llvm-6502/include/llvm/Analysis/BlockFrequencyInfoImpl.h
Duncan P. N. Exon Smith dda2f883dd blockfreq: Rename PackagedLoops => Loops
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206859 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-22 03:31:50 +00:00

1551 lines
54 KiB
C++

//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Shared implementation of BlockFrequency for IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
#include <vector>
#define DEBUG_TYPE "block-freq"
//===----------------------------------------------------------------------===//
//
// UnsignedFloat definition.
//
// TODO: Make this private to BlockFrequencyInfoImpl or delete.
//
//===----------------------------------------------------------------------===//
namespace llvm {
class UnsignedFloatBase {
public:
static const int32_t MaxExponent = 16383;
static const int32_t MinExponent = -16382;
static const int DefaultPrecision = 10;
static void dump(uint64_t D, int16_t E, int Width);
static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
unsigned Precision);
static std::string toString(uint64_t D, int16_t E, int Width,
unsigned Precision);
static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
static std::pair<uint64_t, bool> splitSigned(int64_t N) {
if (N >= 0)
return std::make_pair(N, false);
uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
return std::make_pair(Unsigned, true);
}
static int64_t joinSigned(uint64_t U, bool IsNeg) {
if (U > uint64_t(INT64_MAX))
return IsNeg ? INT64_MIN : INT64_MAX;
return IsNeg ? -int64_t(U) : int64_t(U);
}
static int32_t extractLg(const std::pair<int32_t, int> &Lg) {
return Lg.first;
}
static int32_t extractLgFloor(const std::pair<int32_t, int> &Lg) {
return Lg.first - (Lg.second > 0);
}
static int32_t extractLgCeiling(const std::pair<int32_t, int> &Lg) {
return Lg.first + (Lg.second < 0);
}
static std::pair<uint64_t, int16_t> divide64(uint64_t L, uint64_t R);
static std::pair<uint64_t, int16_t> multiply64(uint64_t L, uint64_t R);
static int compare(uint64_t L, uint64_t R, int Shift) {
assert(Shift >= 0);
assert(Shift < 64);
uint64_t L_adjusted = L >> Shift;
if (L_adjusted < R)
return -1;
if (L_adjusted > R)
return 1;
return L > L_adjusted << Shift ? 1 : 0;
}
};
/// \brief Simple representation of an unsigned floating point.
///
/// UnsignedFloat is a unsigned floating point number. It uses simple
/// saturation arithmetic, and every operation is well-defined for every value.
///
/// The number is split into a signed exponent and unsigned digits. The number
/// represented is \c getDigits()*2^getExponent(). In this way, the digits are
/// much like the mantissa in the x87 long double, but there is no canonical
/// form, so the same number can be represented by many bit representations
/// (it's always in "denormal" mode).
///
/// UnsignedFloat is templated on the underlying integer type for digits, which
/// is expected to be one of uint64_t, uint32_t, uint16_t or uint8_t.
///
/// Unlike builtin floating point types, UnsignedFloat is portable.
///
/// Unlike APFloat, UnsignedFloat does not model architecture floating point
/// behaviour (this should make it a little faster), and implements most
/// operators (this makes it usable).
///
/// UnsignedFloat is totally ordered. However, there is no canonical form, so
/// there are multiple representations of most scalars. E.g.:
///
/// UnsignedFloat(8u, 0) == UnsignedFloat(4u, 1)
/// UnsignedFloat(4u, 1) == UnsignedFloat(2u, 2)
/// UnsignedFloat(2u, 2) == UnsignedFloat(1u, 3)
///
/// UnsignedFloat implements most arithmetic operations. Precision is kept
/// where possible. Uses simple saturation arithmetic, so that operations
/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
/// Any other division by 0.0 is defined to be getLargest().
///
/// As a convenience for modifying the exponent, left and right shifting are
/// both implemented, and both interpret negative shifts as positive shifts in
/// the opposite direction.
///
/// Exponents are limited to the range accepted by x87 long double. This makes
/// it trivial to add functionality to convert to APFloat (this is already
/// relied on for the implementation of printing).
///
/// The current plan is to gut this and make the necessary parts of it (even
/// more) private to BlockFrequencyInfo.
template <class DigitsT> class UnsignedFloat : UnsignedFloatBase {
public:
static_assert(!std::numeric_limits<DigitsT>::is_signed,
"only unsigned floats supported");
typedef DigitsT DigitsType;
private:
typedef std::numeric_limits<DigitsType> DigitsLimits;
static const int Width = sizeof(DigitsType) * 8;
static_assert(Width <= 64, "invalid integer width for digits");
private:
DigitsType Digits;
int16_t Exponent;
public:
UnsignedFloat() : Digits(0), Exponent(0) {}
UnsignedFloat(DigitsType Digits, int16_t Exponent)
: Digits(Digits), Exponent(Exponent) {}
private:
UnsignedFloat(const std::pair<uint64_t, int16_t> &X)
: Digits(X.first), Exponent(X.second) {}
public:
static UnsignedFloat getZero() { return UnsignedFloat(0, 0); }
static UnsignedFloat getOne() { return UnsignedFloat(1, 0); }
static UnsignedFloat getLargest() {
return UnsignedFloat(DigitsLimits::max(), MaxExponent);
}
static UnsignedFloat getFloat(uint64_t N) { return adjustToWidth(N, 0); }
static UnsignedFloat getInverseFloat(uint64_t N) {
return getFloat(N).invert();
}
static UnsignedFloat getFraction(DigitsType N, DigitsType D) {
return getQuotient(N, D);
}
int16_t getExponent() const { return Exponent; }
DigitsType getDigits() const { return Digits; }
/// \brief Convert to the given integer type.
