llvm-6502/lib/Target/Alpha/AlphaInstrInfo.td
Nate Begeman 7cee81703d Add support to tablegen for naming the nodes themselves, not just the operands,
in selectiondag patterns.  This is required for the upcoming shuffle_vector rewrite,
and as it turns out, cleans up a hack in the Alpha instruction info.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67286 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-19 05:21:56 +00:00

1138 lines
56 KiB
TableGen
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- AlphaInstrInfo.td - The Alpha Instruction Set -------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
include "AlphaInstrFormats.td"
//********************
//Custom DAG Nodes
//********************
def SDTFPUnaryOpUnC : SDTypeProfile<1, 1, [
SDTCisFP<1>, SDTCisFP<0>
]>;
def Alpha_cvtqt : SDNode<"AlphaISD::CVTQT_", SDTFPUnaryOpUnC, []>;
def Alpha_cvtqs : SDNode<"AlphaISD::CVTQS_", SDTFPUnaryOpUnC, []>;
def Alpha_cvttq : SDNode<"AlphaISD::CVTTQ_" , SDTFPUnaryOp, []>;
def Alpha_gprello : SDNode<"AlphaISD::GPRelLo", SDTIntBinOp, []>;
def Alpha_gprelhi : SDNode<"AlphaISD::GPRelHi", SDTIntBinOp, []>;
def Alpha_rellit : SDNode<"AlphaISD::RelLit", SDTIntBinOp, [SDNPMayLoad]>;
def retflag : SDNode<"AlphaISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInFlag]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_AlphaCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64> ]>;
def SDT_AlphaCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i64>,
SDTCisVT<1, i64> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AlphaCallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AlphaCallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
//********************
//Paterns for matching
//********************
def invX : SDNodeXForm<imm, [{ //invert
return getI64Imm(~N->getZExtValue());
}]>;
def negX : SDNodeXForm<imm, [{ //negate
return getI64Imm(~N->getZExtValue() + 1);
}]>;
def SExt32 : SDNodeXForm<imm, [{ //signed extend int to long
return getI64Imm(((int64_t)N->getZExtValue() << 32) >> 32);
}]>;
def SExt16 : SDNodeXForm<imm, [{ //signed extend int to long
return getI64Imm(((int64_t)N->getZExtValue() << 48) >> 48);
}]>;
def LL16 : SDNodeXForm<imm, [{ //lda part of constant
return getI64Imm(get_lda16(N->getZExtValue()));
}]>;
def LH16 : SDNodeXForm<imm, [{ //ldah part of constant (or more if too big)
return getI64Imm(get_ldah16(N->getZExtValue()));
}]>;
def iZAPX : SDNodeXForm<and, [{ // get imm to ZAPi
ConstantSDNode *RHS = cast<ConstantSDNode>(N->getOperand(1));
return getI64Imm(get_zapImm(SDValue(), RHS->getZExtValue()));
}]>;
def nearP2X : SDNodeXForm<imm, [{
return getI64Imm(Log2_64(getNearPower2((uint64_t)N->getZExtValue())));
}]>;
def nearP2RemX : SDNodeXForm<imm, [{
uint64_t x =
abs(N->getZExtValue() - getNearPower2((uint64_t)N->getZExtValue()));
return getI64Imm(Log2_64(x));
}]>;
def immUExt8 : PatLeaf<(imm), [{ //imm fits in 8 bit zero extended field
return (uint64_t)N->getZExtValue() == (uint8_t)N->getZExtValue();
}]>;
def immUExt8inv : PatLeaf<(imm), [{ //inverted imm fits in 8 bit zero extended field
return (uint64_t)~N->getZExtValue() == (uint8_t)~N->getZExtValue();
}], invX>;
def immUExt8neg : PatLeaf<(imm), [{ //negated imm fits in 8 bit zero extended field
return ((uint64_t)~N->getZExtValue() + 1) ==
(uint8_t)((uint64_t)~N->getZExtValue() + 1);
}], negX>;
def immSExt16 : PatLeaf<(imm), [{ //imm fits in 16 bit sign extended field
return ((int64_t)N->getZExtValue() << 48) >> 48 ==
(int64_t)N->getZExtValue();
}]>;
def immSExt16int : PatLeaf<(imm), [{ //(int)imm fits in a 16 bit sign extended field
return ((int64_t)N->getZExtValue() << 48) >> 48 ==
((int64_t)N->getZExtValue() << 32) >> 32;
}], SExt16>;
def zappat : PatFrag<(ops node:$LHS), (and node:$LHS, imm:$L), [{
ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHS) return 0;
uint64_t build = get_zapImm(N->getOperand(0), (uint64_t)RHS->getZExtValue());
return build != 0;
}]>;
def immFPZ : PatLeaf<(fpimm), [{ //the only fpconstant nodes are +/- 0.0
(void)N; // silence warning.
return true;
}]>;
def immRem1 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),1,0);}]>;
def immRem2 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),2,0);}]>;
def immRem3 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),3,0);}]>;
def immRem4 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),4,0);}]>;
def immRem5 :PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),5,0);}]>;
def immRem1n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),1,1);}]>;
def immRem2n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),2,1);}]>;
def immRem3n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),3,1);}]>;
def immRem4n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),4,1);}]>;
def immRem5n:PatLeaf<(imm),[{return chkRemNearPower2(N->getZExtValue(),5,1);}]>;
def immRemP2n : PatLeaf<(imm), [{
return isPowerOf2_64(getNearPower2((uint64_t)N->getZExtValue()) -
N->getZExtValue());
}]>;
def immRemP2 : PatLeaf<(imm), [{
return isPowerOf2_64(N->getZExtValue() -
getNearPower2((uint64_t)N->getZExtValue()));
}]>;
def immUExt8ME : PatLeaf<(imm), [{ //use this imm for mulqi
int64_t d = abs((int64_t)N->getZExtValue() -
(int64_t)getNearPower2((uint64_t)N->getZExtValue()));
if (isPowerOf2_64(d)) return false;
switch (d) {
case 1: case 3: case 5: return false;
default: return (uint64_t)N->getZExtValue() == (uint8_t)N->getZExtValue();
};
}]>;
def intop : PatFrag<(ops node:$op), (sext_inreg node:$op, i32)>;
def add4 : PatFrag<(ops node:$op1, node:$op2),
(add (shl node:$op1, 2), node:$op2)>;
def sub4 : PatFrag<(ops node:$op1, node:$op2),
