
|
|
|
bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
|
|
unsigned TypeByteSize) {
|
|
// If loads occur at a distance that is not a multiple of a feasible vector
|
|
// factor store-load forwarding does not take place.
|
|
// Positive dependences might cause troubles because vectorizing them might
|
|
// prevent store-load forwarding making vectorized code run a lot slower.
|
|
// a[i] = a[i-3] ^ a[i-8];
|
|
// The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
|
|
// hence on your typical architecture store-load forwarding does not take
|
|
// place. Vectorizing in such cases does not make sense.
|
|
// Store-load forwarding distance.
|
|
const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
|
|
// Maximum vector factor.
|
|
unsigned MaxVFWithoutSLForwardIssues =
|
|
VectorizerParams::MaxVectorWidth * TypeByteSize;
|
|
if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
|
|
MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
|
|
|
|
for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
|
|
vf *= 2) {
|
|
if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
|
|
MaxVFWithoutSLForwardIssues = (vf >>=1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
|
|
DEBUG(dbgs() << "LAA: Distance " << Distance <<
|
|
" that could cause a store-load forwarding conflict\n");
|
|
return true;
|
|
}
|
|
|
|
if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
|
|
MaxVFWithoutSLForwardIssues !=
|
|
VectorizerParams::MaxVectorWidth * TypeByteSize)
|
|
MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check the dependence for two accesses with the same stride \p Stride.
|
|
/// \p Distance is the positive distance and \p TypeByteSize is type size in
|
|
/// bytes.
|
|
///
|
|
/// \returns true if they are independent.
|
|
static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
|
|
unsigned TypeByteSize) {
|
|
assert(Stride > 1 && "The stride must be greater than 1");
|
|
assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
|
|
assert(Distance > 0 && "The distance must be non-zero");
|
|
|
|
// Skip if the distance is not multiple of type byte size.
|
|
if (Distance % TypeByteSize)
|
|
return false;
|
|
|
|
unsigned ScaledDist = Distance / TypeByteSize;
|
|
|
|
// No dependence if the scaled distance is not multiple of the stride.
|
|
// E.g.
|
|
// for (i = 0; i < 1024 ; i += 4)
|
|
// A[i+2] = A[i] + 1;
|
|
//
|
|
// Two accesses in memory (scaled distance is 2, stride is 4):
|
|
// | A[0] | | | | A[4] | | | |
|
|
// | | | A[2] | | | | A[6] | |
|
|
//
|
|
// E.g.
|
|
// for (i = 0; i < 1024 ; i += 3)
|
|
// A[i+4] = A[i] + 1;
|
|
//
|
|
// Two accesses in memory (scaled distance is 4, stride is 3):
|
|
// | A[0] | | | A[3] | | | A[6] | | |
|
|
// | | | | | A[4] | | | A[7] | |
|
|
return ScaledDist % Stride;
|
|
}
|
|
|
|
MemoryDepChecker::Dependence::DepType
|
|
MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
|
|
const MemAccessInfo &B, unsigned BIdx,
|
|
const ValueToValueMap &Strides) {
|
|
assert (AIdx < BIdx && "Must pass arguments in program order");
|
|
|
|
Value *APtr = A.getPointer();
|
|
Value *BPtr = B.getPointer();
|
|
bool AIsWrite = A.getInt();
|
|
bool BIsWrite = B.getInt();
|
|
|
|
// Two reads are independent.
|
|
if (!AIsWrite && !BIsWrite)
|
|
return Dependence::NoDep;
|
|
|
|
// We cannot check pointers in different address spaces.
|
|
if (APtr->getType()->getPointerAddressSpace() !=
|
|
BPtr->getType()->getPointerAddressSpace())
|
|
return Dependence::Unknown;
|
|
|
|
const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
|
|
const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
|
|
|
|
int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides);
|
|
int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides);
|
|
|
|
const SCEV *Src = AScev;
|
|
const SCEV *Sink = BScev;
|
|
|
|
// If the induction step is negative we have to invert source and sink of the
|
|
// dependence.
