mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
efab5a1dfa
This change implements support for lowering of the gc.relocates tied to the invoke statepoint. This is acomplished by storing frame indices of the lowered values in "StatepointRelocatedValues" map inside FunctionLoweringInfo instead of storing them in per-basic block structure StatepointLowering. After this change StatepointLowering is used only during "LowerStatepoint" call and it is not necessary to store it as a field in SelectionDAGBuilder anymore. Differential Revision: http://reviews.llvm.org/D7798 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237786 91177308-0d34-0410-b5e6-96231b3b80d8
843 lines
34 KiB
C++
843 lines
34 KiB
C++
//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file includes support code use by SelectionDAGBuilder when lowering a
|
|
// statepoint sequence in SelectionDAG IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "StatepointLowering.h"
|
|
#include "SelectionDAGBuilder.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/GCMetadata.h"
|
|
#include "llvm/CodeGen/GCStrategy.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "statepoint-lowering"
|
|
|
|
STATISTIC(NumSlotsAllocatedForStatepoints,
|
|
"Number of stack slots allocated for statepoints");
|
|
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
|
|
STATISTIC(StatepointMaxSlotsRequired,
|
|
"Maximum number of stack slots required for a singe statepoint");
|
|
|
|
static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
|
|
SelectionDAGBuilder &Builder, uint64_t Value) {
|
|
SDLoc L = Builder.getCurSDLoc();
|
|
Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
|
|
MVT::i64));
|
|
Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
|
|
}
|
|
|
|
void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
|
|
// Consistency check
|
|
assert(PendingGCRelocateCalls.empty() &&
|
|
"Trying to visit statepoint before finished processing previous one");
|
|
Locations.clear();
|
|
NextSlotToAllocate = 0;
|
|
// Need to resize this on each safepoint - we need the two to stay in
|
|
// sync and the clear patterns of a SelectionDAGBuilder have no relation
|
|
// to FunctionLoweringInfo.
|
|
AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
|
|
for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
|
|
AllocatedStackSlots[i] = false;
|
|
}
|
|
}
|
|
|
|
void StatepointLoweringState::clear() {
|
|
Locations.clear();
|
|
AllocatedStackSlots.clear();
|
|
assert(PendingGCRelocateCalls.empty() &&
|
|
"cleared before statepoint sequence completed");
|
|
}
|
|
|
|
SDValue
|
|
StatepointLoweringState::allocateStackSlot(EVT ValueType,
|
|
SelectionDAGBuilder &Builder) {
|
|
|
|
NumSlotsAllocatedForStatepoints++;
|
|
|
|
// The basic scheme here is to first look for a previously created stack slot
|
|
// which is not in use (accounting for the fact arbitrary slots may already
|
|
// be reserved), or to create a new stack slot and use it.
|
|
|
|
// If this doesn't succeed in 40000 iterations, something is seriously wrong
|
|
for (int i = 0; i < 40000; i++) {
|
|
assert(Builder.FuncInfo.StatepointStackSlots.size() ==
|
|
AllocatedStackSlots.size() &&
|
|
"broken invariant");
|
|
const size_t NumSlots = AllocatedStackSlots.size();
|
|
assert(NextSlotToAllocate <= NumSlots && "broken invariant");
|
|
|
|
if (NextSlotToAllocate >= NumSlots) {
|
|
assert(NextSlotToAllocate == NumSlots);
|
|
// record stats
|
|
if (NumSlots + 1 > StatepointMaxSlotsRequired) {
|
|
StatepointMaxSlotsRequired = NumSlots + 1;
|
|
}
|
|
|
|
SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
|
|
const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
Builder.FuncInfo.StatepointStackSlots.push_back(FI);
|
|
AllocatedStackSlots.push_back(true);
|
|
return SpillSlot;
|
|
}
|
|
if (!AllocatedStackSlots[NextSlotToAllocate]) {
|
|
const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
|
|
AllocatedStackSlots[NextSlotToAllocate] = true;
|
|
return Builder.DAG.getFrameIndex(FI, ValueType);
|
|
}
|
|
// Note: We deliberately choose to advance this only on the failing path.
|
|
// Doing so on the suceeding path involes a bit of complexity that caused a
|
|
// minor bug previously. Unless performance shows this matters, please
|
|
// keep this code as simple as possible.
