mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 05:32:25 +00:00
1d56cda023
Summary: Converting outermost zext(a) to sext(a) causes worse code when the computation of zext(a) could be reused. For example, after converting ... = array[zext(a)] ... = array[zext(a) + 1] to ... = array[sext(a)] ... = array[zext(a) + 1], the program computes sext(a), which is actually unnecessary. I added one test in split-gep-and-gvn.ll to illustrate this scenario. Also, with r211281 and r211084, we annotate more "nuw" tags to computation involving CUDA intrinsics such as threadIdx.x. These annotations help with splitting GEP a lot, rendering the benefit we get from this reverted optimization only marginal. Test Plan: make check-all Reviewers: eliben, meheff Reviewed By: meheff Subscribers: jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D4542 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213209 91177308-0d34-0410-b5e6-96231b3b80d8
237 lines
9.3 KiB
LLVM
237 lines
9.3 KiB
LLVM
; RUN: opt < %s -separate-const-offset-from-gep -dce -S | FileCheck %s
|
|
|
|
; Several unit tests for -separate-const-offset-from-gep. The transformation
|
|
; heavily relies on TargetTransformInfo, so we put these tests under
|
|
; target-specific folders.
|
|
|
|
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|
|
; target triple is necessary; otherwise TargetTransformInfo rejects any
|
|
; addressing mode.
|
|
target triple = "nvptx64-unknown-unknown"
|
|
|
|
%struct.S = type { float, double }
|
|
|
|
@struct_array = global [1024 x %struct.S] zeroinitializer, align 16
|
|
@float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4
|
|
|
|
; We should not extract any struct field indices, because fields in a struct
|
|
; may have different types.
|
|
define double* @struct(i32 %i) {
|
|
entry:
|
|
%add = add nsw i32 %i, 5
|
|
%idxprom = sext i32 %add to i64
|
|
%p = getelementptr inbounds [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1
|
|
ret double* %p
|
|
}
|
|
; CHECK-LABEL: @struct(
|
|
; CHECK: getelementptr [1024 x %struct.S]* @struct_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1
|
|
|
|
; We should be able to trace into sext(a + b) if a + b is non-negative
|
|
; (e.g., used as an index of an inbounds GEP) and one of a and b is
|
|
; non-negative.
|
|
define float* @sext_add(i32 %i, i32 %j) {
|
|
entry:
|
|
%0 = add i32 %i, 1
|
|
%1 = sext i32 %0 to i64 ; inbound sext(i + 1) = sext(i) + 1
|
|
%2 = add i32 %j, -2
|
|
; However, inbound sext(j + -2) != sext(j) + -2, e.g., j = INT_MIN
|
|
%3 = sext i32 %2 to i64
|
|
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @sext_add(
|
|
; CHECK-NOT: = add
|
|
; CHECK: add i32 %j, -2
|
|
; CHECK: sext
|
|
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 32
|
|
|
|
; We should be able to trace into sext/zext if it can be distributed to both
|
|
; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b)
|
|
;
|
|
; This test verifies we can transform
|
|
; gep base, a + sext(b +nsw 1), c + zext(d +nuw 1)
|
|
; to
|
|
; gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1
|
|
define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) {
|
|
%b1 = add nsw i32 %b, 1
|
|
%b2 = sext i32 %b1 to i64
|
|
%i = add i64 %a, %b2 ; i = a + sext(b +nsw 1)
|
|
%d1 = add nuw i32 %d, 1
|
|
%d2 = zext i32 %d1 to i64
|
|
%j = add i64 %c, %d2 ; j = c + zext(d +nuw 1)
|
|
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @ext_add_no_overflow(
|
|
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK: getelementptr float* [[BASE_PTR]], i64 33
|
|
|
|
; Verifies we handle nested sext/zext correctly.
|
|
define void @sext_zext(i32 %a, i32 %b, float** %out1, float** %out2) {
|
|
entry:
|
|
%0 = add nsw nuw i32 %a, 1
|
|
%1 = sext i32 %0 to i48
|
|
%2 = zext i48 %1 to i64 ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1
|
|
%3 = add nsw i32 %b, 2
|
|
%4 = sext i32 %3 to i48
|
|
%5 = zext i48 %4 to i64 ; zext(sext(b +nsw 2)) != zext(sext(b)) + 2
|
|
%p1 = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %2, i64 %5
|
|
store float* %p1, float** %out1
|
|
%6 = add nuw i32 %a, 3
|
|
%7 = zext i32 %6 to i48
|
|
%8 = sext i48 %7 to i64 ; sext(zext(a +nuw 3)) = zext(a +nuw 3) = zext(a) + 3
|
|
%9 = add nsw i32 %b, 4
|
|
%10 = zext i32 %9 to i48
|
|
%11 = sext i48 %10 to i64 ; sext(zext(b +nsw 4)) != zext(b) + 4
|
|
%p2 = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %8, i64 %11
|
|
store float* %p2, float** %out2
|
|
ret void
|
|
}
|
|
; CHECK-LABEL: @sext_zext(
|
|
; CHECK: [[BASE_PTR_1:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK: getelementptr float* [[BASE_PTR_1]], i64 32
|
|
; CHECK: [[BASE_PTR_2:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK: getelementptr float* [[BASE_PTR_2]], i64 96
|
|
|
|
; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if
|
|
; its operand is an OR and the two operands of the OR have no common bits.