(sub (shl node:$op1, 2), node:$op2)>;
def add8 : PatFrag<(ops node:$op1, node:$op2),
(add (shl node:$op1, 3), node:$op2)>;
def sub8 : PatFrag<(ops node:$op1, node:$op2),
(sub (shl node:$op1, 3), node:$op2)>;
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
class CmpOpFrag<dag res> : PatFrag<(ops node:$R), res>;
//Pseudo ops for selection
def WTF : PseudoInstAlpha<(outs), (ins variable_ops), "#wtf", [], s_pseudo>;
let hasCtrlDep = 1, Defs = [R30], Uses = [R30] in {
def ADJUSTSTACKUP : PseudoInstAlpha<(outs), (ins s64imm:$amt),
"; ADJUP $amt",
[(callseq_start timm:$amt)], s_pseudo>;
def ADJUSTSTACKDOWN : PseudoInstAlpha<(outs), (ins s64imm:$amt1, s64imm:$amt2),
"; ADJDOWN $amt1",
[(callseq_end timm:$amt1, timm:$amt2)], s_pseudo>;
}
def ALTENT : PseudoInstAlpha<(outs), (ins s64imm:$TARGET), "$$$TARGET..ng:\n", [], s_pseudo>;
def PCLABEL : PseudoInstAlpha<(outs), (ins s64imm:$num), "PCMARKER_$num:\n",[], s_pseudo>;
def MEMLABEL : PseudoInstAlpha<(outs), (ins s64imm:$i, s64imm:$j, s64imm:$k, s64imm:$m),
"LSMARKER$$$i$$$j$$$k$$$m:", [], s_pseudo>;
let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
def CAS32 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$cmp, GPRC:$swp), "",
[(set GPRC:$dst, (atomic_cmp_swap_32 GPRC:$ptr, GPRC:$cmp, GPRC:$swp))], s_pseudo>;
def CAS64 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$cmp, GPRC:$swp), "",
[(set GPRC:$dst, (atomic_cmp_swap_64 GPRC:$ptr, GPRC:$cmp, GPRC:$swp))], s_pseudo>;
def LAS32 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "",
[(set GPRC:$dst, (atomic_load_add_32 GPRC:$ptr, GPRC:$swp))], s_pseudo>;
def LAS64 :PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "",
[(set GPRC:$dst, (atomic_load_add_64 GPRC:$ptr, GPRC:$swp))], s_pseudo>;
def SWAP32 : PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "",
[(set GPRC:$dst, (atomic_swap_32 GPRC:$ptr, GPRC:$swp))], s_pseudo>;
def SWAP64 :PseudoInstAlpha<(outs GPRC:$dst), (ins GPRC:$ptr, GPRC:$swp), "",
[(set GPRC:$dst, (atomic_swap_64 GPRC:$ptr, GPRC:$swp))], s_pseudo>;
}
//***********************
//Real instructions
//***********************
//Operation Form:
//conditional moves, int
multiclass cmov_inst<bits<7> fun, string asmstr, PatFrag OpNode> {
def r : OForm4<0x11, fun, !strconcat(asmstr, " $RCOND,$RTRUE,$RDEST"),
[(set GPRC:$RDEST, (select (OpNode GPRC:$RCOND), GPRC:$RTRUE, GPRC:$RFALSE))], s_cmov>;
def i : OForm4L<0x11, fun, !strconcat(asmstr, " $RCOND,$RTRUE,$RDEST"),
[(set GPRC:$RDEST, (select (OpNode GPRC:$RCOND), immUExt8:$RTRUE, GPRC:$RFALSE))], s_cmov>;
}
defm CMOVEQ : cmov_inst<0x24, "cmoveq", CmpOpFrag<(seteq node:$R, 0)>>;
defm CMOVNE : cmov_inst<0x26, "cmovne", CmpOpFrag<(setne node:$R, 0)>>;
defm CMOVLT : cmov_inst<0x44, "cmovlt", CmpOpFrag<(setlt node:$R, 0)>>;
defm CMOVLE : cmov_inst<0x64, "cmovle", CmpOpFrag<(setle node:$R, 0)>>;
defm CMOVGT : cmov_inst<0x66, "cmovgt", CmpOpFrag<(setgt node:$R, 0)>>;
defm CMOVGE : cmov_inst<0x46, "cmovge", CmpOpFrag<(setge node:$R, 0)>>;
defm CMOVLBC : cmov_inst<0x16, "cmovlbc", CmpOpFrag<(xor node:$R, 1)>>;
defm CMOVLBS : cmov_inst<0x14, "cmovlbs", CmpOpFrag<(and node:$R, 1)>>;
//General pattern for cmov
def : Pat<(select GPRC:$which, GPRC:$src1, GPRC:$src2),
(CMOVNEr GPRC:$src2, GPRC:$src1, GPRC:$which)>;
def : Pat<(select GPRC:$which, GPRC:$src1, immUExt8:$src2),
(CMOVEQi GPRC:$src1, immUExt8:$src2, GPRC:$which)>;
//Invert sense when we can for constants:
def : Pat<(select (setne GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE),
(CMOVEQi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>;
def : Pat<(select (setgt GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE),
(CMOVLEi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>;
def : Pat<(select (setge GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE),
(CMOVLTi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>;
def : Pat<(select (setlt GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE),
(CMOVGEi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>;
def : Pat<(select (setle GPRC:$RCOND, 0), GPRC:$RTRUE, immUExt8:$RFALSE),
(CMOVGTi GPRC:$RCOND, immUExt8:$RFALSE, GPRC:$RTRUE)>;
multiclass all_inst<bits<6> opc, bits<7> funl, bits<7> funq,
string asmstr, PatFrag OpNode, InstrItinClass itin> {
def Lr : OForm< opc, funl, !strconcat(asmstr, "l $RA,$RB,$RC"),
[(set GPRC:$RC, (intop (OpNode GPRC:$RA, GPRC:$RB)))], itin>;
def Li : OFormL<opc, funl, !strconcat(asmstr, "l $RA,$L,$RC"),
[(set GPRC:$RC, (intop (OpNode GPRC:$RA, immUExt8:$L)))], itin>;
def Qr : OForm< opc, funq, !strconcat(asmstr, "q $RA,$RB,$RC"),
[(set GPRC:$RC, (OpNode GPRC:$RA, GPRC:$RB))], itin>;
def Qi : OFormL<opc, funq, !strconcat(asmstr, "q $RA,$L,$RC"),
[(set GPRC:$RC, (OpNode GPRC:$RA, immUExt8:$L))], itin>;
}
defm MUL : all_inst<0x13, 0x00, 0x20, "mul", BinOpFrag<(mul node:$LHS, node:$RHS)>, s_imul>;
defm ADD : all_inst<0x10, 0x00, 0x20, "add", BinOpFrag<(add node:$LHS, node:$RHS)>, s_iadd>;
defm S4ADD : all_inst<0x10, 0x02, 0x22, "s4add", add4, s_iadd>;
defm S8ADD : all_inst<0x10, 0x12, 0x32, "s8add", add8, s_iadd>;
defm S4SUB : all_inst<0x10, 0x0B, 0x2B, "s4sub", sub4, s_iadd>;
defm S8SUB : all_inst<0x10, 0x1B, 0x3B, "s8sub", sub8, s_iadd>;
defm SUB : all_inst<0x10, 0x09, 0x29, "sub", BinOpFrag<(sub node:$LHS, node:$RHS)>, s_iadd>;
//Const cases since legalize does sub x, int -> add x, inv(int) + 1
def : Pat<(intop (add GPRC:$RA, immUExt8neg:$L)), (SUBLi GPRC:$RA, immUExt8neg:$L)>;
def : Pat<(add GPRC:$RA, immUExt8neg:$L), (SUBQi GPRC:$RA, immUExt8neg:$L)>;
def : Pat<(intop (add4 GPRC:$RA, immUExt8neg:$L)), (S4SUBLi GPRC:$RA, immUExt8neg:$L)>;