///
/// Convert to \c IntT using simple saturating arithmetic, truncating if
/// necessary.
template <class IntT> IntT toInt() const;
bool isZero() const { return !Digits; }
bool isLargest() const { return *this == getLargest(); }
bool isOne() const {
if (Exponent > 0 || Exponent <= -Width)
return false;
return Digits == DigitsType(1) << -Exponent;
}
/// \brief The log base 2, rounded.
///
/// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
int32_t lg() const { return extractLg(lgImpl()); }
/// \brief The log base 2, rounded towards INT32_MIN.
///
/// Get the lg floor. lg 0 is defined to be INT32_MIN.
int32_t lgFloor() const { return extractLgFloor(lgImpl()); }
/// \brief The log base 2, rounded towards INT32_MAX.
///
/// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
int32_t lgCeiling() const { return extractLgCeiling(lgImpl()); }
bool operator==(const UnsignedFloat &X) const { return compare(X) == 0; }
bool operator<(const UnsignedFloat &X) const { return compare(X) < 0; }
bool operator!=(const UnsignedFloat &X) const { return compare(X) != 0; }
bool operator>(const UnsignedFloat &X) const { return compare(X) > 0; }
bool operator<=(const UnsignedFloat &X) const { return compare(X) <= 0; }
bool operator>=(const UnsignedFloat &X) const { return compare(X) >= 0; }
bool operator!() const { return isZero(); }
/// \brief Convert to a decimal representation in a string.
///
/// Convert to a string. Uses scientific notation for very large/small
/// numbers. Scientific notation is used roughly for numbers outside of the
/// range 2^-64 through 2^64.
///
/// \c Precision indicates the number of decimal digits of precision to use;
/// 0 requests the maximum available.
///
/// As a special case to make debugging easier, if the number is small enough
/// to convert without scientific notation and has more than \c Precision
/// digits before the decimal place, it's printed accurately to the first
/// digit past zero. E.g., assuming 10 digits of precision:
///
/// 98765432198.7654... => 98765432198.8
/// 8765432198.7654... => 8765432198.8
/// 765432198.7654... => 765432198.8
/// 65432198.7654... => 65432198.77
/// 5432198.7654... => 5432198.765
std::string toString(unsigned Precision = DefaultPrecision) {
return UnsignedFloatBase::toString(Digits, Exponent, Width, Precision);
}
/// \brief Print a decimal representation.
///
/// Print a string. See toString for documentation.
raw_ostream &print(raw_ostream &OS,
unsigned Precision = DefaultPrecision) const {
return UnsignedFloatBase::print(OS, Digits, Exponent, Width, Precision);
}
void dump() const { return UnsignedFloatBase::dump(Digits, Exponent, Width); }
UnsignedFloat &operator+=(const UnsignedFloat &X);
UnsignedFloat &operator-=(const UnsignedFloat &X);
UnsignedFloat &operator*=(const UnsignedFloat &X);
UnsignedFloat &operator/=(const UnsignedFloat &X);
UnsignedFloat &operator<<=(int16_t Shift) { shiftLeft(Shift); return *this; }
UnsignedFloat &operator>>=(int16_t Shift) { shiftRight(Shift); return *this; }
private:
void shiftLeft(int32_t Shift);
void shiftRight(int32_t Shift);
/// \brief Adjust two floats to have matching exponents.
///
/// Adjust \c this and \c X to have matching exponents. Returns the new \c X
/// by value. Does nothing if \a isZero() for either.
///
/// The value that compares smaller will lose precision, and possibly become
/// \a isZero().
UnsignedFloat matchExponents(UnsignedFloat X);
/// \brief Increase exponent to match another float.
///
/// Increases \c this to have an exponent matching \c X. May decrease the
/// exponent of \c X in the process, and \c this may possibly become \a
/// isZero().
void increaseExponentToMatch(UnsignedFloat &X, int32_t ExponentDiff);
public:
/// \brief Scale a large number accurately.
///
/// Scale N (multiply it by this). Uses full precision multiplication, even
/// if Width is smaller than 64, so information is not lost.
uint64_t scale(uint64_t N) const;
uint64_t scaleByInverse(uint64_t N) const {
// TODO: implement directly, rather than relying on inverse. Inverse is
// expensive.
return inverse().scale(N);
}
int64_t scale(int64_t N) const {
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
return joinSigned(scale(Unsigned.first), Unsigned.second);
}
int64_t scaleByInverse(int64_t N) const {
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
}
int compare(const UnsignedFloat &X) const;
int compareTo(uint64_t N) const {
UnsignedFloat Float = getFloat(N);
int Compare = compare(Float);
if (Width == 64 || Compare != 0)
return Compare;
// Check for precision loss. We know *this == RoundTrip.
uint64_t RoundTrip = Float.template toInt<uint64_t>();
return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
}
int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
UnsignedFloat &invert() { return *this = UnsignedFloat::getFloat(1) / *this; }
UnsignedFloat inverse() const { return UnsignedFloat(*this).invert(); }
private:
static UnsignedFloat getProduct(DigitsType L, DigitsType R);
static UnsignedFloat getQuotient(DigitsType Dividend, DigitsType Divisor);
std::pair<int32_t, int> lgImpl() const;
static int countLeadingZerosWidth(DigitsType Digits) {
if (Width == 64)
return countLeadingZeros64(Digits);
if (Width == 32)
return countLeadingZeros32(Digits);
return countLeadingZeros32(Digits) + Width - 32;
}
static UnsignedFloat adjustToWidth(uint64_t N, int32_t S) {
assert(S >= MinExponent);
assert(S <= MaxExponent);
if (Width == 64 || N <= DigitsLimits::max())
return UnsignedFloat(N, S);
// Shift right.
