mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-19 01:13:25 +00:00
086ec9976f
track of the number of live registers, which is all the set was being used for. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56498 91177308-0d34-0410-b5e6-96231b3b80d8
658 lines
22 KiB
C++
658 lines
22 KiB
C++
//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a fast scheduler.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumUnfolds, "Number of nodes unfolded");
|
|
STATISTIC(NumDups, "Number of duplicated nodes");
|
|
STATISTIC(NumCCCopies, "Number of cross class copies");
|
|
|
|
static RegisterScheduler
|
|
fastDAGScheduler("fast", " Fast suboptimal list scheduling",
|
|
createFastDAGScheduler);
|
|
|
|
namespace {
|
|
/// FastPriorityQueue - A degenerate priority queue that considers
|
|
/// all nodes to have the same priority.
|
|
///
|
|
struct VISIBILITY_HIDDEN FastPriorityQueue {
|
|
SmallVector<SUnit *, 16> Queue;
|
|
|
|
bool empty() const { return Queue.empty(); }
|
|
|
|
void push(SUnit *U) {
|
|
Queue.push_back(U);
|
|
}
|
|
|
|
SUnit *pop() {
|
|
if (empty()) return NULL;
|
|
SUnit *V = Queue.back();
|
|
Queue.pop_back();
|
|
return V;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
|
|
///
|
|
class VISIBILITY_HIDDEN ScheduleDAGFast : public ScheduleDAG {
|
|
private:
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
FastPriorityQueue AvailableQueue;
|
|
|
|
/// LiveRegDefs - A set of physical registers and their definition
|
|
/// that are "live". These nodes must be scheduled before any other nodes that
|
|
/// modifies the registers can be scheduled.
|
|
unsigned NumLiveRegs;
|
|
std::vector<SUnit*> LiveRegDefs;
|
|
std::vector<unsigned> LiveRegCycles;
|
|
|
|
public:
|
|
ScheduleDAGFast(SelectionDAG &dag, MachineBasicBlock *bb,
|
|
const TargetMachine &tm)
|
|
: ScheduleDAG(dag, bb, tm) {}
|
|
|
|
void Schedule();
|
|
|
|
/// AddPred - This adds the specified node X as a predecessor of
|
|
/// the current node Y if not already.
|
|
/// This returns true if this is a new predecessor.
|
|
bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
|
|
unsigned PhyReg = 0, int Cost = 1);
|
|
|
|
/// RemovePred - This removes the specified node N from the predecessors of
|
|
/// the current node M.
|
|
bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
|
|
|
|
private:
|
|
void ReleasePred(SUnit*, bool, unsigned);
|
|
void ScheduleNodeBottomUp(SUnit*, unsigned);
|
|
SUnit *CopyAndMoveSuccessors(SUnit*);
|
|
void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
|
|
const TargetRegisterClass*,
|
|
const TargetRegisterClass*,
|
|
SmallVector<SUnit*, 2>&);
|
|
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
|
|
void ListScheduleBottomUp();
|
|
|
|
/// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
|
|
SUnit *CreateNewSUnit(SDNode *N) {
|
|
SUnit *NewNode = NewSUnit(N);
|
|
return NewNode;
|
|
}
|
|
|
|
/// CreateClone - Creates a new SUnit from an existing one.
|
|
SUnit *CreateClone(SUnit *N) {
|
|
SUnit *NewNode = Clone(N);
|
|
return NewNode;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
void ScheduleDAGFast::Schedule() {
|
|
DOUT << "********** List Scheduling **********\n";
|
|
|
|
NumLiveRegs = 0;
|
|
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
|
|
LiveRegCycles.resize(TRI->getNumRegs(), 0);
|
|
|
|
// Build scheduling units.
|
|
BuildSchedUnits();
|
|
|
|
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
SUnits[su].dumpAll(&DAG));
|
|
|
|
// Execute the actual scheduling loop.