def : Pat<(add4 GPRC:$RA, immUExt8neg:$L), (S4SUBQi GPRC:$RA, immUExt8neg:$L)>;
def : Pat<(intop (add8 GPRC:$RA, immUExt8neg:$L)), (S8SUBLi GPRC:$RA, immUExt8neg:$L)>;
def : Pat<(add8 GPRC:$RA, immUExt8neg:$L), (S8SUBQi GPRC:$RA, immUExt8neg:$L)>;
multiclass log_inst<bits<6> opc, bits<7> fun, string asmstr, SDNode OpNode, InstrItinClass itin> {
def r : OForm<opc, fun, !strconcat(asmstr, " $RA,$RB,$RC"),
[(set GPRC:$RC, (OpNode GPRC:$RA, GPRC:$RB))], itin>;
def i : OFormL<opc, fun, !strconcat(asmstr, " $RA,$L,$RC"),
[(set GPRC:$RC, (OpNode GPRC:$RA, immUExt8:$L))], itin>;
}
multiclass inv_inst<bits<6> opc, bits<7> fun, string asmstr, SDNode OpNode, InstrItinClass itin> {
def r : OForm<opc, fun, !strconcat(asmstr, " $RA,$RB,$RC"),
[(set GPRC:$RC, (OpNode GPRC:$RA, (not GPRC:$RB)))], itin>;
def i : OFormL<opc, fun, !strconcat(asmstr, " $RA,$L,$RC"),
[(set GPRC:$RC, (OpNode GPRC:$RA, immUExt8inv:$L))], itin>;
}
defm AND : log_inst<0x11, 0x00, "and", and, s_ilog>;
defm BIC : inv_inst<0x11, 0x08, "bic", and, s_ilog>;
defm BIS : log_inst<0x11, 0x20, "bis", or, s_ilog>;
defm ORNOT : inv_inst<0x11, 0x28, "ornot", or, s_ilog>;
defm XOR : log_inst<0x11, 0x40, "xor", xor, s_ilog>;
defm EQV : inv_inst<0x11, 0x48, "eqv", xor, s_ilog>;
defm SL : log_inst<0x12, 0x39, "sll", shl, s_ishf>;
defm SRA : log_inst<0x12, 0x3c, "sra", sra, s_ishf>;
defm SRL : log_inst<0x12, 0x34, "srl", srl, s_ishf>;
defm UMULH : log_inst<0x13, 0x30, "umulh", mulhu, s_imul>;
def CTLZ : OForm2<0x1C, 0x32, "CTLZ $RB,$RC",
[(set GPRC:$RC, (ctlz GPRC:$RB))], s_imisc>;
def CTPOP : OForm2<0x1C, 0x30, "CTPOP $RB,$RC",
[(set GPRC:$RC, (ctpop GPRC:$RB))], s_imisc>;
def CTTZ : OForm2<0x1C, 0x33, "CTTZ $RB,$RC",
[(set GPRC:$RC, (cttz GPRC:$RB))], s_imisc>;
def EXTBL : OForm< 0x12, 0x06, "EXTBL $RA,$RB,$RC",
[(set GPRC:$RC, (and (srl GPRC:$RA, (shl GPRC:$RB, 3)), 255))], s_ishf>;
def EXTWL : OForm< 0x12, 0x16, "EXTWL $RA,$RB,$RC",
[(set GPRC:$RC, (and (srl GPRC:$RA, (shl GPRC:$RB, 3)), 65535))], s_ishf>;
def EXTLL : OForm< 0x12, 0x26, "EXTLL $RA,$RB,$RC",
[(set GPRC:$RC, (and (srl GPRC:$RA, (shl GPRC:$RB, 3)), 4294967295))], s_ishf>;
def SEXTB : OForm2<0x1C, 0x00, "sextb $RB,$RC",
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i8))], s_ishf>;
def SEXTW : OForm2<0x1C, 0x01, "sextw $RB,$RC",
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i16))], s_ishf>;
//def EXTBLi : OFormL<0x12, 0x06, "EXTBL $RA,$L,$RC", []>; //Extract byte low
//def EXTLH : OForm< 0x12, 0x6A, "EXTLH $RA,$RB,$RC", []>; //Extract longword high
//def EXTLHi : OFormL<0x12, 0x6A, "EXTLH $RA,$L,$RC", []>; //Extract longword high
//def EXTLLi : OFormL<0x12, 0x26, "EXTLL $RA,$L,$RC", []>; //Extract longword low
//def EXTQH : OForm< 0x12, 0x7A, "EXTQH $RA,$RB,$RC", []>; //Extract quadword high
//def EXTQHi : OFormL<0x12, 0x7A, "EXTQH $RA,$L,$RC", []>; //Extract quadword high
//def EXTQ : OForm< 0x12, 0x36, "EXTQ $RA,$RB,$RC", []>; //Extract quadword low
//def EXTQi : OFormL<0x12, 0x36, "EXTQ $RA,$L,$RC", []>; //Extract quadword low
//def EXTWH : OForm< 0x12, 0x5A, "EXTWH $RA,$RB,$RC", []>; //Extract word high
//def EXTWHi : OFormL<0x12, 0x5A, "EXTWH $RA,$L,$RC", []>; //Extract word high
//def EXTWLi : OFormL<0x12, 0x16, "EXTWL $RA,$L,$RC", []>; //Extract word low
//def INSBL : OForm< 0x12, 0x0B, "INSBL $RA,$RB,$RC", []>; //Insert byte low
//def INSBLi : OFormL<0x12, 0x0B, "INSBL $RA,$L,$RC", []>; //Insert byte low
//def INSLH : OForm< 0x12, 0x67, "INSLH $RA,$RB,$RC", []>; //Insert longword high
//def INSLHi : OFormL<0x12, 0x67, "INSLH $RA,$L,$RC", []>; //Insert longword high
//def INSLL : OForm< 0x12, 0x2B, "INSLL $RA,$RB,$RC", []>; //Insert longword low
//def INSLLi : OFormL<0x12, 0x2B, "INSLL $RA,$L,$RC", []>; //Insert longword low
//def INSQH : OForm< 0x12, 0x77, "INSQH $RA,$RB,$RC", []>; //Insert quadword high
//def INSQHi : OFormL<0x12, 0x77, "INSQH $RA,$L,$RC", []>; //Insert quadword high
//def INSQL : OForm< 0x12, 0x3B, "INSQL $RA,$RB,$RC", []>; //Insert quadword low
//def INSQLi : OFormL<0x12, 0x3B, "INSQL $RA,$L,$RC", []>; //Insert quadword low
//def INSWH : OForm< 0x12, 0x57, "INSWH $RA,$RB,$RC", []>; //Insert word high
//def INSWHi : OFormL<0x12, 0x57, "INSWH $RA,$L,$RC", []>; //Insert word high
//def INSWL : OForm< 0x12, 0x1B, "INSWL $RA,$RB,$RC", []>; //Insert word low
//def INSWLi : OFormL<0x12, 0x1B, "INSWL $RA,$L,$RC", []>; //Insert word low
//def MSKBL : OForm< 0x12, 0x02, "MSKBL $RA,$RB,$RC", []>; //Mask byte low
//def MSKBLi : OFormL<0x12, 0x02, "MSKBL $RA,$L,$RC", []>; //Mask byte low
//def MSKLH : OForm< 0x12, 0x62, "MSKLH $RA,$RB,$RC", []>; //Mask longword high
//def MSKLHi : OFormL<0x12, 0x62, "MSKLH $RA,$L,$RC", []>; //Mask longword high
//def MSKLL : OForm< 0x12, 0x22, "MSKLL $RA,$RB,$RC", []>; //Mask longword low
//def MSKLLi : OFormL<0x12, 0x22, "MSKLL $RA,$L,$RC", []>; //Mask longword low
//def MSKQH : OForm< 0x12, 0x72, "MSKQH $RA,$RB,$RC", []>; //Mask quadword high
//def MSKQHi : OFormL<0x12, 0x72, "MSKQH $RA,$L,$RC", []>; //Mask quadword high
//def MSKQL : OForm< 0x12, 0x32, "MSKQL $RA,$RB,$RC", []>; //Mask quadword low
//def MSKQLi : OFormL<0x12, 0x32, "MSKQL $RA,$L,$RC", []>; //Mask quadword low
//def MSKWH : OForm< 0x12, 0x52, "MSKWH $RA,$RB,$RC", []>; //Mask word high
//def MSKWHi : OFormL<0x12, 0x52, "MSKWH $RA,$L,$RC", []>; //Mask word high
//def MSKWL : OForm< 0x12, 0x12, "MSKWL $RA,$RB,$RC", []>; //Mask word low
//def MSKWLi : OFormL<0x12, 0x12, "MSKWL $RA,$L,$RC", []>; //Mask word low
def ZAPNOTi : OFormL<0x12, 0x31, "zapnot $RA,$L,$RC", [], s_ishf>;
// Define the pattern that produces ZAPNOTi.