int Shift = 64 - Width - countLeadingZeros64(N);
DigitsType Shifted = N >> Shift;
// Round.
assert(S + Shift <= MaxExponent);
return getRounded(UnsignedFloat(Shifted, S + Shift),
N & UINT64_C(1) << (Shift - 1));
}
static UnsignedFloat getRounded(UnsignedFloat P, bool Round) {
if (!Round)
return P;
if (P.Digits == DigitsLimits::max())
// Careful of overflow in the exponent.
return UnsignedFloat(1, P.Exponent) <<= Width;
return UnsignedFloat(P.Digits + 1, P.Exponent);
}
};
#define UNSIGNED_FLOAT_BOP(op, base) \
template <class DigitsT> \
UnsignedFloat<DigitsT> operator op(const UnsignedFloat<DigitsT> &L, \
const UnsignedFloat<DigitsT> &R) { \
return UnsignedFloat<DigitsT>(L) base R; \
}
UNSIGNED_FLOAT_BOP(+, += )
UNSIGNED_FLOAT_BOP(-, -= )
UNSIGNED_FLOAT_BOP(*, *= )
UNSIGNED_FLOAT_BOP(/, /= )
UNSIGNED_FLOAT_BOP(<<, <<= )
UNSIGNED_FLOAT_BOP(>>, >>= )
#undef UNSIGNED_FLOAT_BOP
template <class DigitsT>
raw_ostream &operator<<(raw_ostream &OS, const UnsignedFloat<DigitsT> &X) {
return X.print(OS, 10);
}
#define UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, T1, T2) \
template <class DigitsT> \
bool operator op(const UnsignedFloat<DigitsT> &L, T1 R) { \
return L.compareTo(T2(R)) op 0; \
} \
template <class DigitsT> \
bool operator op(T1 L, const UnsignedFloat<DigitsT> &R) { \
return 0 op R.compareTo(T2(L)); \
}
#define UNSIGNED_FLOAT_COMPARE_TO(op) \
UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, int64_t, int64_t) \
UNSIGNED_FLOAT_COMPARE_TO_TYPE(op, int32_t, int64_t)
UNSIGNED_FLOAT_COMPARE_TO(< )
UNSIGNED_FLOAT_COMPARE_TO(> )
UNSIGNED_FLOAT_COMPARE_TO(== )
UNSIGNED_FLOAT_COMPARE_TO(!= )
UNSIGNED_FLOAT_COMPARE_TO(<= )
UNSIGNED_FLOAT_COMPARE_TO(>= )
#undef UNSIGNED_FLOAT_COMPARE_TO
#undef UNSIGNED_FLOAT_COMPARE_TO_TYPE
template <class DigitsT>
uint64_t UnsignedFloat<DigitsT>::scale(uint64_t N) const {
if (Width == 64 || N <= DigitsLimits::max())
return (getFloat(N) * *this).template toInt<uint64_t>();
// Defer to the 64-bit version.
return UnsignedFloat<uint64_t>(Digits, Exponent).scale(N);
}
template <class DigitsT>
UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::getProduct(DigitsType L,
DigitsType R) {
// Check for zero.
if (!L || !R)
return getZero();
// Check for numbers that we can compute with 64-bit math.
if (Width <= 32 || (L <= UINT32_MAX && R <= UINT32_MAX))
return adjustToWidth(uint64_t(L) * uint64_t(R), 0);
// Do the full thing.
return UnsignedFloat(multiply64(L, R));
}
template <class DigitsT>
UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::getQuotient(DigitsType Dividend,
DigitsType Divisor) {
// Check for zero.
if (!Dividend)
return getZero();
if (!Divisor)
return getLargest();
if (Width == 64)
return UnsignedFloat(divide64(Dividend, Divisor));
// We can compute this with 64-bit math.
int Shift = countLeadingZeros64(Dividend);
uint64_t Shifted = uint64_t(Dividend) << Shift;
uint64_t Quotient = Shifted / Divisor;
// If Quotient needs to be shifted, then adjustToWidth will round.
if (Quotient > DigitsLimits::max())
return adjustToWidth(Quotient, -Shift);
// Round based on the value of the next bit.
return getRounded(UnsignedFloat(Quotient, -Shift),
Shifted % Divisor >= getHalf(Divisor));
}
template <class DigitsT>
template <class IntT>
IntT UnsignedFloat<DigitsT>::toInt() const {
typedef std::numeric_limits<IntT> Limits;
if (*this < 1)
return 0;
if (*this >= Limits::max())
return Limits::max();
IntT N = Digits;
if (Exponent > 0) {
assert(size_t(Exponent) < sizeof(IntT) * 8);
return N << Exponent;
}
if (Exponent < 0) {
assert(size_t(-Exponent) < sizeof(IntT) * 8);
return N >> -Exponent;
}
return N;
}
template <class DigitsT>
std::pair<int32_t, int> UnsignedFloat<DigitsT>::lgImpl() const {
if (isZero())
return std::make_pair(INT32_MIN, 0);
// Get the floor of the lg of Digits.
int32_t LocalFloor = Width - countLeadingZerosWidth(Digits) - 1;
// Get the floor of the lg of this.
int32_t Floor = Exponent + LocalFloor;
if (Digits == UINT64_C(1) << LocalFloor)
return std::make_pair(Floor, 0);
// Round based on the next digit.
