llvm-6502/lib/Transforms/Utils/BypassSlowDivision.cpp
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

263 lines
9.7 KiB
C++

//===-- BypassSlowDivision.cpp - Bypass slow division ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains an optimization for div and rem on architectures that
// execute short instructions significantly faster than longer instructions.
// For example, on Intel Atom 32-bit divides are slow enough that during
// runtime it is profitable to check the value of the operands, and if they are
// positive and less than 256 use an unsigned 8-bit divide.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "bypass-slow-division"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/Instructions.h"
using namespace llvm;
namespace {
struct DivOpInfo {
bool SignedOp;
Value *Dividend;
Value *Divisor;
DivOpInfo(bool InSignedOp, Value *InDividend, Value *InDivisor)
: SignedOp(InSignedOp), Dividend(InDividend), Divisor(InDivisor) {}
};
struct DivPhiNodes {
PHINode *Quotient;
PHINode *Remainder;
DivPhiNodes(PHINode *InQuotient, PHINode *InRemainder)
: Quotient(InQuotient), Remainder(InRemainder) {}
};
}
namespace llvm {
template<>
struct DenseMapInfo<DivOpInfo> {
static bool isEqual(const DivOpInfo &Val1, const DivOpInfo &Val2) {
return Val1.SignedOp == Val2.SignedOp &&
Val1.Dividend == Val2.Dividend &&
Val1.Divisor == Val2.Divisor;
}
static DivOpInfo getEmptyKey() {
return DivOpInfo(false, 0, 0);
}
static DivOpInfo getTombstoneKey() {
return DivOpInfo(true, 0, 0);
}
static unsigned getHashValue(const DivOpInfo &Val) {
return (unsigned)(reinterpret_cast<uintptr_t>(Val.Dividend) ^
reinterpret_cast<uintptr_t>(Val.Divisor)) ^
(unsigned)Val.SignedOp;
}
};
typedef DenseMap<DivOpInfo, DivPhiNodes> DivCacheTy;
}
// insertFastDiv - Substitutes the div/rem instruction with code that checks the
// value of the operands and uses a shorter-faster div/rem instruction when
// possible and the longer-slower div/rem instruction otherwise.
static bool insertFastDiv(Function &F,
Function::iterator &I,
BasicBlock::iterator &J,
IntegerType *BypassType,
bool UseDivOp,
bool UseSignedOp,
DivCacheTy &PerBBDivCache) {
// Get instruction operands
Instruction *Instr = J;
Value *Dividend = Instr->getOperand(0);
Value *Divisor = Instr->getOperand(1);
if (isa<ConstantInt>(Divisor) ||
(isa<ConstantInt>(Dividend) && isa<ConstantInt>(Divisor))) {
// Operations with immediate values should have
// been solved and replaced during compile time.
return false;
}
// Basic Block is split before divide
BasicBlock *MainBB = I;
BasicBlock *SuccessorBB = I->splitBasicBlock(J);
++I; //advance iterator I to successorBB
// Add new basic block for slow divide operation
BasicBlock *SlowBB = BasicBlock::Create(F.getContext(), "",
MainBB->getParent(), SuccessorBB);
SlowBB->moveBefore(SuccessorBB);
IRBuilder<> SlowBuilder(SlowBB, SlowBB->begin());
Value *SlowQuotientV;
Value *SlowRemainderV;
if (UseSignedOp) {
SlowQuotientV = SlowBuilder.CreateSDiv(Dividend, Divisor);
SlowRemainderV = SlowBuilder.CreateSRem(Dividend, Divisor);
} else {
SlowQuotientV = SlowBuilder.CreateUDiv(Dividend, Divisor);
SlowRemainderV = SlowBuilder.CreateURem(Dividend, Divisor);
}
SlowBuilder.CreateBr(SuccessorBB);
// Add new basic block for fast divide operation
BasicBlock *FastBB = BasicBlock::Create(F.getContext(), "",
MainBB->getParent(), SuccessorBB);
FastBB->moveBefore(SlowBB);
IRBuilder<> FastBuilder(FastBB, FastBB->begin());
Value *ShortDivisorV = FastBuilder.CreateCast(Instruction::Trunc, Divisor,
BypassType);
Value *ShortDividendV = FastBuilder.CreateCast(Instruction::Trunc, Dividend,
BypassType);
// udiv/urem because optimization only handles positive numbers
Value *ShortQuotientV = FastBuilder.CreateExactUDiv(ShortDividendV,
ShortDivisorV);
Value *ShortRemainderV = FastBuilder.CreateURem(ShortDividendV,
ShortDivisorV);
Value *FastQuotientV = FastBuilder.CreateCast(Instruction::ZExt,
ShortQuotientV,
Dividend->getType());
Value *FastRemainderV = FastBuilder.CreateCast(Instruction::ZExt,
ShortRemainderV,
Dividend->getType());
FastBuilder.CreateBr(SuccessorBB);