def : Pat<(zappat:$imm GPRC:$RA),
(ZAPNOTi GPRC:$RA, (iZAPX GPRC:$imm))>;
//Comparison, int
//So this is a waste of what this instruction can do, but it still saves something
def CMPBGE : OForm< 0x10, 0x0F, "cmpbge $RA,$RB,$RC",
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), (and GPRC:$RB, 255)))], s_ilog>;
def CMPBGEi : OFormL<0x10, 0x0F, "cmpbge $RA,$L,$RC",
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), immUExt8:$L))], s_ilog>;
def CMPEQ : OForm< 0x10, 0x2D, "cmpeq $RA,$RB,$RC",
[(set GPRC:$RC, (seteq GPRC:$RA, GPRC:$RB))], s_iadd>;
def CMPEQi : OFormL<0x10, 0x2D, "cmpeq $RA,$L,$RC",
[(set GPRC:$RC, (seteq GPRC:$RA, immUExt8:$L))], s_iadd>;
def CMPLE : OForm< 0x10, 0x6D, "cmple $RA,$RB,$RC",
[(set GPRC:$RC, (setle GPRC:$RA, GPRC:$RB))], s_iadd>;
def CMPLEi : OFormL<0x10, 0x6D, "cmple $RA,$L,$RC",
[(set GPRC:$RC, (setle GPRC:$RA, immUExt8:$L))], s_iadd>;
def CMPLT : OForm< 0x10, 0x4D, "cmplt $RA,$RB,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, GPRC:$RB))], s_iadd>;
def CMPLTi : OFormL<0x10, 0x4D, "cmplt $RA,$L,$RC",
[(set GPRC:$RC, (setlt GPRC:$RA, immUExt8:$L))], s_iadd>;
def CMPULE : OForm< 0x10, 0x3D, "cmpule $RA,$RB,$RC",
[(set GPRC:$RC, (setule GPRC:$RA, GPRC:$RB))], s_iadd>;
def CMPULEi : OFormL<0x10, 0x3D, "cmpule $RA,$L,$RC",
[(set GPRC:$RC, (setule GPRC:$RA, immUExt8:$L))], s_iadd>;
def CMPULT : OForm< 0x10, 0x1D, "cmpult $RA,$RB,$RC",
[(set GPRC:$RC, (setult GPRC:$RA, GPRC:$RB))], s_iadd>;
def CMPULTi : OFormL<0x10, 0x1D, "cmpult $RA,$L,$RC",
[(set GPRC:$RC, (setult GPRC:$RA, immUExt8:$L))], s_iadd>;
//Patterns for unsupported int comparisons
def : Pat<(setueq GPRC:$X, GPRC:$Y), (CMPEQ GPRC:$X, GPRC:$Y)>;
def : Pat<(setueq GPRC:$X, immUExt8:$Y), (CMPEQi GPRC:$X, immUExt8:$Y)>;
def : Pat<(setugt GPRC:$X, GPRC:$Y), (CMPULT GPRC:$Y, GPRC:$X)>;
def : Pat<(setugt immUExt8:$X, GPRC:$Y), (CMPULTi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setuge GPRC:$X, GPRC:$Y), (CMPULE GPRC:$Y, GPRC:$X)>;
def : Pat<(setuge immUExt8:$X, GPRC:$Y), (CMPULEi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setgt GPRC:$X, GPRC:$Y), (CMPLT GPRC:$Y, GPRC:$X)>;
def : Pat<(setgt immUExt8:$X, GPRC:$Y), (CMPLTi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setge GPRC:$X, GPRC:$Y), (CMPLE GPRC:$Y, GPRC:$X)>;
def : Pat<(setge immUExt8:$X, GPRC:$Y), (CMPLEi GPRC:$Y, immUExt8:$X)>;
def : Pat<(setne GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
def : Pat<(setne GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQi GPRC:$X, immUExt8:$Y), 0)>;
def : Pat<(setune GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
def : Pat<(setune GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQ GPRC:$X, immUExt8:$Y), 0)>;
let isReturn = 1, isTerminator = 1, Ra = 31, Rb = 26, disp = 1, Uses = [R26] in {
def RETDAG : MbrForm< 0x1A, 0x02, (ops), "ret $$31,($$26),1", s_jsr>; //Return from subroutine
def RETDAGp : MbrpForm< 0x1A, 0x02, (ops), "ret $$31,($$26),1", [(retflag)], s_jsr>; //Return from subroutine
}
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1, Ra = 31, disp = 0 in
def JMP : MbrpForm< 0x1A, 0x00, (ops GPRC:$RS), "jmp $$31,($RS),0",
[(brind GPRC:$RS)], s_jsr>; //Jump
let isCall = 1, Ra = 26,
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
R20, R21, R22, R23, R24, R25, R26, R27, R28, R29,
F0, F1,
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R29] in {
def BSR : BFormD<0x34, "bsr $$26,$$$DISP..ng", [], s_jsr>; //Branch to subroutine
}
let isCall = 1, Ra = 26, Rb = 27, disp = 0,
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
R20, R21, R22, R23, R24, R25, R26, R27, R28, R29,
F0, F1,
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R27, R29] in {
def JSR : MbrForm< 0x1A, 0x01, (ops ), "jsr $$26,($$27),0", s_jsr>; //Jump to subroutine
}
let isCall = 1, Ra = 23, Rb = 27, disp = 0,
Defs = [R23, R24, R25, R27, R28], Uses = [R24, R25, R27] in
def JSRs : MbrForm< 0x1A, 0x01, (ops ), "jsr $$23,($$27),0", s_jsr>; //Jump to div or rem
def JSR_COROUTINE : MbrForm< 0x1A, 0x03, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr_coroutine $RD,($RS),$DISP", s_jsr>; //Jump to subroutine return
let OutOperandList = (ops GPRC:$RA), InOperandList = (ops s64imm:$DISP, GPRC:$RB) in {
def LDQ : MForm<0x29, 1, "ldq $RA,$DISP($RB)",
[(set GPRC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))], s_ild>;
def LDQr : MForm<0x29, 1, "ldq $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>;
def LDL : MForm<0x28, 1, "ldl $RA,$DISP($RB)",
[(set GPRC:$RA, (sextloadi32 (add GPRC:$RB, immSExt16:$DISP)))], s_ild>;
def LDLr : MForm<0x28, 1, "ldl $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (sextloadi32 (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>;
def LDBU : MForm<0x0A, 1, "ldbu $RA,$DISP($RB)",
[(set GPRC:$RA, (zextloadi8 (add GPRC:$RB, immSExt16:$DISP)))], s_ild>;
def LDBUr : MForm<0x0A, 1, "ldbu $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (zextloadi8 (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>;
def LDWU : MForm<0x0C, 1, "ldwu $RA,$DISP($RB)",
[(set GPRC:$RA, (zextloadi16 (add GPRC:$RB, immSExt16:$DISP)))], s_ild>;
def LDWUr : MForm<0x0C, 1, "ldwu $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (zextloadi16 (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_ild>;
}
let OutOperandList = (ops), InOperandList = (ops GPRC:$RA, s64imm:$DISP, GPRC:$RB) in {
def STB : MForm<0x0E, 0, "stb $RA,$DISP($RB)",
[(truncstorei8 GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>;
def STBr : MForm<0x0E, 0, "stb $RA,$DISP($RB)\t\t!gprellow",
[(truncstorei8 GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>;
def STW : MForm<0x0D, 0, "stw $RA,$DISP($RB)",
[(truncstorei16 GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>;
def STWr : MForm<0x0D, 0, "stw $RA,$DISP($RB)\t\t!gprellow",
[(truncstorei16 GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>;
def STL : MForm<0x2C, 0, "stl $RA,$DISP($RB)",
[(truncstorei32 GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>;
def STLr : MForm<0x2C, 0, "stl $RA,$DISP($RB)\t\t!gprellow",
[(truncstorei32 GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>;
def STQ : MForm<0x2D, 0, "stq $RA,$DISP($RB)",
[(store GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_ist>;
def STQr : MForm<0x2D, 0, "stq $RA,$DISP($RB)\t\t!gprellow",
[(store GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_ist>;
}
//Load address
let OutOperandList = (ops GPRC:$RA), InOperandList = (ops s64imm:$DISP, GPRC:$RB) in {
def LDA : MForm<0x08, 0, "lda $RA,$DISP($RB)",
[(set GPRC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_lda>;
def LDAr : MForm<0x08, 0, "lda $RA,$DISP($RB)\t\t!gprellow",
[(set GPRC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_lda>; //Load address
def LDAH : MForm<0x09, 0, "ldah $RA,$DISP($RB)",
[], s_lda>; //Load address high
def LDAHr : MForm<0x09, 0, "ldah $RA,$DISP($RB)\t\t!gprelhigh",
[(set GPRC:$RA, (Alpha_gprelhi tglobaladdr:$DISP, GPRC:$RB))], s_lda>; //Load address high