assert(LocalFloor >= 1);
bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
return std::make_pair(Floor + Round, Round ? 1 : -1);
}
template <class DigitsT>
UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::matchExponents(UnsignedFloat X) {
if (isZero() || X.isZero() || Exponent == X.Exponent)
return X;
int32_t Diff = int32_t(X.Exponent) - int32_t(Exponent);
if (Diff > 0)
increaseExponentToMatch(X, Diff);
else
X.increaseExponentToMatch(*this, -Diff);
return X;
}
template <class DigitsT>
void UnsignedFloat<DigitsT>::increaseExponentToMatch(UnsignedFloat &X,
int32_t ExponentDiff) {
assert(ExponentDiff > 0);
if (ExponentDiff >= 2 * Width) {
*this = getZero();
return;
}
// Use up any leading zeros on X, and then shift this.
int32_t ShiftX = std::min(countLeadingZerosWidth(X.Digits), ExponentDiff);
assert(ShiftX < Width);
int32_t ShiftThis = ExponentDiff - ShiftX;
if (ShiftThis >= Width) {
*this = getZero();
return;
}
X.Digits <<= ShiftX;
X.Exponent -= ShiftX;
Digits >>= ShiftThis;
Exponent += ShiftThis;
return;
}
template <class DigitsT>
UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
operator+=(const UnsignedFloat &X) {
if (isLargest() || X.isZero())
return *this;
if (isZero() || X.isLargest())
return *this = X;
// Normalize exponents.
UnsignedFloat Scaled = matchExponents(X);
// Check for zero again.
if (isZero())
return *this = Scaled;
if (Scaled.isZero())
return *this;
// Compute sum.
DigitsType Sum = Digits + Scaled.Digits;
bool DidOverflow = Sum < Digits;
Digits = Sum;
if (!DidOverflow)
return *this;
if (Exponent == MaxExponent)
return *this = getLargest();
++Exponent;
Digits = UINT64_C(1) << (Width - 1) | Digits >> 1;
return *this;
}
template <class DigitsT>
UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
operator-=(const UnsignedFloat &X) {
if (X.isZero())
return *this;
if (*this <= X)
return *this = getZero();
// Normalize exponents.
UnsignedFloat Scaled = matchExponents(X);
assert(Digits >= Scaled.Digits);
// Compute difference.
if (!Scaled.isZero()) {
Digits -= Scaled.Digits;
return *this;
}
// Check if X just barely lost its last bit. E.g., for 32-bit:
//
// 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
if (*this == UnsignedFloat(1, X.lgFloor() + Width)) {
Digits = DigitsType(0) - 1;
--Exponent;
}
return *this;
}
template <class DigitsT>
UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
operator*=(const UnsignedFloat &X) {
if (isZero())
return *this;
if (X.isZero())
return *this = X;
// Save the exponents.
int32_t Exponents = int32_t(Exponent) + int32_t(X.Exponent);
// Get the raw product.
*this = getProduct(Digits, X.Digits);
// Combine with exponents.
return *this <<= Exponents;
}
template <class DigitsT>
UnsignedFloat<DigitsT> &UnsignedFloat<DigitsT>::
operator/=(const UnsignedFloat &X) {
if (isZero())
return *this;
if (X.isZero())
return *this = getLargest();
// Save the exponents.
int32_t Exponents = int32_t(Exponent) - int32_t(X.Exponent);
// Get the raw quotient.
*this = getQuotient(Digits, X.Digits);
// Combine with exponents.
return *this <<= Exponents;
}
template <class DigitsT>
void UnsignedFloat<DigitsT>::shiftLeft(int32_t Shift) {
if (!Shift || isZero())
return;
assert(Shift != INT32_MIN);
if (Shift < 0) {
shiftRight(-Shift);
return;
}
// Shift as much as we can in the exponent.
int32_t ExponentShift = std::min(Shift, MaxExponent - Exponent);
Exponent += ExponentShift;
if (ExponentShift == Shift)
return;
// Check this late, since it's rare.
if (isLargest())
return;
// Shift the digits themselves.
Shift -= ExponentShift;
if (Shift > countLeadingZerosWidth(Digits)) {
// Saturate.
*this = getLargest();
return;
}
Digits <<= Shift;
return;
}
template <class DigitsT>
void UnsignedFloat<DigitsT>::shiftRight(int32_t Shift) {
if (!Shift || isZero())
return;
assert(Shift != INT32_MIN);
if (Shift < 0) {
shiftLeft(-Shift);
return;
}
// Shift as much as we can in the exponent.
int32_t ExponentShift = std::min(Shift, Exponent - MinExponent);
Exponent -= ExponentShift;
if (ExponentShift == Shift)
return;
// Shift the digits themselves.
Shift -= ExponentShift;
if (Shift >= Width) {
// Saturate.
*this = getZero();
return;
}
Digits >>= Shift;
return;
}
template <class DigitsT>
int UnsignedFloat<DigitsT>::compare(const UnsignedFloat &X) const {
// Check for zero.
if (isZero())
return X.isZero() ? 0 : -1;
if (X.isZero())
return 1;
// Check for the scale. Use lgFloor to be sure that the exponent difference
// is always lower than 64.
int32_t lgL = lgFloor(), lgR = X.lgFloor();
if (lgL != lgR)
return lgL < lgR ? -1 : 1;
// Compare digits.
if (Exponent < X.Exponent)
return UnsignedFloatBase::compare(Digits, X.Digits, X.Exponent - Exponent);
return -UnsignedFloatBase::compare(X.Digits, Digits, Exponent - X.Exponent);
}
template <class T> struct isPodLike<UnsignedFloat<T>> {
static const bool value = true;
};
}
//===----------------------------------------------------------------------===//
//
// BlockMass definition.
//
// TODO: Make this private to BlockFrequencyInfoImpl or delete.