|
|
ListScheduleBottomUp();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bottom-Up Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGFast::ReleasePred(SUnit *PredSU, bool isChain,
|
|
unsigned CurCycle) {
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
// latency. For example, the reader can very well read the register written
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
// interrupt model (drain vs. freeze).
|
|
PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
|
|
|
|
--PredSU->NumSuccsLeft;
|
|
|
|
#ifndef NDEBUG
|
|
if (PredSU->NumSuccsLeft < 0) {
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
PredSU->dump(&DAG);
|
|
cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
if (PredSU->NumSuccsLeft == 0) {
|
|
PredSU->isAvailable = true;
|
|
AvailableQueue.push(PredSU);
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
|
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
|
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
|
DEBUG(SU->dump(&DAG));
|
|
SU->Cycle = CurCycle;
|
|
|
|
// Bottom up: release predecessors
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
ReleasePred(I->Dep, I->isCtrl, CurCycle);
|
|
if (I->Cost < 0) {
|
|
// This is a physical register dependency and it's impossible or
|
|
// expensive to copy the register. Make sure nothing that can
|
|
// clobber the register is scheduled between the predecessor and
|
|
// this node.
|
|
if (!LiveRegDefs[I->Reg]) {
|
|
++NumLiveRegs;
|
|
LiveRegDefs[I->Reg] = I->Dep;
|
|
LiveRegCycles[I->Reg] = CurCycle;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Release all the implicit physical register defs that are live.
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->Cost < 0) {
|
|
if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
|
|
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
|
|
assert(LiveRegDefs[I->Reg] == SU &&
|
|
"Physical register dependency violated?");
|
|
--NumLiveRegs;
|
|
LiveRegDefs[I->Reg] = NULL;
|
|
LiveRegCycles[I->Reg] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
SU->isScheduled = true;
|
|
}
|
|
|
|
/// AddPred - adds an edge from SUnit X to SUnit Y.
|
|
bool ScheduleDAGFast::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
|
|
unsigned PhyReg, int Cost) {
|
|
return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
|
|
}
|
|
|
|
/// RemovePred - This removes the specified node N from the predecessors of
|
|
/// the current node M.
|
|
bool ScheduleDAGFast::RemovePred(SUnit *M, SUnit *N,
|
|
bool isCtrl, bool isSpecial) {
|
|
return M->removePred(N, isCtrl, isSpecial);
|
|
}
|
|
|
|
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
|
|
/// successors to the newly created node.
|
|
SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
|
|
if (SU->FlaggedNodes.size())
|
|
return NULL;
|
|
|
|
SDNode *N = SU->Node;
|
|
if (!N)
|
|
return NULL;
|
|
|
|
SUnit *NewSU;
|
|
bool TryUnfold = false;
|
|
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
|
|
MVT VT = N->getValueType(i);
|
|
if (VT == MVT::Flag)
|
|
return NULL;
|
|
else if (VT == MVT::Other)
|
|
TryUnfold = true;
|
|
}
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
const SDValue &Op = N->getOperand(i);
|
|
MVT VT = Op.getNode()->getValueType(Op.getResNo());
|
|
if (VT == MVT::Flag)
|
|
return NULL;
|
|
}
|
|
|
|
if (TryUnfold) {
|
|
SmallVector<SDNode*, 2> NewNodes;
|
|
if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
|
|
return NULL;
|
|
|
|
DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
|
|
assert(NewNodes.size() == 2 && "Expected a load folding node!");
|
|
|
|
N = NewNodes[1];
|
|
SDNode *LoadNode = NewNodes[0];
|
|
unsigned NumVals = N->getNumValues();
|
|
unsigned OldNumVals = SU->Node->getNumValues();
|
|
for (unsigned i = 0; i != NumVals; ++i)
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, i), SDValue(N, i));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, OldNumVals-1),
|
|
SDValue(LoadNode, 1));
|
|
|
|
SUnit *NewSU = CreateNewSUnit(N);
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NewSU->NodeNum);
|
|
|
|
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
|
|
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
|
|
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
|
|
NewSU->isTwoAddress = true;
|
|
break;
|
|
}
|
|
}
|
|
if (TID.isCommutable())
|
|
NewSU->isCommutable = true;
|
|
// FIXME: Calculate height / depth and propagate the changes?