|
|
if (StrideAPtr < 0) {
|
|
//Src = BScev;
|
|
//Sink = AScev;
|
|
std::swap(APtr, BPtr);
|
|
std::swap(Src, Sink);
|
|
std::swap(AIsWrite, BIsWrite);
|
|
std::swap(AIdx, BIdx);
|
|
std::swap(StrideAPtr, StrideBPtr);
|
|
}
|
|
|
|
const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
|
|
|
|
DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
|
|
<< "(Induction step: " << StrideAPtr << ")\n");
|
|
DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
|
|
<< *InstMap[BIdx] << ": " << *Dist << "\n");
|
|
|
|
// Need consecutive accesses. We don't want to vectorize
|
|
// "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
|
|
// the address space.
|
|
if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
|
|
DEBUG(dbgs() << "Non-consecutive pointer access\n");
|
|
return Dependence::Unknown;
|
|
}
|
|
|
|
const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
|
|
if (!C) {
|
|
DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
|
|
ShouldRetryWithRuntimeCheck = true;
|
|
return Dependence::Unknown;
|
|
}
|
|
|
|
Type *ATy = APtr->getType()->getPointerElementType();
|
|
Type *BTy = BPtr->getType()->getPointerElementType();
|
|
auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
|
|
unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
|
|
|
|
// Negative distances are not plausible dependencies.
|
|
const APInt &Val = C->getValue()->getValue();
|
|
if (Val.isNegative()) {
|
|
bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
|
|
if (IsTrueDataDependence &&
|
|
(couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
|
|
ATy != BTy))
|
|
return Dependence::ForwardButPreventsForwarding;
|
|
|
|
DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
|
|
return Dependence::Forward;
|
|
}
|
|
|
|
// Write to the same location with the same size.
|
|
// Could be improved to assert type sizes are the same (i32 == float, etc).
|
|
if (Val == 0) {
|
|
if (ATy == BTy)
|
|
return Dependence::NoDep;
|
|
DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
|
|
return Dependence::Unknown;
|
|
}
|
|
|
|
assert(Val.isStrictlyPositive() && "Expect a positive value");
|
|
|
|
if (ATy != BTy) {
|
|
DEBUG(dbgs() <<
|
|
"LAA: ReadWrite-Write positive dependency with different types\n");
|
|
return Dependence::Unknown;
|
|
}
|
|
|
|
unsigned Distance = (unsigned) Val.getZExtValue();
|
|
|
|
unsigned Stride = std::abs(StrideAPtr);
|
|
if (Stride > 1 &&
|
|
areStridedAccessesIndependent(Distance, Stride, TypeByteSize))
|
|
return Dependence::NoDep;
|
|
|
|
// Bail out early if passed-in parameters make vectorization not feasible.
|
|
unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
|
|
VectorizerParams::VectorizationFactor : 1);
|
|
unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
|
|
VectorizerParams::VectorizationInterleave : 1);
|
|
// The minimum number of iterations for a vectorized/unrolled version.
|
|
unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
|
|
|
|
// It's not vectorizable if the distance is smaller than the minimum distance
|
|
// needed for a vectroized/unrolled version. Vectorizing one iteration in
|
|
// front needs TypeByteSize * Stride. Vectorizing the last iteration needs
|
|
// TypeByteSize (No need to plus the last gap distance).
|
|
//
|
|
// E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
|
|
// foo(int *A) {
|
|
// int *B = (int *)((char *)A + 14);
|
|
// for (i = 0 ; i < 1024 ; i += 2)
|
|
// B[i] = A[i] + 1;
|
|
// }
|
|
//
|
|
// Two accesses in memory (stride is 2):
|
|
// | A[0] | | A[2] | | A[4] | | A[6] | |
|
|
// | B[0] | | B[2] | | B[4] |
|
|
//
|
|
// Distance needs for vectorizing iterations except the last iteration:
|
|
// 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
|
|
// So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
|
|
//
|
|
// If MinNumIter is 2, it is vectorizable as the minimum distance needed is
|
|
// 12, which is less than distance.