|
|
define float* @sext_or(i64 %a, i32 %b) {
|
|
entry:
|
|
%b1 = shl i32 %b, 2
|
|
%b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits
|
|
%b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits
|
|
%b2.ext = zext i32 %b2 to i64
|
|
%b3.ext = sext i32 %b3 to i64
|
|
%i = add i64 %a, %b2.ext
|
|
%j = add i64 %a, %b3.ext
|
|
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @sext_or(
|
|
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK: getelementptr float* [[BASE_PTR]], i64 32
|
|
|
|
; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b +
|
|
; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't
|
|
; affected.
|
|
define float* @expr(i64 %a, i64 %b, i64* %out) {
|
|
entry:
|
|
%b5 = add i64 %b, 5
|
|
%i = add i64 %b5, %a
|
|
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 0
|
|
store i64 %b5, i64* %out
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @expr(
|
|
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 0
|
|
; CHECK: getelementptr float* [[BASE_PTR]], i64 160
|
|
; CHECK: store i64 %b5, i64* %out
|
|
|
|
; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8
|
|
define float* @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) {
|
|
entry:
|
|
%0 = add nsw i32 %c, 8
|
|
%1 = add nsw i32 %b, %0
|
|
%2 = add nsw i32 %a, %1
|
|
%3 = sext i32 %2 to i64
|
|
%i = add i64 %d, %3
|
|
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @sext_expr(
|
|
; CHECK: sext i32
|
|
; CHECK: sext i32
|
|
; CHECK: sext i32
|
|
; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 8
|
|
|
|
; Verifies we handle "sub" correctly.
|
|
define float* @sub(i64 %i, i64 %j) {
|
|
%i2 = sub i64 %i, 5 ; i - 5
|
|
%j2 = sub i64 5, %j ; 5 - i
|
|
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @sub(
|
|
; CHECK: %[[j2:[a-zA-Z0-9]+]] = sub i64 0, %j
|
|
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]]
|
|
; CHECK: getelementptr float* [[BASE_PTR]], i64 -155
|
|
|
|
%struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed
|
|
|
|
; Verifies we can emit correct uglygep if the address is not natually aligned.
|
|
define i64* @packed_struct(i32 %i, i32 %j) {
|
|
entry:
|
|
%s = alloca [1024 x %struct.Packed], align 16
|
|
%add = add nsw i32 %j, 3
|
|
%idxprom = sext i32 %add to i64
|
|
%add1 = add nsw i32 %i, 1
|
|
%idxprom2 = sext i32 %add1 to i64
|
|
%arrayidx3 = getelementptr inbounds [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom
|
|
ret i64* %arrayidx3
|
|
}
|
|
; CHECK-LABEL: @packed_struct(
|
|
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [1024 x %struct.Packed]* %s, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK: [[CASTED_PTR:%[a-zA-Z0-9]+]] = bitcast i64* [[BASE_PTR]] to i8*
|
|
; CHECK: %uglygep = getelementptr i8* [[CASTED_PTR]], i64 100
|
|
; CHECK: bitcast i8* %uglygep to i64*
|
|
|
|
; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))",
|
|
; because "zext(b + 8) != zext(b) + 8"
|
|
define float* @zext_expr(i32 %a, i32 %b) {
|
|
entry:
|
|
%0 = add i32 %b, 8
|
|
%1 = add nuw i32 %a, %0
|
|
%i = zext i32 %1 to i64
|
|
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: zext_expr(
|
|
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
|
|
|
|
; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep
|
|
; should be considered sign-extended to the pointer size. Therefore,
|
|
; gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b
|
|
; because
|
|
; sext(a + b) != sext(a) + sext(b)
|
|
;
|
|
; This test verifies we do not illegitimately extract the 8 from
|
|
; gep base, (i32 a + 8)
|
|
define float* @i32_add(i32 %a) {
|
|
entry:
|
|
%i = add i32 %a, 8
|
|
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i32 %i
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @i32_add(
|
|
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK-NOT: getelementptr
|
|
|
|
; Verifies that we compute the correct constant offset when the index is
|
|
; sign-extended and then zero-extended. The old version of our code failed to
|
|
; handle this case because it simply computed the constant offset as the
|
|
; sign-extended value of the constant part of the GEP index.
|
|
define float* @apint(i1 %a) {
|
|
entry:
|
|
%0 = add nsw nuw i1 %a, 1
|
|
%1 = sext i1 %0 to i4
|
|
%2 = zext i4 %1 to i64 ; zext (sext i1 1 to i4) to i64 = 15
|
|
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %2
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @apint(
|
|
; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
|
|
; CHECK: getelementptr float* [[BASE_PTR]], i64 15
|
|
|
|
; Do not trace into binary operators other than ADD, SUB, and OR.
|
|
define float* @and(i64 %a) {
|
|
entry:
|
|
%0 = shl i64 %a, 2
|
|
%1 = and i64 %0, 1
|
|
%p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %1
|
|
ret float* %p
|
|
}
|
|
; CHECK-LABEL: @and(
|
|
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array
|
|
; CHECK-NOT: getelementptr
|