|
|
NewSU->Depth = SU->Depth;
|
|
NewSU->Height = SU->Height;
|
|
ComputeLatency(NewSU);
|
|
|
|
// LoadNode may already exist. This can happen when there is another
|
|
// load from the same location and producing the same type of value
|
|
// but it has different alignment or volatileness.
|
|
bool isNewLoad = true;
|
|
SUnit *LoadSU;
|
|
if (LoadNode->getNodeId() != -1) {
|
|
LoadSU = &SUnits[LoadNode->getNodeId()];
|
|
isNewLoad = false;
|
|
} else {
|
|
LoadSU = CreateNewSUnit(LoadNode);
|
|
LoadNode->setNodeId(LoadSU->NodeNum);
|
|
|
|
LoadSU->Depth = SU->Depth;
|
|
LoadSU->Height = SU->Height;
|
|
ComputeLatency(LoadSU);
|
|
}
|
|
|
|
SUnit *ChainPred = NULL;
|
|
SmallVector<SDep, 4> ChainSuccs;
|
|
SmallVector<SDep, 4> LoadPreds;
|
|
SmallVector<SDep, 4> NodePreds;
|
|
SmallVector<SDep, 4> NodeSuccs;
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl)
|
|
ChainPred = I->Dep;
|
|
else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
|
|
LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
|
|
else
|
|
NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
|
|
}
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl)
|
|
ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
|
I->isCtrl, I->isSpecial));
|
|
else
|
|
NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
|
I->isCtrl, I->isSpecial));
|
|
}
|
|
|
|
if (ChainPred) {
|
|
RemovePred(SU, ChainPred, true, false);
|
|
if (isNewLoad)
|
|
AddPred(LoadSU, ChainPred, true, false);
|
|
}
|
|
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
|
|
SDep *Pred = &LoadPreds[i];
|
|
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
|
|
if (isNewLoad) {
|
|
AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
|
|
Pred->Reg, Pred->Cost);
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
|
|
SDep *Pred = &NodePreds[i];
|
|
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
|
|
AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
|
|
Pred->Reg, Pred->Cost);
|
|
}
|
|
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
|
|
SDep *Succ = &NodeSuccs[i];
|
|
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
|
|
AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
|
|
Succ->Reg, Succ->Cost);
|
|
}
|
|
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
|
|
SDep *Succ = &ChainSuccs[i];
|
|
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
|
|
if (isNewLoad) {
|
|
AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
|
|
Succ->Reg, Succ->Cost);
|
|
}
|
|
}
|
|
if (isNewLoad) {
|
|
AddPred(NewSU, LoadSU, false, false);
|
|
}
|
|
|
|
++NumUnfolds;
|
|
|
|
if (NewSU->NumSuccsLeft == 0) {
|
|
NewSU->isAvailable = true;
|
|
return NewSU;
|
|
}
|
|
SU = NewSU;
|
|
}
|
|
|
|
DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
|
|
NewSU = CreateClone(SU);
|
|
|
|
// New SUnit has the exact same predecessors.
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I)
|
|
if (!I->isSpecial) {
|
|
AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
|
|
NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
|
|
}
|
|
|
|
// Only copy scheduled successors. Cut them from old node's successor
|
|
// list and move them over.
|
|
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isSpecial)
|
|
continue;
|
|
if (I->Dep->isScheduled) {
|
|
NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
|
|
AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
|
|
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
|
SUnit *Succ = DelDeps[i].first;
|
|
bool isCtrl = DelDeps[i].second;
|
|
RemovePred(Succ, SU, isCtrl, false);
|
|
}
|
|
|
|
++NumDups;
|
|
return NewSU;
|
|
}
|
|
|
|
/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
|
|
/// and move all scheduled successors of the given SUnit to the last copy.