|
|
//
|
|
// If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
|
|
// the minimum distance needed is 28, which is greater than distance. It is
|
|
// not safe to do vectorization.
|
|
unsigned MinDistanceNeeded =
|
|
TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
|
|
if (MinDistanceNeeded > Distance) {
|
|
DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
|
|
<< '\n');
|
|
return Dependence::Backward;
|
|
}
|
|
|
|
// Unsafe if the minimum distance needed is greater than max safe distance.
|
|
if (MinDistanceNeeded > MaxSafeDepDistBytes) {
|
|
DEBUG(dbgs() << "LAA: Failure because it needs at least "
|
|
<< MinDistanceNeeded << " size in bytes");
|
|
return Dependence::Backward;
|
|
}
|
|
|
|
// Positive distance bigger than max vectorization factor.
|
|
// FIXME: Should use max factor instead of max distance in bytes, which could
|
|
// not handle different types.
|
|
// E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
|
|
// void foo (int *A, char *B) {
|
|
// for (unsigned i = 0; i < 1024; i++) {
|
|
// A[i+2] = A[i] + 1;
|
|
// B[i+2] = B[i] + 1;
|
|
// }
|
|
// }
|
|
//
|
|
// This case is currently unsafe according to the max safe distance. If we
|
|
// analyze the two accesses on array B, the max safe dependence distance
|
|
// is 2. Then we analyze the accesses on array A, the minimum distance needed
|
|
// is 8, which is less than 2 and forbidden vectorization, But actually
|
|
// both A and B could be vectorized by 2 iterations.
|
|
MaxSafeDepDistBytes =
|
|
Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
|
|
|
|
bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
|
|
if (IsTrueDataDependence &&
|
|
couldPreventStoreLoadForward(Distance, TypeByteSize))
|
|
return Dependence::BackwardVectorizableButPreventsForwarding;
|
|
|
|
DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
|
|
<< " with max VF = "
|
|
<< MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
|
|
|
|
return Dependence::BackwardVectorizable;
|
|
}
|
|
|
|
bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
|
|
MemAccessInfoSet &CheckDeps,
|
|
const ValueToValueMap &Strides) {
|
|
|
|
MaxSafeDepDistBytes = -1U;
|
|
while (!CheckDeps.empty()) {
|
|
MemAccessInfo CurAccess = *CheckDeps.begin();
|
|
|
|
// Get the relevant memory access set.
|
|
EquivalenceClasses<MemAccessInfo>::iterator I =
|
|
AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
|
|
|
|
// Check accesses within this set.
|
|
EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
|
|
AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
|
|
|
|
// Check every access pair.
|
|
while (AI != AE) {
|
|
CheckDeps.erase(*AI);
|
|
EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
|
|
while (OI != AE) {
|
|
// Check every accessing instruction pair in program order.
|
|
for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
|
|
I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
|
|
for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
|
|
I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
|
|
auto A = std::make_pair(&*AI, *I1);
|
|
auto B = std::make_pair(&*OI, *I2);
|
|
|
|
assert(*I1 != *I2);
|
|
if (*I1 > *I2)
|
|
std::swap(A, B);
|
|
|
|
Dependence::DepType Type =
|
|
isDependent(*A.first, A.second, *B.first, B.second, Strides);
|
|
SafeForVectorization &= Dependence::isSafeForVectorization(Type);
|
|
|
|
// Gather dependences unless we accumulated MaxInterestingDependence
|
|
// dependences. In that case return as soon as we find the first
|
|
// unsafe dependence. This puts a limit on this quadratic
|
|
// algorithm.