|
|
NextSlotToAllocate++;
|
|
}
|
|
llvm_unreachable("infinite loop?");
|
|
}
|
|
|
|
/// Try to find existing copies of the incoming values in stack slots used for
|
|
/// statepoint spilling. If we can find a spill slot for the incoming value,
|
|
/// mark that slot as allocated, and reuse the same slot for this safepoint.
|
|
/// This helps to avoid series of loads and stores that only serve to resuffle
|
|
/// values on the stack between calls.
|
|
static void reservePreviousStackSlotForValue(SDValue Incoming,
|
|
SelectionDAGBuilder &Builder) {
|
|
|
|
if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
|
|
// We won't need to spill this, so no need to check for previously
|
|
// allocated stack slots
|
|
return;
|
|
}
|
|
|
|
SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
|
|
if (Loc.getNode()) {
|
|
// duplicates in input
|
|
return;
|
|
}
|
|
|
|
// Search back for the load from a stack slot pattern to find the original
|
|
// slot we allocated for this value. We could extend this to deal with
|
|
// simple modification patterns, but simple dealing with trivial load/store
|
|
// sequences helps a lot already.
|
|
if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) {
|
|
if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) {
|
|
const int Index = FI->getIndex();
|
|
auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
|
|
Builder.FuncInfo.StatepointStackSlots.end(), Index);
|
|
if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) {
|
|
// not one of the lowering stack slots, can't reuse!
|
|
// TODO: Actually, we probably could reuse the stack slot if the value
|
|
// hasn't changed at all, but we'd need to look for intervening writes
|
|
return;
|
|
} else {
|
|
// This is one of our dedicated lowering slots
|
|
const int Offset =
|
|
std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
|
|
if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
|
|
// stack slot already assigned to someone else, can't use it!
|
|
// TODO: currently we reserve space for gc arguments after doing
|
|
// normal allocation for deopt arguments. We should reserve for
|
|
// _all_ deopt and gc arguments, then start allocating. This
|
|
// will prevent some moves being inserted when vm state changes,
|
|
// but gc state doesn't between two calls.
|
|
return;
|
|
}
|
|
// Reserve this stack slot
|
|
Builder.StatepointLowering.reserveStackSlot(Offset);
|
|
}
|
|
|
|
// Cache this slot so we find it when going through the normal
|
|
// assignment loop.
|
|
SDValue Loc =
|
|
Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
|
|
|
|
Builder.StatepointLowering.setLocation(Incoming, Loc);
|
|
}
|
|
}
|
|
|
|
// TODO: handle case where a reloaded value flows through a phi to
|
|
// another safepoint. e.g.
|
|
// bb1:
|
|
// a' = relocated...
|
|
// bb2: % pred: bb1, bb3, bb4, etc.
|
|
// a_phi = phi(a', ...)
|
|
// statepoint ... a_phi
|
|
// NOTE: This will require reasoning about cross basic block values. This is
|
|
// decidedly non trivial and this might not be the right place to do it. We
|
|
// don't really have the information we need here...
|
|
|
|
// TODO: handle simple updates. If a value is modified and the original
|
|
// value is no longer live, it would be nice to put the modified value in the
|
|
// same slot. This allows folding of the memory accesses for some
|
|
// instructions types (like an increment).
|
|
// statepoint (i)
|
|
// i1 = i+1
|
|
// statepoint (i1)
|
|
}
|
|
|
|
/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
|
|
/// is not required for correctness. It's purpose is to reduce the size of
|
|
/// StackMap section. It has no effect on the number of spill slots required
|
|
/// or the actual lowering.