|
|
void ScheduleDAGFast::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
|
|
const TargetRegisterClass *DestRC,
|
|
const TargetRegisterClass *SrcRC,
|
|
SmallVector<SUnit*, 2> &Copies) {
|
|
SUnit *CopyFromSU = CreateNewSUnit(NULL);
|
|
CopyFromSU->CopySrcRC = SrcRC;
|
|
CopyFromSU->CopyDstRC = DestRC;
|
|
|
|
SUnit *CopyToSU = CreateNewSUnit(NULL);
|
|
CopyToSU->CopySrcRC = DestRC;
|
|
CopyToSU->CopyDstRC = SrcRC;
|
|
|
|
// Only copy scheduled successors. Cut them from old node's successor
|
|
// list and move them over.
|
|
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isSpecial)
|
|
continue;
|
|
if (I->Dep->isScheduled) {
|
|
AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
|
|
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
|
SUnit *Succ = DelDeps[i].first;
|
|
bool isCtrl = DelDeps[i].second;
|
|
RemovePred(Succ, SU, isCtrl, false);
|
|
}
|
|
|
|
AddPred(CopyFromSU, SU, false, false, Reg, -1);
|
|
AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
|
|
|
|
Copies.push_back(CopyFromSU);
|
|
Copies.push_back(CopyToSU);
|
|
|
|
++NumCCCopies;
|
|
}
|
|
|
|
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
|
|
/// definition of the specified node.
|
|
/// FIXME: Move to SelectionDAG?
|
|
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
|
|
const TargetInstrInfo *TII) {
|
|
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
|
|
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
|
|
unsigned NumRes = TID.getNumDefs();
|
|
for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
|
|
if (Reg == *ImpDef)
|
|
break;
|
|
++NumRes;
|
|
}
|
|
return N->getValueType(NumRes);
|
|
}
|
|
|
|
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
|
|
/// scheduling of the given node to satisfy live physical register dependencies.
|
|
/// If the specific node is the last one that's available to schedule, do
|
|
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
|
|
bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
|
|
SmallVector<unsigned, 4> &LRegs){
|
|
if (NumLiveRegs == 0)
|
|
return false;
|
|
|
|
SmallSet<unsigned, 4> RegAdded;
|
|
// If this node would clobber any "live" register, then it's not ready.
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->Cost < 0) {
|
|
unsigned Reg = I->Reg;
|
|
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->Dep) {
|
|
if (RegAdded.insert(Reg))
|
|
LRegs.push_back(Reg);
|
|
}
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg);
|
|
*Alias; ++Alias)
|
|
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->Dep) {
|
|
if (RegAdded.insert(*Alias))
|
|
LRegs.push_back(*Alias);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
|
|
SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
|
|
if (!Node || !Node->isMachineOpcode())
|
|
continue;
|
|
const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
|
|
if (!TID.ImplicitDefs)
|
|
continue;
|
|
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
|
|
if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
|
|
if (RegAdded.insert(*Reg))
|
|
LRegs.push_back(*Reg);
|
|
}
|
|
for (const unsigned *Alias = TRI->getAliasSet(*Reg);
|
|
*Alias; ++Alias)
|
|
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
|
|
if (RegAdded.insert(*Alias))
|
|
LRegs.push_back(*Alias);
|
|
}
|
|
}
|
|
}
|
|
return !LRegs.empty();
|
|
}
|
|
|
|
|
|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
|
/// schedulers.
|
|
void ScheduleDAGFast::ListScheduleBottomUp() {
|
|
unsigned CurCycle = 0;
|
|
// Add root to Available queue.