|
|
if (RecordInterestingDependences) {
|
|
if (Dependence::isInterestingDependence(Type))
|
|
InterestingDependences.push_back(
|
|
Dependence(A.second, B.second, Type));
|
|
|
|
if (InterestingDependences.size() >= MaxInterestingDependence) {
|
|
RecordInterestingDependences = false;
|
|
InterestingDependences.clear();
|
|
DEBUG(dbgs() << "Too many dependences, stopped recording\n");
|
|
}
|
|
}
|
|
if (!RecordInterestingDependences && !SafeForVectorization)
|
|
return false;
|
|
}
|
|
++OI;
|
|
}
|
|
AI++;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "Total Interesting Dependences: "
|
|
<< InterestingDependences.size() << "\n");
|
|
return SafeForVectorization;
|
|
}
|
|
|
|
SmallVector<Instruction *, 4>
|
|
MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
|
|
MemAccessInfo Access(Ptr, isWrite);
|
|
auto &IndexVector = Accesses.find(Access)->second;
|
|
|
|
SmallVector<Instruction *, 4> Insts;
|
|
std::transform(IndexVector.begin(), IndexVector.end(),
|
|
std::back_inserter(Insts),
|
|
[&](unsigned Idx) { return this->InstMap[Idx]; });
|
|
return Insts;
|
|
}
|
|
|
|
const char *MemoryDepChecker::Dependence::DepName[] = {
|
|
"NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
|
|
"BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
|
|
|
|
void MemoryDepChecker::Dependence::print(
|
|
raw_ostream &OS, unsigned Depth,
|
|
const SmallVectorImpl<Instruction *> &Instrs) const {
|
|
OS.indent(Depth) << DepName[Type] << ":\n";
|
|
OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
|
|
OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
|
|
}
|
|
|
|
bool LoopAccessInfo::canAnalyzeLoop() {
|
|
// We need to have a loop header.
|
|
DEBUG(dbgs() << "LAA: Found a loop: " <<
|
|
TheLoop->getHeader()->getName() << '\n');
|
|
|
|
// We can only analyze innermost loops.
|
|
if (!TheLoop->empty()) {
|
|
DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
|
|
emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
|
|
return false;
|
|
}
|
|
|
|
// We must have a single backedge.
|
|
if (TheLoop->getNumBackEdges() != 1) {
|
|
DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
|
|
emitAnalysis(
|
|
LoopAccessReport() <<
|
|
"loop control flow is not understood by analyzer");
|
|
return false;
|
|
}
|
|
|
|
// We must have a single exiting block.
|
|
if (!TheLoop->getExitingBlock()) {
|
|
DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
|
|
emitAnalysis(
|
|
LoopAccessReport() <<
|
|
"loop control flow is not understood by analyzer");
|
|
return false;
|
|
}
|
|
|
|
// We only handle bottom-tested loops, i.e. loop in which the condition is
|
|
// checked at the end of each iteration. With that we can assume that all
|
|
// instructions in the loop are executed the same number of times.
|
|
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
|
|
DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
|
|
emitAnalysis(
|
|
LoopAccessReport() <<
|
|
"loop control flow is not understood by analyzer");
|
|
return false;
|
|
}
|
|
|
|
// ScalarEvolution needs to be able to find the exit count.
|
|
const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
|
|
if (ExitCount == SE->getCouldNotCompute()) {
|
|
emitAnalysis(LoopAccessReport() <<
|
|
"could not determine number of loop iterations");
|
|
DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
|
|
|
|
typedef SmallVector<Value*, 16> ValueVector;
|
|
typedef SmallPtrSet<Value*, 16> ValueSet;
|
|
|
|
// Holds the Load and Store *instructions*.
|
|
ValueVector Loads;
|
|
ValueVector Stores;
|
|
|
|
// Holds all the different accesses in the loop.