//
//===----------------------------------------------------------------------===//
namespace llvm {
/// \brief Mass of a block.
///
/// This class implements a sort of fixed-point fraction always between 0.0 and
/// 1.0. getMass() == UINT64_MAX indicates a value of 1.0.
///
/// Masses can be added and subtracted. Simple saturation arithmetic is used,
/// so arithmetic operations never overflow or underflow.
///
/// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
/// quite, maximum precision).
///
/// Masses can be scaled by \a BranchProbability at maximum precision.
class BlockMass {
uint64_t Mass;
public:
BlockMass() : Mass(0) {}
explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
static BlockMass getEmpty() { return BlockMass(); }
static BlockMass getFull() { return BlockMass(UINT64_MAX); }
uint64_t getMass() const { return Mass; }
bool isFull() const { return Mass == UINT64_MAX; }
bool isEmpty() const { return !Mass; }
bool operator!() const { return isEmpty(); }
/// \brief Add another mass.
///
/// Adds another mass, saturating at \a isFull() rather than overflowing.
BlockMass &operator+=(const BlockMass &X) {
uint64_t Sum = Mass + X.Mass;
Mass = Sum < Mass ? UINT64_MAX : Sum;
return *this;
}
/// \brief Subtract another mass.
///
/// Subtracts another mass, saturating at \a isEmpty() rather than
/// undeflowing.
BlockMass &operator-=(const BlockMass &X) {
uint64_t Diff = Mass - X.Mass;
Mass = Diff > Mass ? 0 : Diff;
return *this;
}
/// \brief Scale by another mass.
///
/// The current implementation is a little imprecise, but it's relatively
/// fast, never overflows, and maintains the property that 1.0*1.0==1.0
/// (where isFull represents the number 1.0). It's an approximation of
/// 128-bit multiply that gets right-shifted by 64-bits.
///
/// For a given digit size, multiplying two-digit numbers looks like:
///
/// U1 . L1
/// * U2 . L2
/// ============
/// 0 . . L1*L2
/// + 0 . U1*L2 . 0 // (shift left once by a digit-size)
/// + 0 . U2*L1 . 0 // (shift left once by a digit-size)
/// + U1*L2 . 0 . 0 // (shift left twice by a digit-size)
///
/// BlockMass has 64-bit numbers. Split each into two 32-bit digits, stored
/// 64-bit. Add 1 to the lower digits, to model isFull as 1.0; this won't
/// overflow, since we have 64-bit storage for each digit.
///
/// To do this accurately, (a) multiply into two 64-bit digits, incrementing
/// the upper digit on overflows of the lower digit (carry), (b) subtract 1
/// from the lower digit, decrementing the upper digit on underflow (carry),
/// and (c) truncate the lower digit. For the 1.0*1.0 case, the upper digit
/// will be 0 at the end of step (a), and then will underflow back to isFull
/// (1.0) in step (b).
///
/// Instead, the implementation does something a little faster with a small
/// loss of accuracy: ignore the lower 64-bit digit entirely. The loss of
/// accuracy is small, since the sum of the unmodelled carries is 0 or 1
/// (i.e., step (a) will overflow at most once, and step (b) will underflow
/// only if step (a) overflows).
///
/// This is the formula we're calculating:
///
/// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>32 + (U2 * (L1+1))>>32
///
/// As a demonstration of 1.0*1.0, consider two 4-bit numbers that are both
/// full (1111).
///
/// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>2 + (U2 * (L1+1))>>2
/// 11.11 * 11.11 == 11 * 11 + (11 * (11+1))/4 + (11 * (11+1))/4
/// == 1001 + (11 * 100)/4 + (11 * 100)/4
/// == 1001 + 1100/4 + 1100/4
/// == 1001 + 0011 + 0011
/// == 1111
BlockMass &operator*=(const BlockMass &X) {
uint64_t U1 = Mass >> 32, L1 = Mass & UINT32_MAX, U2 = X.Mass >> 32,
L2 = X.Mass & UINT32_MAX;
Mass = U1 * U2 + (U1 * (L2 + 1) >> 32) + ((L1 + 1) * U2 >> 32);
return *this;
}
/// \brief Multiply by a branch probability.
///
/// Multiply by P. Guarantees full precision.
///
/// This could be naively implemented by multiplying by the numerator and
/// dividing by the denominator, but in what order? Multiplying first can
/// overflow, while dividing first will lose precision (potentially, changing
/// a non-zero mass to zero).
///
/// The implementation mixes the two methods. Since \a BranchProbability
/// uses 32-bits and \a BlockMass 64-bits, shift the mass as far to the left
/// as there is room, then divide by the denominator to get a quotient.
/// Multiplying by the numerator and right shifting gives a first
/// approximation.
///
/// Calculate the error in this first approximation by calculating the
/// opposite mass (multiply by the opposite numerator and shift) and
/// subtracting both from teh original mass.
///
/// Add to the first approximation the correct fraction of this error value.
/// This time, multiply first and then divide, since there is no danger of
/// overflow.
///
/// \pre P represents a fraction between 0.0 and 1.0.
BlockMass &operator*=(const BranchProbability &P);
bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
/// \brief Convert to floating point.
///
/// Convert to a float. \a isFull() gives 1.0, while \a isEmpty() gives
/// slightly above 0.0.
UnsignedFloat<uint64_t> toFloat() const;
void dump() const;
raw_ostream &print(raw_ostream &OS) const;
};
inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
return BlockMass(L) += R;
}
inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
return BlockMass(L) -= R;
}
inline BlockMass operator*(const BlockMass &L, const BlockMass &R) {
return BlockMass(L) *= R;
}
inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
return BlockMass(L) *= R;
}
inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
return BlockMass(R) *= L;
}
inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
return X.print(OS);
}
template <> struct isPodLike<BlockMass> {
static const bool value = true;
};
}
//===----------------------------------------------------------------------===//
//
// BlockFrequencyInfoImpl definition.