// Phi nodes for result of div and rem
IRBuilder<> SuccessorBuilder(SuccessorBB, SuccessorBB->begin());
PHINode *QuoPhi = SuccessorBuilder.CreatePHI(Instr->getType(), 2);
QuoPhi->addIncoming(SlowQuotientV, SlowBB);
QuoPhi->addIncoming(FastQuotientV, FastBB);
PHINode *RemPhi = SuccessorBuilder.CreatePHI(Instr->getType(), 2);
RemPhi->addIncoming(SlowRemainderV, SlowBB);
RemPhi->addIncoming(FastRemainderV, FastBB);
// Replace Instr with appropriate phi node
if (UseDivOp)
Instr->replaceAllUsesWith(QuoPhi);
else
Instr->replaceAllUsesWith(RemPhi);
Instr->eraseFromParent();
// Combine operands into a single value with OR for value testing below
MainBB->getInstList().back().eraseFromParent();
IRBuilder<> MainBuilder(MainBB, MainBB->end());
Value *OrV = MainBuilder.CreateOr(Dividend, Divisor);
// BitMask is inverted to check if the operands are
// larger than the bypass type
uint64_t BitMask = ~BypassType->getBitMask();
Value *AndV = MainBuilder.CreateAnd(OrV, BitMask);
// Compare operand values and branch
Value *ZeroV = MainBuilder.getInt32(0);
Value *CmpV = MainBuilder.CreateICmpEQ(AndV, ZeroV);
MainBuilder.CreateCondBr(CmpV, FastBB, SlowBB);
// point iterator J at first instruction of successorBB
J = I->begin();
// Cache phi nodes to be used later in place of other instances
// of div or rem with the same sign, dividend, and divisor
DivOpInfo Key(UseSignedOp, Dividend, Divisor);
DivPhiNodes Value(QuoPhi, RemPhi);
PerBBDivCache.insert(std::pair<DivOpInfo, DivPhiNodes>(Key, Value));
return true;
}
// reuseOrInsertFastDiv - Reuses previously computed dividend or remainder if
// operands and operation are identical. Otherwise call insertFastDiv to perform
// the optimization and cache the resulting dividend and remainder.
static bool reuseOrInsertFastDiv(Function &F,
Function::iterator &I,
BasicBlock::iterator &J,
IntegerType *BypassType,
bool UseDivOp,
bool UseSignedOp,
DivCacheTy &PerBBDivCache) {
// Get instruction operands
Instruction *Instr = J;
DivOpInfo Key(UseSignedOp, Instr->getOperand(0), Instr->getOperand(1));
DivCacheTy::iterator CacheI = PerBBDivCache.find(Key);
if (CacheI == PerBBDivCache.end()) {
// If previous instance does not exist, insert fast div
return insertFastDiv(F, I, J, BypassType, UseDivOp, UseSignedOp,
PerBBDivCache);
}
// Replace operation value with previously generated phi node
DivPhiNodes &Value = CacheI->second;
if (UseDivOp) {
// Replace all uses of div instruction with quotient phi node
J->replaceAllUsesWith(Value.Quotient);
} else {
// Replace all uses of rem instruction with remainder phi node
J->replaceAllUsesWith(Value.Remainder);
}
// Advance to next operation
++J;
// Remove redundant operation
Instr->eraseFromParent();
return true;
}
// bypassSlowDivision - This optimization identifies DIV instructions that can
// be profitably bypassed and carried out with a shorter, faster divide.
bool llvm::bypassSlowDivision(Function &F,
Function::iterator &I,
const DenseMap<unsigned int, unsigned int> &BypassWidths) {
DivCacheTy DivCache;
bool MadeChange = false;
for (BasicBlock::iterator J = I->begin(); J != I->end(); J++) {
// Get instruction details
unsigned Opcode = J->getOpcode();
bool UseDivOp = Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
bool UseRemOp = Opcode == Instruction::SRem || Opcode == Instruction::URem;
bool UseSignedOp = Opcode == Instruction::SDiv ||
Opcode == Instruction::SRem;
// Only optimize div or rem ops
if (!UseDivOp && !UseRemOp)
continue;
// Skip division on vector types, only optimize integer instructions
if (!J->getType()->isIntegerTy())
continue;
// Get bitwidth of div/rem instruction
IntegerType *T = cast<IntegerType>(J->getType());
int bitwidth = T->getBitWidth();
// Continue if bitwidth is not bypassed
DenseMap<unsigned int, unsigned int>::const_iterator BI = BypassWidths.find(bitwidth);
if (BI == BypassWidths.end())
continue;
// Get type for div/rem instruction with bypass bitwidth
IntegerType *BT = IntegerType::get(J->getContext(), BI->second);
MadeChange |= reuseOrInsertFastDiv(F, I, J, BT, UseDivOp,
UseSignedOp, DivCache);
}
return MadeChange;
}