|
|
unsigned NumReads = 0;
|
|
unsigned NumReadWrites = 0;
|
|
|
|
PtrRtCheck.Pointers.clear();
|
|
PtrRtCheck.Need = false;
|
|
|
|
const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
|
|
|
|
// For each block.
|
|
for (Loop::block_iterator bb = TheLoop->block_begin(),
|
|
be = TheLoop->block_end(); bb != be; ++bb) {
|
|
|
|
// Scan the BB and collect legal loads and stores.
|
|
for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
|
|
++it) {
|
|
|
|
// If this is a load, save it. If this instruction can read from memory
|
|
// but is not a load, then we quit. Notice that we don't handle function
|
|
// calls that read or write.
|
|
if (it->mayReadFromMemory()) {
|
|
// Many math library functions read the rounding mode. We will only
|
|
// vectorize a loop if it contains known function calls that don't set
|
|
// the flag. Therefore, it is safe to ignore this read from memory.
|
|
CallInst *Call = dyn_cast<CallInst>(it);
|
|
if (Call && getIntrinsicIDForCall(Call, TLI))
|
|
continue;
|
|
|
|
// If the function has an explicit vectorized counterpart, we can safely
|
|
// assume that it can be vectorized.
|
|
if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
|
|
TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
|
|
continue;
|
|
|
|
LoadInst *Ld = dyn_cast<LoadInst>(it);
|
|
if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
|
|
emitAnalysis(LoopAccessReport(Ld)
|
|
<< "read with atomic ordering or volatile read");
|
|
DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
|
|
CanVecMem = false;
|
|
return;
|
|
}
|
|
NumLoads++;
|
|
Loads.push_back(Ld);
|
|
DepChecker.addAccess(Ld);
|
|
continue;
|
|
}
|
|
|
|
// Save 'store' instructions. Abort if other instructions write to memory.
|
|
if (it->mayWriteToMemory()) {
|
|
StoreInst *St = dyn_cast<StoreInst>(it);
|
|
if (!St) {
|
|
emitAnalysis(LoopAccessReport(it) <<
|
|
"instruction cannot be vectorized");
|
|
CanVecMem = false;
|
|
return;
|
|
}
|
|
if (!St->isSimple() && !IsAnnotatedParallel) {
|
|
emitAnalysis(LoopAccessReport(St)
|
|
<< "write with atomic ordering or volatile write");
|
|
DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
|
|
CanVecMem = false;
|
|
return;
|
|
}
|
|
NumStores++;
|
|
Stores.push_back(St);
|
|
DepChecker.addAccess(St);
|
|
}
|
|
} // Next instr.
|
|
} // Next block.
|
|
|
|
// Now we have two lists that hold the loads and the stores.
|
|
// Next, we find the pointers that they use.
|
|
|
|
// Check if we see any stores. If there are no stores, then we don't
|
|
// care if the pointers are *restrict*.
|
|
if (!Stores.size()) {
|
|
DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
|
|
CanVecMem = true;
|
|
return;
|
|
}
|
|
|
|
MemoryDepChecker::DepCandidates DependentAccesses;
|
|
AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
|
|
AA, LI, DependentAccesses);
|
|
|
|
// Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
|
|
// multiple times on the same object. If the ptr is accessed twice, once
|
|
// for read and once for write, it will only appear once (on the write
|
|
// list). This is okay, since we are going to check for conflicts between
|
|
// writes and between reads and writes, but not between reads and reads.
|
|
ValueSet Seen;
|
|
|
|
ValueVector::iterator I, IE;
|
|
for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
|
|
StoreInst *ST = cast<StoreInst>(*I);
|
|
Value* Ptr = ST->getPointerOperand();
|
|
// Check for store to loop invariant address.
|
|
StoreToLoopInvariantAddress |= isUniform(Ptr);
|
|
// If we did *not* see this pointer before, insert it to the read-write
|
|
// list. At this phase it is only a 'write' list.