//
//===----------------------------------------------------------------------===//
namespace llvm {
class BasicBlock;
class BranchProbabilityInfo;
class Function;
class Loop;
class LoopInfo;
class MachineBasicBlock;
class MachineBranchProbabilityInfo;
class MachineFunction;
class MachineLoop;
class MachineLoopInfo;
/// \brief Base class for BlockFrequencyInfoImpl
///
/// BlockFrequencyInfoImplBase has supporting data structures and some
/// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
/// the block type (or that call such algorithms) are skipped here.
///
/// Nevertheless, the majority of the overall algorithm documention lives with
/// BlockFrequencyInfoImpl. See there for details.
class BlockFrequencyInfoImplBase {
public:
typedef UnsignedFloat<uint64_t> Float;
/// \brief Representative of a block.
///
/// This is a simple wrapper around an index into the reverse-post-order
/// traversal of the blocks.
///
/// Unlike a block pointer, its order has meaning (location in the
/// topological sort) and it's class is the same regardless of block type.
struct BlockNode {
typedef uint32_t IndexType;
IndexType Index;
bool operator==(const BlockNode &X) const { return Index == X.Index; }
bool operator!=(const BlockNode &X) const { return Index != X.Index; }
bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
bool operator<(const BlockNode &X) const { return Index < X.Index; }
bool operator>(const BlockNode &X) const { return Index > X.Index; }
BlockNode() : Index(UINT32_MAX) {}
BlockNode(IndexType Index) : Index(Index) {}
bool isValid() const { return Index <= getMaxIndex(); }
static size_t getMaxIndex() { return UINT32_MAX - 1; }
};
/// \brief Stats about a block itself.
struct FrequencyData {
Float Floating;
uint64_t Integer;
};
/// \brief Data about a loop.
///
/// Contains the data necessary to represent represent a loop as a
/// pseudo-node once it's packaged.
struct LoopData {
typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
typedef SmallVector<BlockNode, 4> MemberList;
BlockNode Header; ///< Header.
bool IsPackaged; ///< Whether this has been packaged.
ExitMap Exits; ///< Successor edges (and weights).
MemberList Members; ///< Members of the loop.
BlockMass BackedgeMass; ///< Mass returned to loop header.
BlockMass Mass;
Float Scale;
LoopData(const BlockNode &Header) : Header(Header), IsPackaged(false) {}
};
/// \brief Index of loop information.
struct WorkingData {
LoopData *Loop; ///< The loop this block is the header of.
LoopData *ContainingLoop; ///< The block whose loop this block is inside.
BlockMass Mass; ///< Mass distribution from the entry block.
WorkingData() : Loop(nullptr), ContainingLoop(nullptr) {}
bool hasLoopHeader() const { return ContainingLoop; }
bool isLoopHeader() const { return Loop; }
BlockNode getContainingHeader() const {
if (ContainingLoop)
return ContainingLoop->Header;
return BlockNode();
}
/// \brief Has ContainingLoop been packaged up?
bool isPackaged() const {
return ContainingLoop && ContainingLoop->IsPackaged;
}
/// \brief Has Loop been packaged up?
bool isAPackage() const { return Loop && Loop->IsPackaged; }
};
/// \brief Unscaled probability weight.
///
/// Probability weight for an edge in the graph (including the
/// successor/target node).
///
/// All edges in the original function are 32-bit. However, exit edges from
/// loop packages are taken from 64-bit exit masses, so we need 64-bits of
/// space in general.
///
/// In addition to the raw weight amount, Weight stores the type of the edge
/// in the current context (i.e., the context of the loop being processed).
/// Is this a local edge within the loop, an exit from the loop, or a
/// backedge to the loop header?
struct Weight {
enum DistType { Local, Exit, Backedge };
DistType Type;
BlockNode TargetNode;
uint64_t Amount;
Weight() : Type(Local), Amount(0) {}
};
/// \brief Distribution of unscaled probability weight.
///
/// Distribution of unscaled probability weight to a set of successors.
///
/// This class collates the successor edge weights for later processing.
///
/// \a DidOverflow indicates whether \a Total did overflow while adding to
/// the distribution. It should never overflow twice. There's no flag for
/// whether \a ForwardTotal overflows, since when \a Total exceeds 32-bits
/// they both get re-computed during \a normalize().
struct Distribution {
typedef SmallVector<Weight, 4> WeightList;
WeightList Weights; ///< Individual successor weights.
uint64_t Total; ///< Sum of all weights.
bool DidOverflow; ///< Whether \a Total did overflow.
uint32_t ForwardTotal; ///< Total excluding backedges.
Distribution() : Total(0), DidOverflow(false), ForwardTotal(0) {}
void addLocal(const BlockNode &Node, uint64_t Amount) {
add(Node, Amount, Weight::Local);
}
void addExit(const BlockNode &Node, uint64_t Amount) {
add(Node, Amount, Weight::Exit);
}
void addBackedge(const BlockNode &Node, uint64_t Amount) {
add(Node, Amount, Weight::Backedge);
}
/// \brief Normalize the distribution.
///
/// Combines multiple edges to the same \a Weight::TargetNode and scales
/// down so that \a Total fits into 32-bits.