}
let OutOperandList = (ops), InOperandList = (ops F4RC:$RA, s64imm:$DISP, GPRC:$RB) in {
def STS : MForm<0x26, 0, "sts $RA,$DISP($RB)",
[(store F4RC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_fst>;
def STSr : MForm<0x26, 0, "sts $RA,$DISP($RB)\t\t!gprellow",
[(store F4RC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_fst>;
}
let OutOperandList = (ops F4RC:$RA), InOperandList = (ops s64imm:$DISP, GPRC:$RB) in {
def LDS : MForm<0x22, 1, "lds $RA,$DISP($RB)",
[(set F4RC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))], s_fld>;
def LDSr : MForm<0x22, 1, "lds $RA,$DISP($RB)\t\t!gprellow",
[(set F4RC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_fld>;
}
let OutOperandList = (ops), InOperandList = (ops F8RC:$RA, s64imm:$DISP, GPRC:$RB) in {
def STT : MForm<0x27, 0, "stt $RA,$DISP($RB)",
[(store F8RC:$RA, (add GPRC:$RB, immSExt16:$DISP))], s_fst>;
def STTr : MForm<0x27, 0, "stt $RA,$DISP($RB)\t\t!gprellow",
[(store F8RC:$RA, (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB))], s_fst>;
}
let OutOperandList = (ops F8RC:$RA), InOperandList = (ops s64imm:$DISP, GPRC:$RB) in {
def LDT : MForm<0x23, 1, "ldt $RA,$DISP($RB)",
[(set F8RC:$RA, (load (add GPRC:$RB, immSExt16:$DISP)))], s_fld>;
def LDTr : MForm<0x23, 1, "ldt $RA,$DISP($RB)\t\t!gprellow",
[(set F8RC:$RA, (load (Alpha_gprello tglobaladdr:$DISP, GPRC:$RB)))], s_fld>;
}
//constpool rels
def : Pat<(i64 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDQr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (sextloadi32 (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDLr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (zextloadi8 (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDBUr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (zextloadi16 (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDWUr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (Alpha_gprello tconstpool:$DISP, GPRC:$RB)),
(LDAr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(i64 (Alpha_gprelhi tconstpool:$DISP, GPRC:$RB)),
(LDAHr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(f32 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDSr tconstpool:$DISP, GPRC:$RB)>;
def : Pat<(f64 (load (Alpha_gprello tconstpool:$DISP, GPRC:$RB))),
(LDTr tconstpool:$DISP, GPRC:$RB)>;
//jumptable rels
def : Pat<(i64 (Alpha_gprelhi tjumptable:$DISP, GPRC:$RB)),
(LDAHr tjumptable:$DISP, GPRC:$RB)>;
def : Pat<(i64 (Alpha_gprello tjumptable:$DISP, GPRC:$RB)),
(LDAr tjumptable:$DISP, GPRC:$RB)>;
//misc ext patterns
def : Pat<(i64 (extloadi8 (add GPRC:$RB, immSExt16:$DISP))),
(LDBU immSExt16:$DISP, GPRC:$RB)>;
def : Pat<(i64 (extloadi16 (add GPRC:$RB, immSExt16:$DISP))),
(LDWU immSExt16:$DISP, GPRC:$RB)>;
def : Pat<(i64 (extloadi32 (add GPRC:$RB, immSExt16:$DISP))),
(LDL immSExt16:$DISP, GPRC:$RB)>;
//0 disp patterns
def : Pat<(i64 (load GPRC:$addr)),
(LDQ 0, GPRC:$addr)>;
def : Pat<(f64 (load GPRC:$addr)),
(LDT 0, GPRC:$addr)>;
def : Pat<(f32 (load GPRC:$addr)),
(LDS 0, GPRC:$addr)>;
def : Pat<(i64 (sextloadi32 GPRC:$addr)),
(LDL 0, GPRC:$addr)>;
def : Pat<(i64 (zextloadi16 GPRC:$addr)),
(LDWU 0, GPRC:$addr)>;
def : Pat<(i64 (zextloadi8 GPRC:$addr)),
(LDBU 0, GPRC:$addr)>;
def : Pat<(i64 (extloadi8 GPRC:$addr)),
(LDBU 0, GPRC:$addr)>;
def : Pat<(i64 (extloadi16 GPRC:$addr)),
(LDWU 0, GPRC:$addr)>;
def : Pat<(i64 (extloadi32 GPRC:$addr)),
(LDL 0, GPRC:$addr)>;
def : Pat<(store GPRC:$DATA, GPRC:$addr),
(STQ GPRC:$DATA, 0, GPRC:$addr)>;
def : Pat<(store F8RC:$DATA, GPRC:$addr),
(STT F8RC:$DATA, 0, GPRC:$addr)>;
def : Pat<(store F4RC:$DATA, GPRC:$addr),
(STS F4RC:$DATA, 0, GPRC:$addr)>;
def : Pat<(truncstorei32 GPRC:$DATA, GPRC:$addr),
(STL GPRC:$DATA, 0, GPRC:$addr)>;
def : Pat<(truncstorei16 GPRC:$DATA, GPRC:$addr),
(STW GPRC:$DATA, 0, GPRC:$addr)>;
def : Pat<(truncstorei8 GPRC:$DATA, GPRC:$addr),
(STB GPRC:$DATA, 0, GPRC:$addr)>;
//load address, rellocated gpdist form
let OutOperandList = (ops GPRC:$RA),
InOperandList = (ops s16imm:$DISP, GPRC:$RB, s16imm:$NUM),
mayLoad = 1 in {
def LDAg : MForm<0x08, 1, "lda $RA,0($RB)\t\t!gpdisp!$NUM", [], s_lda>; //Load address
def LDAHg : MForm<0x09, 1, "ldah $RA,0($RB)\t\t!gpdisp!$NUM", [], s_lda>; //Load address
}
//Load quad, rellocated literal form
let OutOperandList = (ops GPRC:$RA), InOperandList = (ops s64imm:$DISP, GPRC:$RB) in
def LDQl : MForm<0x29, 1, "ldq $RA,$DISP($RB)\t\t!literal",
[(set GPRC:$RA, (Alpha_rellit tglobaladdr:$DISP, GPRC:$RB))], s_ild>;
def : Pat<(Alpha_rellit texternalsym:$ext, GPRC:$RB),
(LDQl texternalsym:$ext, GPRC:$RB)>;
let OutOperandList = (outs GPRC:$RR),
InOperandList = (ins GPRC:$RA, s64imm:$DISP, GPRC:$RB),
Constraints = "$RA = $RR",
DisableEncoding = "$RR" in {
def STQ_C : MForm<0x2F, 0, "stq_l $RA,$DISP($RB)", [], s_ist>;
def STL_C : MForm<0x2E, 0, "stl_l $RA,$DISP($RB)", [], s_ist>;
}
let OutOperandList = (ops GPRC:$RA),
InOperandList = (ops s64imm:$DISP, GPRC:$RB),
mayLoad = 1 in {
def LDQ_L : MForm<0x2B, 1, "ldq_l $RA,$DISP($RB)", [], s_ild>;
def LDL_L : MForm<0x2A, 1, "ldl_l $RA,$DISP($RB)", [], s_ild>;
}
def RPCC : MfcForm<0x18, 0xC000, "rpcc $RA", s_rpcc>; //Read process cycle counter
def MB : MfcPForm<0x18, 0x4000, "mb", s_imisc>; //memory barrier
def WMB : MfcPForm<0x18, 0x4400, "wmb", s_imisc>; //write memory barrier
def : Pat<(membarrier (i64 imm:$ll), (i64 imm:$ls), (i64 imm:$sl), (i64 1), (i64 imm:$dev)),
(WMB)>;
def : Pat<(membarrier (i64 imm:$ll), (i64 imm:$ls), (i64 imm:$sl), (i64 imm:$ss), (i64 imm:$dev)),
(MB)>;
//Basic Floating point ops
//Floats
let OutOperandList = (ops F4RC:$RC), InOperandList = (ops F4RC:$RB), Fa = 31 in
def SQRTS : FPForm<0x14, 0x58B, "sqrts/su $RB,$RC",
[(set F4RC:$RC, (fsqrt F4RC:$RB))], s_fsqrts>;
let OutOperandList = (ops F4RC:$RC), InOperandList = (ops F4RC:$RA, F4RC:$RB) in {
def ADDS : FPForm<0x16, 0x580, "adds/su $RA,$RB,$RC",
[(set F4RC:$RC, (fadd F4RC:$RA, F4RC:$RB))], s_fadd>;
def SUBS : FPForm<0x16, 0x581, "subs/su $RA,$RB,$RC",
[(set F4RC:$RC, (fsub F4RC:$RA, F4RC:$RB))], s_fadd>;
def DIVS : FPForm<0x16, 0x583, "divs/su $RA,$RB,$RC",
[(set F4RC:$RC, (fdiv F4RC:$RA, F4RC:$RB))], s_fdivs>;
def MULS : FPForm<0x16, 0x582, "muls/su $RA,$RB,$RC",
[(set F4RC:$RC, (fmul F4RC:$RA, F4RC:$RB))], s_fmul>;
def CPYSS : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",
[(set F4RC:$RC, (fcopysign F4RC:$RB, F4RC:$RA))], s_fadd>;
def CPYSES : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[], s_fadd>; //Copy sign and exponent
def CPYSNS : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",
[(set F4RC:$RC, (fneg (fcopysign F4RC:$RB, F4RC:$RA)))], s_fadd>;
}
//Doubles
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops F8RC:$RB), Fa = 31 in
def SQRTT : FPForm<0x14, 0x5AB, "sqrtt/su $RB,$RC",
[(set F8RC:$RC, (fsqrt F8RC:$RB))], s_fsqrtt>;
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops F8RC:$RA, F8RC:$RB) in {