|
|
if (Seen.insert(Ptr).second) {
|
|
++NumReadWrites;
|
|
|
|
MemoryLocation Loc = MemoryLocation::get(ST);
|
|
// The TBAA metadata could have a control dependency on the predication
|
|
// condition, so we cannot rely on it when determining whether or not we
|
|
// need runtime pointer checks.
|
|
if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
|
|
Loc.AATags.TBAA = nullptr;
|
|
|
|
Accesses.addStore(Loc);
|
|
}
|
|
}
|
|
|
|
if (IsAnnotatedParallel) {
|
|
DEBUG(dbgs()
|
|
<< "LAA: A loop annotated parallel, ignore memory dependency "
|
|
<< "checks.\n");
|
|
CanVecMem = true;
|
|
return;
|
|
}
|
|
|
|
for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
|
|
LoadInst *LD = cast<LoadInst>(*I);
|
|
Value* Ptr = LD->getPointerOperand();
|
|
// If we did *not* see this pointer before, insert it to the
|
|
// read list. If we *did* see it before, then it is already in
|
|
// the read-write list. This allows us to vectorize expressions
|
|
// such as A[i] += x; Because the address of A[i] is a read-write
|
|
// pointer. This only works if the index of A[i] is consecutive.
|
|
// If the address of i is unknown (for example A[B[i]]) then we may
|
|
// read a few words, modify, and write a few words, and some of the
|
|
// words may be written to the same address.
|
|
bool IsReadOnlyPtr = false;
|
|
if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) {
|
|
++NumReads;
|
|
IsReadOnlyPtr = true;
|
|
}
|
|
|
|
MemoryLocation Loc = MemoryLocation::get(LD);
|
|
// The TBAA metadata could have a control dependency on the predication
|
|
// condition, so we cannot rely on it when determining whether or not we
|
|
// need runtime pointer checks.
|
|
if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
|
|
Loc.AATags.TBAA = nullptr;
|
|
|
|
Accesses.addLoad(Loc, IsReadOnlyPtr);
|
|
}
|
|
|
|
// If we write (or read-write) to a single destination and there are no
|
|
// other reads in this loop then is it safe to vectorize.
|
|
if (NumReadWrites == 1 && NumReads == 0) {
|
|
DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
|
|
CanVecMem = true;
|
|
return;
|
|
}
|
|
|
|
// Build dependence sets and check whether we need a runtime pointer bounds
|
|
// check.
|
|
Accesses.buildDependenceSets();
|
|
|
|
// Find pointers with computable bounds. We are going to use this information
|
|
// to place a runtime bound check.
|
|
bool NeedRTCheck;
|
|
bool CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck,
|
|
NeedRTCheck, SE,
|
|
TheLoop, Strides);
|
|
|
|
DEBUG(dbgs() << "LAA: We need to do "
|
|
<< PtrRtCheck.getNumberOfChecks(nullptr)
|
|
<< " pointer comparisons.\n");
|
|
|
|
// Check that we found the bounds for the pointer.
|
|
if (CanDoRT)
|
|
DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
|
|
else if (NeedRTCheck) {
|
|
emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
|
|
DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " <<
|
|
"the array bounds.\n");
|
|
PtrRtCheck.reset();
|
|
CanVecMem = false;
|
|
return;
|
|
}
|
|
|
|
PtrRtCheck.Need = NeedRTCheck;
|
|
|
|
CanVecMem = true;
|
|
if (Accesses.isDependencyCheckNeeded()) {
|
|
DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
|
|
CanVecMem = DepChecker.areDepsSafe(
|
|
DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
|
|
MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
|
|
|
|
if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
|
|
DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
|
|
NeedRTCheck = true;
|
|
|
|
// Clear the dependency checks. We assume they are not needed.