///
/// This is linear in the size of \a Weights. For the vast majority of
/// cases, adjacent edge weights are combined by sorting WeightList and
/// combining adjacent weights. However, for very large edge lists an
/// auxiliary hash table is used.
void normalize();
private:
void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
};
/// \brief Data about each block. This is used downstream.
std::vector<FrequencyData> Freqs;
/// \brief Loop data: see initializeLoops().
std::vector<WorkingData> Working;
/// \brief Indexed information about loops.
std::vector<std::unique_ptr<LoopData>> Loops;
/// \brief Add all edges out of a packaged loop to the distribution.
///
/// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
/// successor edge.
void addLoopSuccessorsToDist(const BlockNode &LoopHead,
const BlockNode &LocalLoopHead,
Distribution &Dist);
/// \brief Add an edge to the distribution.
///
/// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
/// edge is forward/exit/backedge is in the context of LoopHead. Otherwise,
/// every edge should be a forward edge (since all the loops are packaged
/// up).
void addToDist(Distribution &Dist, const BlockNode &LoopHead,
const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
LoopData &getLoopPackage(const BlockNode &Head) {
assert(Head.Index < Working.size());
assert(Working[Head.Index].Loop != nullptr);
return *Working[Head.Index].Loop;
}
/// \brief Distribute mass according to a distribution.
///
/// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
/// backedges and exits are stored in its entry in Loops.
///
/// Mass is distributed in parallel from two copies of the source mass.
///
/// The first mass (forward) represents the distribution of mass through the
/// local DAG. This distribution should lose mass at loop exits and ignore
/// backedges.
///
/// The second mass (general) represents the behavior of the loop in the
/// global context. In a given distribution from the head, how much mass
/// exits, and to where? How much mass returns to the loop head?
///
/// The forward mass should be split up between local successors and exits,
/// but only actually distributed to the local successors. The general mass
/// should be split up between all three types of successors, but distributed
/// only to exits and backedges.
void distributeMass(const BlockNode &Source, const BlockNode &LoopHead,
Distribution &Dist);
/// \brief Compute the loop scale for a loop.
void computeLoopScale(const BlockNode &LoopHead);
/// \brief Package up a loop.
void packageLoop(const BlockNode &LoopHead);
/// \brief Finalize frequency metrics.
///
/// Unwraps loop packages, calculates final frequencies, and cleans up
/// no-longer-needed data structures.
void finalizeMetrics();
/// \brief Clear all memory.
void clear();
virtual std::string getBlockName(const BlockNode &Node) const;
virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
void dump() const { print(dbgs()); }
Float getFloatingBlockFreq(const BlockNode &Node) const;
BlockFrequency getBlockFreq(const BlockNode &Node) const;
raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
raw_ostream &printBlockFreq(raw_ostream &OS,
const BlockFrequency &Freq) const;
uint64_t getEntryFreq() const {
assert(!Freqs.empty());
return Freqs[0].Integer;
}
/// \brief Virtual destructor.
///
/// Need a virtual destructor to mask the compiler warning about
/// getBlockName().
virtual ~BlockFrequencyInfoImplBase() {}
};
namespace bfi_detail {
template <class BlockT> struct TypeMap {};
template <> struct TypeMap<BasicBlock> {
typedef BasicBlock BlockT;
typedef Function FunctionT;
typedef BranchProbabilityInfo BranchProbabilityInfoT;
typedef Loop LoopT;
typedef LoopInfo LoopInfoT;
};
template <> struct TypeMap<MachineBasicBlock> {
typedef MachineBasicBlock BlockT;
typedef MachineFunction FunctionT;
typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
typedef MachineLoop LoopT;
typedef MachineLoopInfo LoopInfoT;
};
/// \brief Get the name of a MachineBasicBlock.
///
/// Get the name of a MachineBasicBlock. It's templated so that including from
/// CodeGen is unnecessary (that would be a layering issue).
///
/// This is used mainly for debug output. The name is similar to
/// MachineBasicBlock::getFullName(), but skips the name of the function.
template <class BlockT> std::string getBlockName(const BlockT *BB) {
assert(BB && "Unexpected nullptr");
auto MachineName = "BB" + Twine(BB->getNumber());
if (BB->getBasicBlock())
return (MachineName + "[" + BB->getName() + "]").str();
return MachineName.str();
}
/// \brief Get the name of a BasicBlock.
template <> inline std::string getBlockName(const BasicBlock *BB) {
assert(BB && "Unexpected nullptr");
return BB->getName().str();
}
}
/// \brief Shared implementation for block frequency analysis.
///
/// This is a shared implementation of BlockFrequencyInfo and
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
/// blocks.
///
/// This algorithm leverages BlockMass and UnsignedFloat to maintain precision,
/// separates mass distribution from loop scaling, and dithers to eliminate
/// probability mass loss.
///
/// The implementation is split between BlockFrequencyInfoImpl, which knows the
/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
/// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
/// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
/// reverse-post order. This gives two advantages: it's easy to compare the
/// relative ordering of two nodes, and maps keyed on BlockT can be represented
/// by vectors.
///
/// This algorithm is O(V+E), unless there is irreducible control flow, in
/// which case it's O(V*E) in the worst case.
///
/// These are the main stages:
///
/// 0. Reverse post-order traversal (\a initializeRPOT()).
///
/// Run a single post-order traversal and save it (in reverse) in RPOT.
/// All other stages make use of this ordering. Save a lookup from BlockT
/// to BlockNode (the index into RPOT) in Nodes.
///
/// 1. Loop indexing (\a initializeLoops()).
///
/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
/// the algorithm. In particular, store the immediate members of each loop
/// in reverse post-order.
///
/// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
///
/// For each loop (bottom-up), distribute mass through the DAG resulting
/// from ignoring backedges and treating sub-loops as a single pseudo-node.