|
|
static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
|
|
SmallVectorImpl<const Value *> &Ptrs,
|
|
SmallVectorImpl<const Value *> &Relocs,
|
|
SelectionDAGBuilder &Builder) {
|
|
|
|
// This is horribly ineffecient, but I don't care right now
|
|
SmallSet<SDValue, 64> Seen;
|
|
|
|
SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
|
|
for (size_t i = 0; i < Ptrs.size(); i++) {
|
|
SDValue SD = Builder.getValue(Ptrs[i]);
|
|
// Only add non-duplicates
|
|
if (Seen.count(SD) == 0) {
|
|
NewBases.push_back(Bases[i]);
|
|
NewPtrs.push_back(Ptrs[i]);
|
|
NewRelocs.push_back(Relocs[i]);
|
|
}
|
|
Seen.insert(SD);
|
|
}
|
|
assert(Bases.size() >= NewBases.size());
|
|
assert(Ptrs.size() >= NewPtrs.size());
|
|
assert(Relocs.size() >= NewRelocs.size());
|
|
Bases = NewBases;
|
|
Ptrs = NewPtrs;
|
|
Relocs = NewRelocs;
|
|
assert(Ptrs.size() == Bases.size());
|
|
assert(Ptrs.size() == Relocs.size());
|
|
}
|
|
|
|
/// Extract call from statepoint, lower it and return pointer to the
|
|
/// call node. Also update NodeMap so that getValue(statepoint) will
|
|
/// reference lowered call result
|
|
static SDNode *
|
|
lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad,
|
|
SelectionDAGBuilder &Builder,
|
|
SmallVectorImpl<SDValue> &PendingExports) {
|
|
|
|
ImmutableCallSite CS(ISP.getCallSite());
|
|
|
|
SDValue ActualCallee = Builder.getValue(ISP.getActualCallee());
|
|
|
|
// Handle immediate and symbolic callees.
|
|
if (auto *ConstCallee = dyn_cast<ConstantSDNode>(ActualCallee.getNode()))
|
|
ActualCallee = Builder.DAG.getIntPtrConstant(ConstCallee->getZExtValue(),
|
|
Builder.getCurSDLoc(),
|
|
/*isTarget=*/true);
|
|
else if (auto *SymbolicCallee =
|
|
dyn_cast<GlobalAddressSDNode>(ActualCallee.getNode()))
|
|
ActualCallee = Builder.DAG.getTargetGlobalAddress(
|
|
SymbolicCallee->getGlobal(), SDLoc(SymbolicCallee),
|
|
SymbolicCallee->getValueType(0));
|
|
|
|
assert(CS.getCallingConv() != CallingConv::AnyReg &&
|
|
"anyregcc is not supported on statepoints!");
|
|
|
|
Type *DefTy = ISP.getActualReturnType();
|
|
bool HasDef = !DefTy->isVoidTy();
|
|
|
|
SDValue ReturnValue, CallEndVal;
|
|
std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands(
|
|
ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos,
|
|
ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad,
|
|
false /* IsPatchPoint */);
|
|
|
|
SDNode *CallEnd = CallEndVal.getNode();
|
|
|
|
// Get a call instruction from the call sequence chain. Tail calls are not
|
|
// allowed. The following code is essentially reverse engineering X86's
|
|
// LowerCallTo.
|
|
//
|
|
// We are expecting DAG to have the following form:
|
|
//
|
|
// ch = eh_label (only in case of invoke statepoint)
|
|
// ch, glue = callseq_start ch
|
|
// ch, glue = X86::Call ch, glue
|
|
// ch, glue = callseq_end ch, glue
|
|
// get_return_value ch, glue
|
|
//
|
|
// get_return_value can either be a CopyFromReg to grab the return value from
|
|
// %RAX, or it can be a LOAD to load a value returned by reference via a stack
|
|
// slot.
|
|
|
|
if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg ||
|
|
CallEnd->getOpcode() == ISD::LOAD))
|
|
CallEnd = CallEnd->getOperand(0).getNode();
|
|
|
|
assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
|
|
|
|
if (HasDef) {
|
|
if (CS.isInvoke()) {
|
|
// Result value will be used in different basic block for invokes
|
|
// so we need to export it now. But statepoint call has a different type
|
|
// than the actuall call. It means that standart exporting mechanism will
|
|
// create register of the wrong type. So instead we need to create
|
|
// register with correct type and save value into it manually.
|
|
// TODO: To eliminate this problem we can remove gc.result intrinsics
|
|
// completelly and make statepoint call to return a tuple.
|
|
unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType());
|
|
RegsForValue RFV(*Builder.DAG.getContext(),
|
|
Builder.DAG.getTargetLoweringInfo(), Reg,
|
|
ISP.getActualReturnType());
|
|
SDValue Chain = Builder.DAG.getEntryNode();
|
|
|
|
RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain,
|
|
nullptr);
|
|
PendingExports.push_back(Chain);
|
|
Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg;
|
|
} else {
|
|
// The value of the statepoint itself will be the value of call itself.