def ADDT : FPForm<0x16, 0x5A0, "addt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fadd F8RC:$RA, F8RC:$RB))], s_fadd>;
def SUBT : FPForm<0x16, 0x5A1, "subt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fsub F8RC:$RA, F8RC:$RB))], s_fadd>;
def DIVT : FPForm<0x16, 0x5A3, "divt/su $RA,$RB,$RC",
[(set F8RC:$RC, (fdiv F8RC:$RA, F8RC:$RB))], s_fdivt>;
def MULT : FPForm<0x16, 0x5A2, "mult/su $RA,$RB,$RC",
[(set F8RC:$RC, (fmul F8RC:$RA, F8RC:$RB))], s_fmul>;
def CPYST : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",
[(set F8RC:$RC, (fcopysign F8RC:$RB, F8RC:$RA))], s_fadd>;
def CPYSET : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[], s_fadd>; //Copy sign and exponent
def CPYSNT : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",
[(set F8RC:$RC, (fneg (fcopysign F8RC:$RB, F8RC:$RA)))], s_fadd>;
def CMPTEQ : FPForm<0x16, 0x5A5, "cmpteq/su $RA,$RB,$RC", [], s_fadd>;
// [(set F8RC:$RC, (seteq F8RC:$RA, F8RC:$RB))]>;
def CMPTLE : FPForm<0x16, 0x5A7, "cmptle/su $RA,$RB,$RC", [], s_fadd>;
// [(set F8RC:$RC, (setle F8RC:$RA, F8RC:$RB))]>;
def CMPTLT : FPForm<0x16, 0x5A6, "cmptlt/su $RA,$RB,$RC", [], s_fadd>;
// [(set F8RC:$RC, (setlt F8RC:$RA, F8RC:$RB))]>;
def CMPTUN : FPForm<0x16, 0x5A4, "cmptun/su $RA,$RB,$RC", [], s_fadd>;
// [(set F8RC:$RC, (setuo F8RC:$RA, F8RC:$RB))]>;
}
//More CPYS forms:
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops F4RC:$RA, F8RC:$RB) in {
def CPYSTs : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",
[(set F8RC:$RC, (fcopysign F8RC:$RB, F4RC:$RA))], s_fadd>;
def CPYSNTs : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",
[(set F8RC:$RC, (fneg (fcopysign F8RC:$RB, F4RC:$RA)))], s_fadd>;
}
let OutOperandList = (ops F4RC:$RC), InOperandList = (ops F8RC:$RA, F4RC:$RB) in {
def CPYSSt : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",
[(set F4RC:$RC, (fcopysign F4RC:$RB, F8RC:$RA))], s_fadd>;
def CPYSESt : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[], s_fadd>; //Copy sign and exponent
def CPYSNSt : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",
[(set F4RC:$RC, (fneg (fcopysign F4RC:$RB, F8RC:$RA)))], s_fadd>;
}
//conditional moves, floats
let OutOperandList = (ops F4RC:$RDEST), InOperandList = (ops F4RC:$RFALSE, F4RC:$RTRUE, F8RC:$RCOND),
isTwoAddress = 1 in {
def FCMOVEQS : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RTRUE,$RDEST",[], s_fcmov>; //FCMOVE if = zero
def FCMOVGES : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RTRUE,$RDEST",[], s_fcmov>; //FCMOVE if >= zero
def FCMOVGTS : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RTRUE,$RDEST",[], s_fcmov>; //FCMOVE if > zero
def FCMOVLES : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RTRUE,$RDEST",[], s_fcmov>; //FCMOVE if <= zero
def FCMOVLTS : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RTRUE,$RDEST",[], s_fcmov>; // FCMOVE if < zero
def FCMOVNES : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RTRUE,$RDEST",[], s_fcmov>; //FCMOVE if != zero
}
//conditional moves, doubles
let OutOperandList = (ops F8RC:$RDEST), InOperandList = (ops F8RC:$RFALSE, F8RC:$RTRUE, F8RC:$RCOND),
isTwoAddress = 1 in {
def FCMOVEQT : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RTRUE,$RDEST", [], s_fcmov>;
def FCMOVGET : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RTRUE,$RDEST", [], s_fcmov>;
def FCMOVGTT : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RTRUE,$RDEST", [], s_fcmov>;
def FCMOVLET : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RTRUE,$RDEST", [], s_fcmov>;
def FCMOVLTT : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RTRUE,$RDEST", [], s_fcmov>;
def FCMOVNET : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RTRUE,$RDEST", [], s_fcmov>;
}
//misc FP selects
//Select double
def : Pat<(select (seteq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setoeq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setueq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setne F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVEQT F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setone F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVEQT F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setune F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVEQT F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setgt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setogt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setugt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setge F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setoge F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setuge F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setlt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setolt F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setult F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setle F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setole F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setule F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
//Select single
def : Pat<(select (seteq F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setoeq F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setueq F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setne F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVEQS F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setone F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVEQS F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setune F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVEQS F4RC:$sf, F4RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setgt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setogt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setugt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setge F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setoge F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setuge F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RB, F8RC:$RA))>;
def : Pat<(select (setlt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setolt F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setult F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLT F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setle F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setole F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setule F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
(FCMOVNES F4RC:$sf, F4RC:$st, (CMPTLE F8RC:$RA, F8RC:$RB))>;
let OutOperandList = (ops GPRC:$RC), InOperandList = (ops F4RC:$RA), Fb = 31 in
def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC",[], s_ftoi>; //Floating to integer move, S_floating
let OutOperandList = (ops GPRC:$RC), InOperandList = (ops F8RC:$RA), Fb = 31 in
def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC",
[(set GPRC:$RC, (bitconvert F8RC:$RA))], s_ftoi>; //Floating to integer move
let OutOperandList = (ops F4RC:$RC), InOperandList = (ops GPRC:$RA), Fb = 31 in