|
|
Accesses.resetDepChecks(DepChecker);
|
|
|
|
PtrRtCheck.reset();
|
|
PtrRtCheck.Need = true;
|
|
|
|
CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NeedRTCheck, SE,
|
|
TheLoop, Strides, true);
|
|
|
|
// Check that we found the bounds for the pointer.
|
|
if (NeedRTCheck && !CanDoRT) {
|
|
emitAnalysis(LoopAccessReport()
|
|
<< "cannot check memory dependencies at runtime");
|
|
DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
|
|
PtrRtCheck.reset();
|
|
CanVecMem = false;
|
|
return;
|
|
}
|
|
|
|
CanVecMem = true;
|
|
}
|
|
}
|
|
|
|
if (CanVecMem)
|
|
DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
|
|
<< (NeedRTCheck ? "" : " don't")
|
|
<< " need a runtime memory check.\n");
|
|
else {
|
|
emitAnalysis(LoopAccessReport() <<
|
|
"unsafe dependent memory operations in loop");
|
|
DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
|
|
}
|
|
}
|
|
|
|
bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
|
|
DominatorTree *DT) {
|
|
assert(TheLoop->contains(BB) && "Unknown block used");
|
|
|
|
// Blocks that do not dominate the latch need predication.
|
|
BasicBlock* Latch = TheLoop->getLoopLatch();
|
|
return !DT->dominates(BB, Latch);
|
|
}
|
|
|
|
void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
|
|
assert(!Report && "Multiple reports generated");
|
|
Report = Message;
|
|
}
|
|
|
|
bool LoopAccessInfo::isUniform(Value *V) const {
|
|
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
|
|
}
|
|
|
|
// FIXME: this function is currently a duplicate of the one in
|
|
// LoopVectorize.cpp.
|
|
static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
|
|
Instruction *Loc) {
|
|
if (FirstInst)
|
|
return FirstInst;
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
return I->getParent() == Loc->getParent() ? I : nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck(
|
|
Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const {
|
|
if (!PtrRtCheck.Need)
|
|
return std::make_pair(nullptr, nullptr);
|
|
|
|
unsigned NumPointers = PtrRtCheck.Pointers.size();
|
|
SmallVector<TrackingVH<Value> , 2> Starts;
|
|
SmallVector<TrackingVH<Value> , 2> Ends;
|
|
|
|
LLVMContext &Ctx = Loc->getContext();
|
|
SCEVExpander Exp(*SE, DL, "induction");
|
|
Instruction *FirstInst = nullptr;
|
|
|
|
for (unsigned i = 0; i < NumPointers; ++i) {
|
|
Value *Ptr = PtrRtCheck.Pointers[i];
|
|
const SCEV *Sc = SE->getSCEV(Ptr);
|
|
|
|
if (SE->isLoopInvariant(Sc, TheLoop)) {
|
|
DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" <<
|
|
*Ptr <<"\n");
|
|
Starts.push_back(Ptr);
|
|
Ends.push_back(Ptr);
|
|
} else {
|
|
DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n');
|
|
unsigned AS = Ptr->getType()->getPointerAddressSpace();
|
|
|
|
// Use this type for pointer arithmetic.
|
|
Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
|
|
|
|
Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc);
|
|
Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc);
|
|
Starts.push_back(Start);
|
|
Ends.push_back(End);
|
|
}
|
|
}
|
|
|
|
IRBuilder<> ChkBuilder(Loc);
|
|
// Our instructions might fold to a constant.