|
|
// We'll replace the actually call node shortly. gc_result will grab
|
|
// this value.
|
|
Builder.setValue(CS.getInstruction(), ReturnValue);
|
|
}
|
|
} else {
|
|
// The token value is never used from here on, just generate a poison value
|
|
Builder.setValue(CS.getInstruction(),
|
|
Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc()));
|
|
}
|
|
|
|
return CallEnd->getOperand(0).getNode();
|
|
}
|
|
|
|
/// Callect all gc pointers coming into statepoint intrinsic, clean them up,
|
|
/// and return two arrays:
|
|
/// Bases - base pointers incoming to this statepoint
|
|
/// Ptrs - derived pointers incoming to this statepoint
|
|
/// Relocs - the gc_relocate corresponding to each base/ptr pair
|
|
/// Elements of this arrays should be in one-to-one correspondence with each
|
|
/// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
|
|
static void getIncomingStatepointGCValues(
|
|
SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs,
|
|
SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite,
|
|
SelectionDAGBuilder &Builder) {
|
|
for (GCRelocateOperands relocateOpers :
|
|
StatepointSite.getRelocates(StatepointSite)) {
|
|
Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
|
|
Bases.push_back(relocateOpers.getBasePtr());
|
|
Ptrs.push_back(relocateOpers.getDerivedPtr());
|
|
}
|
|
|
|
// Remove any redundant llvm::Values which map to the same SDValue as another
|
|
// input. Also has the effect of removing duplicates in the original
|
|
// llvm::Value input list as well. This is a useful optimization for
|
|
// reducing the size of the StackMap section. It has no other impact.
|
|
removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
|
|
|
|
assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
|
|
}
|
|
|
|
/// Spill a value incoming to the statepoint. It might be either part of
|
|
/// vmstate
|
|
/// or gcstate. In both cases unconditionally spill it on the stack unless it
|
|
/// is a null constant. Return pair with first element being frame index
|
|
/// containing saved value and second element with outgoing chain from the
|
|
/// emitted store
|
|
static std::pair<SDValue, SDValue>
|
|
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
|
|
SelectionDAGBuilder &Builder) {
|
|
SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
|
|
|
|
// Emit new store if we didn't do it for this ptr before
|
|
if (!Loc.getNode()) {
|
|
Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
|
|
Builder);
|
|
assert(isa<FrameIndexSDNode>(Loc));
|
|
int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
// We use TargetFrameIndex so that isel will not select it into LEA
|
|
Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
|
|
|
|
// TODO: We can create TokenFactor node instead of
|
|
// chaining stores one after another, this may allow
|
|
// a bit more optimal scheduling for them
|
|
Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
|
|
MachinePointerInfo::getFixedStack(Index),
|
|
false, false, 0);
|
|
|
|
Builder.StatepointLowering.setLocation(Incoming, Loc);
|
|
}
|
|
|
|
assert(Loc.getNode());
|
|
return std::make_pair(Loc, Chain);
|
|
}
|
|
|
|
/// Lower a single value incoming to a statepoint node. This value can be
|
|
/// either a deopt value or a gc value, the handling is the same. We special
|
|
/// case constants and allocas, then fall back to spilling if required.
|
|
static void lowerIncomingStatepointValue(SDValue Incoming,
|
|
SmallVectorImpl<SDValue> &Ops,
|
|
SelectionDAGBuilder &Builder) {
|
|
SDValue Chain = Builder.getRoot();
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
|
|
// If the original value was a constant, make sure it gets recorded as
|
|
// such in the stackmap. This is required so that the consumer can
|
|
// parse any internal format to the deopt state. It also handles null
|
|
// pointers and other constant pointers in GC states
|
|
pushStackMapConstant(Ops, Builder, C->getSExtValue());
|
|
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
|
|
// This handles allocas as arguments to the statepoint (this is only
|
|
// really meaningful for a deopt value. For GC, we'd be trying to
|
|
// relocate the address of the alloca itself?)
|
|
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
|
|
Incoming.getValueType()));
|
|
} else {
|
|
// Otherwise, locate a spill slot and explicitly spill it so it
|
|
// can be found by the runtime later. We currently do not support
|
|
// tracking values through callee saved registers to their eventual
|
|
// spill location. This would be a useful optimization, but would
|
|
// need to be optional since it requires a lot of complexity on the
|
|
// runtime side which not all would support.