def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC",[], s_itof>; //Integer to floating move, S_floating
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops GPRC:$RA), Fb = 31 in
def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC",
[(set F8RC:$RC, (bitconvert GPRC:$RA))], s_itof>; //Integer to floating move
let OutOperandList = (ops F4RC:$RC), InOperandList = (ops F8RC:$RB), Fa = 31 in
def CVTQS : FPForm<0x16, 0x7BC, "cvtqs/sui $RB,$RC",
[(set F4RC:$RC, (Alpha_cvtqs F8RC:$RB))], s_fadd>;
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops F8RC:$RB), Fa = 31 in
def CVTQT : FPForm<0x16, 0x7BE, "cvtqt/sui $RB,$RC",
[(set F8RC:$RC, (Alpha_cvtqt F8RC:$RB))], s_fadd>;
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops F8RC:$RB), Fa = 31 in
def CVTTQ : FPForm<0x16, 0x52F, "cvttq/svc $RB,$RC",
[(set F8RC:$RC, (Alpha_cvttq F8RC:$RB))], s_fadd>;
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops F4RC:$RB), Fa = 31 in
def CVTST : FPForm<0x16, 0x6AC, "cvtst/s $RB,$RC",
[(set F8RC:$RC, (fextend F4RC:$RB))], s_fadd>;
let OutOperandList = (ops F4RC:$RC), InOperandList = (ops F8RC:$RB), Fa = 31 in
def CVTTS : FPForm<0x16, 0x7AC, "cvtts/sui $RB,$RC",
[(set F4RC:$RC, (fround F8RC:$RB))], s_fadd>;
/////////////////////////////////////////////////////////
//Branching
/////////////////////////////////////////////////////////
class br_icc<bits<6> opc, string asmstr>
: BFormN<opc, (ops u64imm:$opc, GPRC:$R, target:$dst),
!strconcat(asmstr, " $R,$dst"), s_icbr>;
class br_fcc<bits<6> opc, string asmstr>
: BFormN<opc, (ops u64imm:$opc, F8RC:$R, target:$dst),
!strconcat(asmstr, " $R,$dst"), s_fbr>;
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
let Ra = 31 in
def BR : BFormD<0x30, "br $$31,$DISP", [(br bb:$DISP)], s_ubr>;
def COND_BRANCH_I : BFormN<0, (ops u64imm:$opc, GPRC:$R, target:$dst),
"{:comment} COND_BRANCH imm:$opc, GPRC:$R, bb:$dst",
s_icbr>;
def COND_BRANCH_F : BFormN<0, (ops u64imm:$opc, F8RC:$R, target:$dst),
"{:comment} COND_BRANCH imm:$opc, F8RC:$R, bb:$dst",
s_fbr>;
//Branches, int
def BEQ : br_icc<0x39, "beq">;
def BGE : br_icc<0x3E, "bge">;
def BGT : br_icc<0x3F, "bgt">;
def BLBC : br_icc<0x38, "blbc">;
def BLBS : br_icc<0x3C, "blbs">;
def BLE : br_icc<0x3B, "ble">;
def BLT : br_icc<0x3A, "blt">;
def BNE : br_icc<0x3D, "bne">;
//Branches, float
def FBEQ : br_fcc<0x31, "fbeq">;
def FBGE : br_fcc<0x36, "fbge">;
def FBGT : br_fcc<0x37, "fbgt">;
def FBLE : br_fcc<0x33, "fble">;
def FBLT : br_fcc<0x32, "fblt">;
def FBNE : br_fcc<0x36, "fbne">;
}
//An ugly trick to get the opcode as an imm I can use
def immBRCond : SDNodeXForm<imm, [{
switch((uint64_t)N->getZExtValue()) {
default: assert(0 && "Unknown branch type");
case 0: return getI64Imm(Alpha::BEQ);
case 1: return getI64Imm(Alpha::BNE);
case 2: return getI64Imm(Alpha::BGE);
case 3: return getI64Imm(Alpha::BGT);
case 4: return getI64Imm(Alpha::BLE);
case 5: return getI64Imm(Alpha::BLT);
case 6: return getI64Imm(Alpha::BLBS);
case 7: return getI64Imm(Alpha::BLBC);
case 20: return getI64Imm(Alpha::FBEQ);
case 21: return getI64Imm(Alpha::FBNE);
case 22: return getI64Imm(Alpha::FBGE);
case 23: return getI64Imm(Alpha::FBGT);
case 24: return getI64Imm(Alpha::FBLE);
case 25: return getI64Imm(Alpha::FBLT);
}
}]>;
//Int cond patterns
def : Pat<(brcond (seteq GPRC:$RA, 0), bb:$DISP),
(COND_BRANCH_I (immBRCond 0), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond (setge GPRC:$RA, 0), bb:$DISP),
(COND_BRANCH_I (immBRCond 2), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond (setgt GPRC:$RA, 0), bb:$DISP),
(COND_BRANCH_I (immBRCond 3), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond (and GPRC:$RA, 1), bb:$DISP),
(COND_BRANCH_I (immBRCond 6), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond (setle GPRC:$RA, 0), bb:$DISP),
(COND_BRANCH_I (immBRCond 4), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond (setlt GPRC:$RA, 0), bb:$DISP),
(COND_BRANCH_I (immBRCond 5), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond (setne GPRC:$RA, 0), bb:$DISP),
(COND_BRANCH_I (immBRCond 1), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond GPRC:$RA, bb:$DISP),
(COND_BRANCH_I (immBRCond 1), GPRC:$RA, bb:$DISP)>;
def : Pat<(brcond (setne GPRC:$RA, GPRC:$RB), bb:$DISP),
(COND_BRANCH_I (immBRCond 0), (CMPEQ GPRC:$RA, GPRC:$RB), bb:$DISP)>;
def : Pat<(brcond (setne GPRC:$RA, immUExt8:$L), bb:$DISP),
(COND_BRANCH_I (immBRCond 0), (CMPEQi GPRC:$RA, immUExt8:$L), bb:$DISP)>;
//FP cond patterns
def : Pat<(brcond (seteq F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 20), F8RC:$RA, bb:$DISP)>;
def : Pat<(brcond (setne F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), F8RC:$RA, bb:$DISP)>;
def : Pat<(brcond (setge F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 22), F8RC:$RA, bb:$DISP)>;
def : Pat<(brcond (setgt F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 23), F8RC:$RA, bb:$DISP)>;
def : Pat<(brcond (setle F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 24), F8RC:$RA, bb:$DISP)>;
def : Pat<(brcond (setlt F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 25), F8RC:$RA, bb:$DISP)>;
def : Pat<(brcond (seteq F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setoeq F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setueq F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setlt F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setolt F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setult F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setle F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setole F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setule F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setgt F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RB, F8RC:$RA), bb:$DISP)>;
def : Pat<(brcond (setogt F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RB, F8RC:$RA), bb:$DISP)>;
def : Pat<(brcond (setugt F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLT F8RC:$RB, F8RC:$RA), bb:$DISP)>;
def : Pat<(brcond (setge F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RB, F8RC:$RA), bb:$DISP)>;
def : Pat<(brcond (setoge F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RB, F8RC:$RA), bb:$DISP)>;
def : Pat<(brcond (setuge F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), (CMPTLE F8RC:$RB, F8RC:$RA), bb:$DISP)>;
def : Pat<(brcond (setne F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 20), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setone F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 20), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setune F8RC:$RA, F8RC:$RB), bb:$DISP),
(COND_BRANCH_F (immBRCond 20), (CMPTEQ F8RC:$RA, F8RC:$RB), bb:$DISP)>;