|
|
Value *MemoryRuntimeCheck = nullptr;
|
|
for (unsigned i = 0; i < NumPointers; ++i) {
|
|
for (unsigned j = i+1; j < NumPointers; ++j) {
|
|
if (!PtrRtCheck.needsChecking(i, j, PtrPartition))
|
|
continue;
|
|
|
|
unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
|
|
unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
|
|
|
|
assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
|
|
(AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
|
|
"Trying to bounds check pointers with different address spaces");
|
|
|
|
Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
|
|
Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
|
|
|
|
Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
|
|
Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
|
|
Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
|
|
Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
|
|
|
|
Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
|
|
FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
|
|
Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
|
|
FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
|
|
Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
|
|
FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
|
|
if (MemoryRuntimeCheck) {
|
|
IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
|
|
"conflict.rdx");
|
|
FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
|
|
}
|
|
MemoryRuntimeCheck = IsConflict;
|
|
}
|
|
}
|
|
|
|
if (!MemoryRuntimeCheck)
|
|
return std::make_pair(nullptr, nullptr);
|
|
|
|
// We have to do this trickery because the IRBuilder might fold the check to a
|
|
// constant expression in which case there is no Instruction anchored in a
|
|
// the block.
|
|
Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
|
|
ConstantInt::getTrue(Ctx));
|
|
ChkBuilder.Insert(Check, "memcheck.conflict");
|
|
FirstInst = getFirstInst(FirstInst, Check, Loc);
|
|
return std::make_pair(FirstInst, Check);
|
|
}
|
|
|
|
LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI, AliasAnalysis *AA,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
const ValueToValueMap &Strides)
|
|
: DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL),
|
|
TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
|
|
MaxSafeDepDistBytes(-1U), CanVecMem(false),
|
|
StoreToLoopInvariantAddress(false) {
|
|
if (canAnalyzeLoop())
|
|
analyzeLoop(Strides);
|
|
}
|
|
|
|
void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
|
|
if (CanVecMem) {
|
|
if (PtrRtCheck.Need)
|
|
OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
|
|
else
|
|
OS.indent(Depth) << "Memory dependences are safe\n";
|
|
}
|
|
|
|
if (Report)
|
|
OS.indent(Depth) << "Report: " << Report->str() << "\n";
|
|
|
|
if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
|
|
OS.indent(Depth) << "Interesting Dependences:\n";
|
|
for (auto &Dep : *InterestingDependences) {
|
|
Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
|
|
OS << "\n";
|
|
}
|
|
} else
|
|
OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
|
|
|
|
// List the pair of accesses need run-time checks to prove independence.
|
|
PtrRtCheck.print(OS, Depth);
|
|
OS << "\n";
|
|
|
|
OS.indent(Depth) << "Store to invariant address was "
|
|
<< (StoreToLoopInvariantAddress ? "" : "not ")
|
|
<< "found in loop.\n";
|
|
}
|
|
|
|
const LoopAccessInfo &
|
|
LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
|
|
auto &LAI = LoopAccessInfoMap[L];
|
|
|
|
#ifndef NDEBUG
|
|
assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
|
|
"Symbolic strides changed for loop");
|
|
#endif
|
|
|
|
if (!LAI) {
|
|
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
|
|
LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI,
|
|
Strides);
|
|
#ifndef NDEBUG
|
|
LAI->NumSymbolicStrides = Strides.size();
|
|
#endif
|
|
}
|
|
return *LAI.get();
|
|
}
|
|
|
|
void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
|
|
LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
|
|
|
|
ValueToValueMap NoSymbolicStrides;
|
|
|
|
for (Loop *TopLevelLoop : *LI)
|
|
for (Loop *L : depth_first(TopLevelLoop)) {
|
|
OS.indent(2) << L->getHeader()->getName() << ":\n";
|
|
auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
|
|
LAI.print(OS, 4);
|
|
}
|
|
}
|
|
|
|
bool LoopAccessAnalysis::runOnFunction(Function &F) {
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
|
|
TLI = TLIP ? &TLIP->getTLI() : nullptr;
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
|
|
return false;
|
|
}
|
|
|
|
void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
char LoopAccessAnalysis::ID = 0;
|
|
static const char laa_name[] = "Loop Access Analysis";
|
|
#define LAA_NAME "loop-accesses"
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
|
|
|
|
namespace llvm {
|
|
Pass *createLAAPass() {
|
|
return new LoopAccessAnalysis();
|
|
}
|
|
}
|