|
|
std::pair<SDValue, SDValue> Res =
|
|
spillIncomingStatepointValue(Incoming, Chain, Builder);
|
|
Ops.push_back(Res.first);
|
|
Chain = Res.second;
|
|
}
|
|
|
|
Builder.DAG.setRoot(Chain);
|
|
}
|
|
|
|
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
|
|
/// lowering is described in lowerIncomingStatepointValue. This function is
|
|
/// responsible for lowering everything in the right position and playing some
|
|
/// tricks to avoid redundant stack manipulation where possible. On
|
|
/// completion, 'Ops' will contain ready to use operands for machine code
|
|
/// statepoint. The chain nodes will have already been created and the DAG root
|
|
/// will be set to the last value spilled (if any were).
|
|
static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
|
|
ImmutableStatepoint StatepointSite,
|
|
SelectionDAGBuilder &Builder) {
|
|
|
|
// Lower the deopt and gc arguments for this statepoint. Layout will
|
|
// be: deopt argument length, deopt arguments.., gc arguments...
|
|
|
|
SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
|
|
getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
|
|
Builder);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that each of the gc pointer and bases we've gotten out of the
|
|
// safepoint is something the strategy thinks might be a pointer into the GC
|
|
// heap. This is basically just here to help catch errors during statepoint
|
|
// insertion. TODO: This should actually be in the Verifier, but we can't get
|
|
// to the GCStrategy from there (yet).
|
|
GCStrategy &S = Builder.GFI->getStrategy();
|
|
for (const Value *V : Bases) {
|
|
auto Opt = S.isGCManagedPointer(V);
|
|
if (Opt.hasValue()) {
|
|
assert(Opt.getValue() &&
|
|
"non gc managed base pointer found in statepoint");
|
|
}
|
|
}
|
|
for (const Value *V : Ptrs) {
|
|
auto Opt = S.isGCManagedPointer(V);
|
|
if (Opt.hasValue()) {
|
|
assert(Opt.getValue() &&
|
|
"non gc managed derived pointer found in statepoint");
|
|
}
|
|
}
|
|
for (const Value *V : Relocations) {
|
|
auto Opt = S.isGCManagedPointer(V);
|
|
if (Opt.hasValue()) {
|
|
assert(Opt.getValue() && "non gc managed pointer relocated");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Before we actually start lowering (and allocating spill slots for values),
|
|
// reserve any stack slots which we judge to be profitable to reuse for a
|
|
// particular value. This is purely an optimization over the code below and
|
|
// doesn't change semantics at all. It is important for performance that we
|
|
// reserve slots for both deopt and gc values before lowering either.
|
|
for (const Value *V : StatepointSite.vm_state_args()) {
|
|
SDValue Incoming = Builder.getValue(V);
|
|
reservePreviousStackSlotForValue(Incoming, Builder);
|
|
}
|
|
for (unsigned i = 0; i < Bases.size(); ++i) {
|
|
const Value *Base = Bases[i];
|
|
reservePreviousStackSlotForValue(Builder.getValue(Base), Builder);
|
|
|
|
const Value *Ptr = Ptrs[i];
|
|
reservePreviousStackSlotForValue(Builder.getValue(Ptr), Builder);
|
|
}
|
|
|
|
// First, prefix the list with the number of unique values to be
|
|
// lowered. Note that this is the number of *Values* not the
|
|
// number of SDValues required to lower them.
|
|
const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
|
|
pushStackMapConstant(Ops, Builder, NumVMSArgs);
|
|
|
|
assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
|
|
StatepointSite.vm_state_end()));
|
|
|
|
// The vm state arguments are lowered in an opaque manner. We do
|
|
// not know what type of values are contained within. We skip the
|
|
// first one since that happens to be the total number we lowered
|
|
// explicitly just above. We could have left it in the loop and
|
|
// not done it explicitly, but it's far easier to understand this
|
|
// way.