def : Pat<(brcond (setoeq F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 20), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setueq F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 20), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setoge F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 22), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setuge F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 22), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setogt F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 23), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setugt F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 23), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setole F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 24), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setule F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 24), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setolt F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 25), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setult F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 25), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setone F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), F8RC:$RA,bb:$DISP)>;
def : Pat<(brcond (setune F8RC:$RA, immFPZ), bb:$DISP),
(COND_BRANCH_F (immBRCond 21), F8RC:$RA,bb:$DISP)>;
//End Branches
//S_floating : IEEE Single
//T_floating : IEEE Double
//Unused instructions
//Mnemonic Format Opcode Description
//CALL_PAL Pcd 00 Trap to PALcode
//ECB Mfc 18.E800 Evict cache block
//EXCB Mfc 18.0400 Exception barrier
//FETCH Mfc 18.8000 Prefetch data
//FETCH_M Mfc 18.A000 Prefetch data, modify intent
//LDQ_U Mem 0B Load unaligned quadword
//MB Mfc 18.4000 Memory barrier
//STQ_U Mem 0F Store unaligned quadword
//TRAPB Mfc 18.0000 Trap barrier
//WH64 Mfc 18.F800 Write hint  64 bytes
//WMB Mfc 18.4400 Write memory barrier
//MF_FPCR F-P 17.025 Move from FPCR
//MT_FPCR F-P 17.024 Move to FPCR
//There are in the Multimedia extentions, so let's not use them yet
//def MAXSB8 : OForm<0x1C, 0x3E, "MAXSB8 $RA,$RB,$RC">; //Vector signed byte maximum
//def MAXSW4 : OForm< 0x1C, 0x3F, "MAXSW4 $RA,$RB,$RC">; //Vector signed word maximum
//def MAXUB8 : OForm<0x1C, 0x3C, "MAXUB8 $RA,$RB,$RC">; //Vector unsigned byte maximum
//def MAXUW4 : OForm< 0x1C, 0x3D, "MAXUW4 $RA,$RB,$RC">; //Vector unsigned word maximum
//def MINSB8 : OForm< 0x1C, 0x38, "MINSB8 $RA,$RB,$RC">; //Vector signed byte minimum
//def MINSW4 : OForm< 0x1C, 0x39, "MINSW4 $RA,$RB,$RC">; //Vector signed word minimum
//def MINUB8 : OForm< 0x1C, 0x3A, "MINUB8 $RA,$RB,$RC">; //Vector unsigned byte minimum
//def MINUW4 : OForm< 0x1C, 0x3B, "MINUW4 $RA,$RB,$RC">; //Vector unsigned word minimum
//def PERR : OForm< 0x1C, 0x31, "PERR $RA,$RB,$RC">; //Pixel error
//def PKLB : OForm< 0x1C, 0x37, "PKLB $RA,$RB,$RC">; //Pack longwords to bytes
//def PKWB : OForm<0x1C, 0x36, "PKWB $RA,$RB,$RC">; //Pack words to bytes
//def UNPKBL : OForm< 0x1C, 0x35, "UNPKBL $RA,$RB,$RC">; //Unpack bytes to longwords
//def UNPKBW : OForm< 0x1C, 0x34, "UNPKBW $RA,$RB,$RC">; //Unpack bytes to words
//CVTLQ F-P 17.010 Convert longword to quadword
//CVTQL F-P 17.030 Convert quadword to longword
//Constant handling
def immConst2Part : PatLeaf<(imm), [{
//true if imm fits in a LDAH LDA pair
int64_t val = (int64_t)N->getZExtValue();
return (val <= IMM_FULLHIGH && val >= IMM_FULLLOW);
}]>;
def immConst2PartInt : PatLeaf<(imm), [{
//true if imm fits in a LDAH LDA pair with zeroext
uint64_t uval = N->getZExtValue();
int32_t val32 = (int32_t)uval;
return ((uval >> 32) == 0 && //empty upper bits
val32 <= IMM_FULLHIGH);
// val32 >= IMM_FULLLOW + IMM_LOW * IMM_MULT); //Always True
}], SExt32>;
def : Pat<(i64 immConst2Part:$imm),
(LDA (LL16 immConst2Part:$imm), (LDAH (LH16 immConst2Part:$imm), R31))>;
def : Pat<(i64 immSExt16:$imm),
(LDA immSExt16:$imm, R31)>;
def : Pat<(i64 immSExt16int:$imm),
(ZAPNOTi (LDA (SExt16 immSExt16int:$imm), R31), 15)>;
def : Pat<(i64 immConst2PartInt:$imm),
(ZAPNOTi (LDA (LL16 (SExt32 immConst2PartInt:$imm)),
(LDAH (LH16 (SExt32 immConst2PartInt:$imm)), R31)), 15)>;
//TODO: I want to just define these like this!
//def : Pat<(i64 0),
// (R31)>;
//def : Pat<(f64 0.0),
// (F31)>;
//def : Pat<(f64 -0.0),
// (CPYSNT F31, F31)>;
//def : Pat<(f32 0.0),
// (F31)>;
//def : Pat<(f32 -0.0),
// (CPYSNS F31, F31)>;
//Misc Patterns:
def : Pat<(sext_inreg GPRC:$RB, i32),
(ADDLi GPRC:$RB, 0)>;
def : Pat<(fabs F8RC:$RB),
(CPYST F31, F8RC:$RB)>;
def : Pat<(fabs F4RC:$RB),
(CPYSS F31, F4RC:$RB)>;
def : Pat<(fneg F8RC:$RB),
(CPYSNT F8RC:$RB, F8RC:$RB)>;
def : Pat<(fneg F4RC:$RB),
(CPYSNS F4RC:$RB, F4RC:$RB)>;
def : Pat<(fcopysign F4RC:$A, (fneg F4RC:$B)),
(CPYSNS F4RC:$B, F4RC:$A)>;
def : Pat<(fcopysign F8RC:$A, (fneg F8RC:$B)),
(CPYSNT F8RC:$B, F8RC:$A)>;
def : Pat<(fcopysign F4RC:$A, (fneg F8RC:$B)),
(CPYSNSt F8RC:$B, F4RC:$A)>;
def : Pat<(fcopysign F8RC:$A, (fneg F4RC:$B)),
(CPYSNTs F4RC:$B, F8RC:$A)>;
//Yes, signed multiply high is ugly
def : Pat<(mulhs GPRC:$RA, GPRC:$RB),
(SUBQr (UMULHr GPRC:$RA, GPRC:$RB), (ADDQr (CMOVGEr GPRC:$RB, R31, GPRC:$RA),
(CMOVGEr GPRC:$RA, R31, GPRC:$RB)))>;
//Stupid crazy arithmetic stuff:
let AddedComplexity = 1 in {
def : Pat<(mul GPRC:$RA, 5), (S4ADDQr GPRC:$RA, GPRC:$RA)>;
def : Pat<(mul GPRC:$RA, 9), (S8ADDQr GPRC:$RA, GPRC:$RA)>;
def : Pat<(mul GPRC:$RA, 3), (S4SUBQr GPRC:$RA, GPRC:$RA)>;
def : Pat<(mul GPRC:$RA, 7), (S8SUBQr GPRC:$RA, GPRC:$RA)>;
//slight tree expansion if we are multiplying near to a power of 2
//n is above a power of 2
def : Pat<(mul GPRC:$RA, immRem1:$imm),
(ADDQr (SLr GPRC:$RA, (nearP2X immRem1:$imm)), GPRC:$RA)>;
def : Pat<(mul GPRC:$RA, immRem2:$imm),
(ADDQr (SLr GPRC:$RA, (nearP2X immRem2:$imm)), (ADDQr GPRC:$RA, GPRC:$RA))>;
def : Pat<(mul GPRC:$RA, immRem3:$imm),
(ADDQr (SLr GPRC:$RA, (nearP2X immRem3:$imm)), (S4SUBQr GPRC:$RA, GPRC:$RA))>;
def : Pat<(mul GPRC:$RA, immRem4:$imm),
(S4ADDQr GPRC:$RA, (SLr GPRC:$RA, (nearP2X immRem4:$imm)))>;
def : Pat<(mul GPRC:$RA, immRem5:$imm),
(ADDQr (SLr GPRC:$RA, (nearP2X immRem5:$imm)), (S4ADDQr GPRC:$RA, GPRC:$RA))>;
def : Pat<(mul GPRC:$RA, immRemP2:$imm),
(ADDQr (SLr GPRC:$RA, (nearP2X immRemP2:$imm)), (SLi GPRC:$RA, (nearP2RemX immRemP2:$imm)))>;
//n is below a power of 2
//FIXME: figure out why something is truncating the imm to 32bits
// this will fix 2007-11-27-mulneg3
//def : Pat<(mul GPRC:$RA, immRem1n:$imm),
// (SUBQr (SLr GPRC:$RA, (nearP2X immRem1n:$imm)), GPRC:$RA)>;
//def : Pat<(mul GPRC:$RA, immRem2n:$imm),
// (SUBQr (SLr GPRC:$RA, (nearP2X immRem2n:$imm)), (ADDQr GPRC:$RA, GPRC:$RA))>;
//def : Pat<(mul GPRC:$RA, immRem3n:$imm),
// (SUBQr (SLr GPRC:$RA, (nearP2X immRem3n:$imm)), (S4SUBQr GPRC:$RA, GPRC:$RA))>;
//def : Pat<(mul GPRC:$RA, immRem4n:$imm),
// (SUBQr (SLr GPRC:$RA, (nearP2X immRem4n:$imm)), (SLi GPRC:$RA, 2))>;
//def : Pat<(mul GPRC:$RA, immRem5n:$imm),
// (SUBQr (SLr GPRC:$RA, (nearP2X immRem5n:$imm)), (S4ADDQr GPRC:$RA, GPRC:$RA))>;
//def : Pat<(mul GPRC:$RA, immRemP2n:$imm),
// (SUBQr (SLr GPRC:$RA, (nearP2X immRemP2n:$imm)), (SLi GPRC:$RA, (nearP2RemX immRemP2n:$imm)))>;
} //Added complexity