|
|
if (!SUnits.empty()) {
|
|
SUnit *RootSU = &SUnits[DAG.getRoot().getNode()->getNodeId()];
|
|
assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
|
|
RootSU->isAvailable = true;
|
|
AvailableQueue.push(RootSU);
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
SmallVector<SUnit*, 4> NotReady;
|
|
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue.empty()) {
|
|
bool Delayed = false;
|
|
LRegsMap.clear();
|
|
SUnit *CurSU = AvailableQueue.pop();
|
|
while (CurSU) {
|
|
if (CurSU->CycleBound <= CurCycle) {
|
|
SmallVector<unsigned, 4> LRegs;
|
|
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
|
|
break;
|
|
Delayed = true;
|
|
LRegsMap.insert(std::make_pair(CurSU, LRegs));
|
|
}
|
|
|
|
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
|
|
NotReady.push_back(CurSU);
|
|
CurSU = AvailableQueue.pop();
|
|
}
|
|
|
|
// All candidates are delayed due to live physical reg dependencies.
|
|
// Try code duplication or inserting cross class copies
|
|
// to resolve it.
|
|
if (Delayed && !CurSU) {
|
|
if (!CurSU) {
|
|
// Try duplicating the nodes that produces these
|
|
// "expensive to copy" values to break the dependency. In case even
|
|
// that doesn't work, insert cross class copies.
|
|
SUnit *TrySU = NotReady[0];
|
|
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
|
|
assert(LRegs.size() == 1 && "Can't handle this yet!");
|
|
unsigned Reg = LRegs[0];
|
|
SUnit *LRDef = LiveRegDefs[Reg];
|
|
SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
|
|
if (!NewDef) {
|
|
// Issue expensive cross register class copies.
|
|
MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
|
|
const TargetRegisterClass *RC =
|
|
TRI->getPhysicalRegisterRegClass(Reg, VT);
|
|
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
|
|
if (!DestRC) {
|
|
assert(false && "Don't know how to copy this physical register!");
|
|
abort();
|
|
}
|
|
SmallVector<SUnit*, 2> Copies;
|
|
InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
|
|
DOUT << "Adding an edge from SU # " << TrySU->NodeNum
|
|
<< " to SU #" << Copies.front()->NodeNum << "\n";
|
|
AddPred(TrySU, Copies.front(), true, true);
|
|
NewDef = Copies.back();
|
|
}
|
|
|
|
DOUT << "Adding an edge from SU # " << NewDef->NodeNum
|
|
<< " to SU #" << TrySU->NodeNum << "\n";
|
|
LiveRegDefs[Reg] = NewDef;
|
|
AddPred(NewDef, TrySU, true, true);
|
|
TrySU->isAvailable = false;
|
|
CurSU = NewDef;
|
|
}
|
|
|
|
if (!CurSU) {
|
|
assert(false && "Unable to resolve live physical register dependencies!");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
|
|
NotReady[i]->isPending = false;
|
|
// May no longer be available due to backtracking.
|
|
if (NotReady[i]->isAvailable)
|
|
AvailableQueue.push(NotReady[i]);
|
|
}
|
|
NotReady.clear();
|
|
|
|
if (!CurSU)
|
|
Sequence.push_back(0);
|
|
else {
|
|
ScheduleNodeBottomUp(CurSU, CurCycle);
|
|
Sequence.push_back(CurSU);
|
|
}
|
|
++CurCycle;
|
|
}
|
|
|
|
// Reverse the order if it is bottom up.
|
|
std::reverse(Sequence.begin(), Sequence.end());
|
|
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
unsigned DeadNodes = 0;
|
|
unsigned Noops = 0;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (!SUnits[i].isScheduled) {
|
|
if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
|
|
++DeadNodes;
|
|
continue;
|
|
}
|
|
if (!AnyNotSched)
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
if (SUnits[i].NumSuccsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
cerr << "has successors left!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
|
|
if (!Sequence[i])
|
|
++Noops;
|
|
assert(!AnyNotSched);
|
|
assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
|
|
"The number of nodes scheduled doesn't match the expected number!");
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::ScheduleDAG* llvm::createFastDAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB, bool) {
|
|
return new ScheduleDAGFast(*DAG, BB, DAG->getTarget());
|
|
}
|