|
|
for (const Value *V : StatepointSite.vm_state_args()) {
|
|
SDValue Incoming = Builder.getValue(V);
|
|
lowerIncomingStatepointValue(Incoming, Ops, Builder);
|
|
}
|
|
|
|
// Finally, go ahead and lower all the gc arguments. There's no prefixed
|
|
// length for this one. After lowering, we'll have the base and pointer
|
|
// arrays interwoven with each (lowered) base pointer immediately followed by
|
|
// it's (lowered) derived pointer. i.e
|
|
// (base[0], ptr[0], base[1], ptr[1], ...)
|
|
for (unsigned i = 0; i < Bases.size(); ++i) {
|
|
const Value *Base = Bases[i];
|
|
lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
|
|
|
|
const Value *Ptr = Ptrs[i];
|
|
lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
|
|
}
|
|
|
|
// If there are any explicit spill slots passed to the statepoint, record
|
|
// them, but otherwise do not do anything special. These are user provided
|
|
// allocas and give control over placement to the consumer. In this case,
|
|
// it is the contents of the slot which may get updated, not the pointer to
|
|
// the alloca
|
|
for (Value *V : StatepointSite.gc_args()) {
|
|
SDValue Incoming = Builder.getValue(V);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
|
|
// This handles allocas as arguments to the statepoint
|
|
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
|
|
Incoming.getValueType()));
|
|
}
|
|
}
|
|
|
|
// Record computed locations for all lowered values.
|
|
// This can not be embedded in lowering loops as we need to record *all*
|
|
// values, while previous loops account only values with unique SDValues.
|
|
const Instruction *StatepointInstr =
|
|
StatepointSite.getCallSite().getInstruction();
|
|
FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
|
|
Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr];
|
|
|
|
for (GCRelocateOperands RelocateOpers :
|
|
StatepointSite.getRelocates(StatepointSite)) {
|
|
const Value *V = RelocateOpers.getDerivedPtr();
|
|
SDValue SDV = Builder.getValue(V);
|
|
SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
|
|
|
|
if (Loc.getNode()) {
|
|
SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
} else {
|
|
// Record value as visited, but not spilled. This is case for allocas
|
|
// and constants. For this values we can avoid emiting spill load while
|
|
// visiting corresponding gc_relocate.
|
|
// Actually we do not need to record them in this map at all.
|
|
// We do this only to check that we are not relocating any unvisited value.
|
|
SpillMap[V] = None;
|
|
|
|
// Default llvm mechanisms for exporting values which are used in
|
|
// different basic blocks does not work for gc relocates.
|
|
// Note that it would be incorrect to teach llvm that all relocates are
|
|
// uses of the corresponging values so that it would automatically
|
|
// export them. Relocates of the spilled values does not use original
|
|
// value.
|
|
if (StatepointSite.getCallSite().isInvoke())
|
|
Builder.ExportFromCurrentBlock(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
|
|
// Check some preconditions for sanity
|
|
assert(isStatepoint(&CI) &&
|
|
"function called must be the statepoint function");
|
|
|
|
LowerStatepoint(ImmutableStatepoint(&CI));
|
|
}
|
|
|
|
void SelectionDAGBuilder::LowerStatepoint(
|
|
ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) {
|
|
// The basic scheme here is that information about both the original call and
|
|
// the safepoint is encoded in the CallInst. We create a temporary call and
|
|
// lower it, then reverse engineer the calling sequence.
|
|
|
|
NumOfStatepoints++;
|
|
// Clear state
|
|
StatepointLowering.startNewStatepoint(*this);
|
|
|
|
ImmutableCallSite CS(ISP.getCallSite());
|
|
|
|
#ifndef NDEBUG
|
|
// Consistency check. Don't do this for invokes. It would be too
|
|
// expensive to preserve this information across different basic blocks
|
|
if (!CS.isInvoke()) {
|
|
for (const User *U : CS->users()) {
|
|
const CallInst *Call = cast<CallInst>(U);
|
|
if (isGCRelocate(Call))
|
|
StatepointLowering.scheduleRelocCall(*Call);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
// If this is a malformed statepoint, report it early to simplify debugging.
|
|
// This should catch any IR level mistake that's made when constructing or
|
|
// transforming statepoints.
|
|
ISP.verify();
|
|
|
|
// Check that the associated GCStrategy expects to encounter statepoints.
|
|
assert(GFI->getStrategy().useStatepoints() &&
|
|
"GCStrategy does not expect to encounter statepoints");
|
|
#endif
|
|
|
|
// Lower statepoint vmstate and gcstate arguments
|
|
SmallVector<SDValue, 10> LoweredMetaArgs;
|
|
lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this);
|
|
|
|
// Get call node, we will replace it later with statepoint
|
|
SDNode *CallNode =
|
|
lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports);
|
|
|
|
// Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
|
|
// nodes with all the appropriate arguments and return values.
|
|
|
|
// Call Node: Chain, Target, {Args}, RegMask, [Glue]
|
|
SDValue Chain = CallNode->getOperand(0);
|
|
|
|
SDValue Glue;
|
|
bool CallHasIncomingGlue = CallNode->getGluedNode();
|
|
if (CallHasIncomingGlue) {
|
|
// Glue is always last operand
|
|
Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
|
|
}
|
|
|
|
// Build the GC_TRANSITION_START node if necessary.
|
|
//
|
|
// The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
|
|
// order in which they appear in the call to the statepoint intrinsic. If
|
|
// any of the operands is a pointer-typed, that operand is immediately
|
|
// followed by a SRCVALUE for the pointer that may be used during lowering
|
|
// (e.g. to form MachinePointerInfo values for loads/stores).
|
|
const bool IsGCTransition =
|
|
(ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) ==
|
|
(uint64_t)StatepointFlags::GCTransition;
|
|
if (IsGCTransition) {
|
|
SmallVector<SDValue, 8> TSOps;
|
|
|
|
// Add chain
|
|
TSOps.push_back(Chain);
|
|
|
|
// Add GC transition arguments
|
|
for (const Value *V : ISP.gc_transition_args()) {
|
|
TSOps.push_back(getValue(V));
|
|
if (V->getType()->isPointerTy())
|
|
TSOps.push_back(DAG.getSrcValue(V));
|
|
}
|
|
|
|
// Add glue if necessary
|
|
if (CallHasIncomingGlue)
|
|
TSOps.push_back(Glue);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDValue GCTransitionStart =
|
|
DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
|
|
|
|
Chain = GCTransitionStart.getValue(0);
|
|
Glue = GCTransitionStart.getValue(1);
|
|
}
|
|
|
|
// TODO: Currently, all of these operands are being marked as read/write in
|
|
// PrologEpilougeInserter.cpp, we should special case the VMState arguments
|
|
// and flags to be read-only.
|
|
SmallVector<SDValue, 40> Ops;
|
|
|
|
// Add the <id> and <numBytes> constants.
|
|
Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64));
|
|
Ops.push_back(
|
|
DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32));
|
|
|
|
// Calculate and push starting position of vmstate arguments
|
|
// Get number of arguments incoming directly into call node
|
|
unsigned NumCallRegArgs =
|
|
CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
|
|
Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
|
|
|
|
// Add call target
|
|
SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
|
|
Ops.push_back(CallTarget);
|
|
|
|
// Add call arguments
|
|
// Get position of register mask in the call
|
|
SDNode::op_iterator RegMaskIt;
|
|
if (CallHasIncomingGlue)
|
|
RegMaskIt = CallNode->op_end() - 2;
|
|
else
|
|
RegMaskIt = CallNode->op_end() - 1;
|
|
Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
|
|
|
|
// Add a constant argument for the calling convention
|
|
pushStackMapConstant(Ops, *this, CS.getCallingConv());
|
|
|
|
// Add a constant argument for the flags
|
|
uint64_t Flags = ISP.getFlags();
|
|
assert(
|
|
((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)
|
|
&& "unknown flag used");
|
|
pushStackMapConstant(Ops, *this, Flags);
|
|
|
|
// Insert all vmstate and gcstate arguments
|
|
Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
|
|
|
|
// Add register mask from call node
|
|
Ops.push_back(*RegMaskIt);
|
|
|
|
// Add chain
|
|
Ops.push_back(Chain);
|
|
|
|
// Same for the glue, but we add it only if original call had it
|
|
if (Glue.getNode())
|
|
Ops.push_back(Glue);
|
|
|
|
// Compute return values. Provide a glue output since we consume one as
|
|
// input. This allows someone else to chain off us as needed.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDNode *StatepointMCNode =
|
|
DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
|
|
|
|
SDNode *SinkNode = StatepointMCNode;
|
|
|
|
// Build the GC_TRANSITION_END node if necessary.
|
|
//
|
|
// See the comment above regarding GC_TRANSITION_START for the layout of
|
|
// the operands to the GC_TRANSITION_END node.
|
|
if (IsGCTransition) {
|
|
SmallVector<SDValue, 8> TEOps;
|
|
|
|
// Add chain
|
|
TEOps.push_back(SDValue(StatepointMCNode, 0));
|
|
|
|
// Add GC transition arguments
|
|
for (const Value *V : ISP.gc_transition_args()) {
|
|
TEOps.push_back(getValue(V));
|
|
if (V->getType()->isPointerTy())
|
|
TEOps.push_back(DAG.getSrcValue(V));
|
|
}
|
|
|
|
// Add glue
|
|
TEOps.push_back(SDValue(StatepointMCNode, 1));
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
SDValue GCTransitionStart =
|
|
DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
|
|
|
|
SinkNode = GCTransitionStart.getNode();
|
|
}
|
|
|
|
// Replace original call
|
|
DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
|
|
// Remove originall call node
|
|
DAG.DeleteNode(CallNode);
|
|
|
|
// DON'T set the root - under the assumption that it's already set past the
|
|
// inserted node we created.
|
|
|
|
// TODO: A better future implementation would be to emit a single variable
|
|
// argument, variable return value STATEPOINT node here and then hookup the
|
|
// return value of each gc.relocate to the respective output of the
|
|
// previously emitted STATEPOINT value. Unfortunately, this doesn't appear
|
|
// to actually be possible today.
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
|
|
// The result value of the gc_result is simply the result of the actual
|
|
// call. We've already emitted this, so just grab the value.
|
|
Instruction *I = cast<Instruction>(CI.getArgOperand(0));
|
|
assert(isStatepoint(I) && "first argument must be a statepoint token");
|
|
|
|
if (isa<InvokeInst>(I)) {
|
|
// For invokes we should have stored call result in a virtual register.
|
|
// We can not use default getValue() functionality to copy value from this
|
|
// register because statepoint and actuall call return types can be
|
|
// different, and getValue() will use CopyFromReg of the wrong type,
|
|
// which is always i32 in our case.
|
|
PointerType *CalleeType =
|
|
cast<PointerType>(ImmutableStatepoint(I).getActualCallee()->getType());
|
|
Type *RetTy =
|
|
cast<FunctionType>(CalleeType->getElementType())->getReturnType();
|
|
SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
|
|
|
|
assert(CopyFromReg.getNode());
|
|
setValue(&CI, CopyFromReg);
|
|
} else {
|
|
setValue(&CI, getValue(I));
|
|
}
|
|
}
|
|
|
|
void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
|
|
GCRelocateOperands RelocateOpers(&CI);
|
|
|
|
#ifndef NDEBUG
|
|
// Consistency check
|
|
// We skip this check for invoke statepoints. It would be too expensive to
|
|
// preserve validation info through different basic blocks.
|
|
if (!RelocateOpers.isTiedToInvoke()) {
|
|
StatepointLowering.relocCallVisited(CI);
|
|
}
|
|
#endif
|
|
|
|
const Value *DerivedPtr = RelocateOpers.getDerivedPtr();
|
|
SDValue SD = getValue(DerivedPtr);
|
|
|
|
FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
|
|
FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()];
|
|
|
|
// We should have recorded location for this pointer
|
|
assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value");
|
|
Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr];
|
|
|
|
// We didn't need to spill these special cases (constants and allocas).
|
|
// See the handling in spillIncomingValueForStatepoint for detail.
|
|
if (!DerivedPtrLocation) {
|
|
setValue(&CI, SD);
|
|
return;
|
|
}
|
|
|
|
SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
|
|
SD.getValueType());
|
|
|
|
// Be conservative: flush all pending loads
|
|
// TODO: Probably we can be less restrictive on this,
|
|
// it may allow more scheduling opprtunities
|
|
SDValue Chain = getRoot();
|
|
|
|
SDValue SpillLoad =
|
|
DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(*DerivedPtrLocation),
|
|
false, false, false, 0);
|
|
|
|
// Again, be conservative, don't emit pending loads
|
|
DAG.setRoot(SpillLoad.getValue(1));
|
|
|
|
assert(SpillLoad.getNode());
|
|
setValue(&CI, SpillLoad);
|
|
}
|