/// Track the backedge mass distributed to the loop header, and use it to
/// calculate the loop scale (number of loop iterations).
///
/// Visiting loops bottom-up is a post-order traversal of loop headers.
/// For each loop, immediate members that represent sub-loops will already
/// have been visited and packaged into a pseudo-node.
///
/// Distributing mass in a loop is a reverse-post-order traversal through
/// the loop. Start by assigning full mass to the Loop header. For each
/// node in the loop:
///
/// - Fetch and categorize the weight distribution for its successors.
/// If this is a packaged-subloop, the weight distribution is stored
/// in \a LoopData::Exits. Otherwise, fetch it from
/// BranchProbabilityInfo.
///
/// - Each successor is categorized as \a Weight::Local, a normal
/// forward edge within the current loop, \a Weight::Backedge, a
/// backedge to the loop header, or \a Weight::Exit, any successor
/// outside the loop. The weight, the successor, and its category
/// are stored in \a Distribution. There can be multiple edges to
/// each successor.
///
/// - Normalize the distribution: scale weights down so that their sum
/// is 32-bits, and coalesce multiple edges to the same node.
///
/// - Distribute the mass accordingly, dithering to minimize mass loss,
/// as described in \a distributeMass(). Mass is distributed in
/// parallel in two ways: forward, and general. Local successors
/// take their mass from the forward mass, while exit and backedge
/// successors take their mass from the general mass. Additionally,
/// exit edges use up (ignored) mass from the forward mass, and local
/// edges use up (ignored) mass from the general distribution.
///
/// Finally, calculate the loop scale from the accumulated backedge mass.
///
/// 3. Distribute mass in the function (\a computeMassInFunction()).
///
/// Finally, distribute mass through the DAG resulting from packaging all
/// loops in the function. This uses the same algorithm as distributing
/// mass in a loop, except that there are no exit or backedge edges.
///
/// 4. Loop unpackaging and cleanup (\a finalizeMetrics()).
///
/// Initialize the frequency to a floating point representation of its
/// mass.
///
/// Visit loops top-down (reverse post-order), scaling the loop header's
/// frequency by its psuedo-node's mass and loop scale. Keep track of the
/// minimum and maximum final frequencies.
///
/// Using the min and max frequencies as a guide, translate floating point
/// frequencies to an appropriate range in uint64_t.
///
/// It has some known flaws.
///
/// - Irreducible control flow isn't modelled correctly. In particular,
/// LoopInfo and MachineLoopInfo ignore irreducible backedges. The main
/// result is that irreducible SCCs will under-scaled. No mass is lost,
/// but the computed branch weights for the loop pseudo-node will be
/// incorrect.
///
/// Modelling irreducible control flow exactly involves setting up and
/// solving a group of infinite geometric series. Such precision is
/// unlikely to be worthwhile, since most of our algorithms give up on
/// irreducible control flow anyway.
///
/// Nevertheless, we might find that we need to get closer. If
/// LoopInfo/MachineLoopInfo flags loops with irreducible control flow
/// (and/or the function as a whole), we can find the SCCs, compute an
/// approximate exit frequency for the SCC as a whole, and scale up
/// accordingly.
///
/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
/// BlockFrequency's 64-bit integer precision.
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
BranchProbabilityInfoT;
typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
typedef GraphTraits<const BlockT *> Successor;
typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
const BranchProbabilityInfoT *BPI;
const LoopInfoT *LI;
const FunctionT *F;
// All blocks in reverse postorder.
std::vector<const BlockT *> RPOT;
DenseMap<const BlockT *, BlockNode> Nodes;
typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
rpot_iterator rpot_begin() const { return RPOT.begin(); }
rpot_iterator rpot_end() const { return RPOT.end(); }
size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
BlockNode getNode(const rpot_iterator &I) const {
return BlockNode(getIndex(I));
}
BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
const BlockT *getBlock(const BlockNode &Node) const {
assert(Node.Index < RPOT.size());
return RPOT[Node.Index];
}
void initializeRPOT();
void initializeLoops();
void runOnFunction(const FunctionT *F);
void propagateMassToSuccessors(const BlockNode &LoopHead,
const BlockNode &Node);
void computeMassInLoops();
void computeMassInLoop(const BlockNode &LoopHead);
void computeMassInFunction();
std::string getBlockName(const BlockNode &Node) const override {
return bfi_detail::getBlockName(getBlock(Node));
}
public:
const FunctionT *getFunction() const { return F; }
void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
const LoopInfoT *LI);
BlockFrequencyInfoImpl() : BPI(0), LI(0), F(0) {}
using BlockFrequencyInfoImplBase::getEntryFreq;
BlockFrequency getBlockFreq(const BlockT *BB) const {
return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
}
Float getFloatingBlockFreq(const BlockT *BB) const {
return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
}
/// \brief Print the frequencies for the current function.
///
/// Prints the frequencies for the blocks in the current function.
///
/// Blocks are printed in the natural iteration order of the function, rather
/// than reverse post-order. This provides two advantages: writing -analyze
/// tests is easier (since blocks come out in source order), and even
/// unreachable blocks are printed.
///
/// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
/// we need to override it here.
raw_ostream &print(raw_ostream &OS) const override;
using BlockFrequencyInfoImplBase::dump;
using BlockFrequencyInfoImplBase::printBlockFreq;
raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
}
};
template <class BT>
void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
const BranchProbabilityInfoT *BPI,
const LoopInfoT *LI) {
// Save the parameters.
this->BPI = BPI;
this->LI = LI;
this->F = F;
// Clean up left-over data structures.
BlockFrequencyInfoImplBase::clear();
RPOT.clear();
Nodes.clear();
// Initialize.
DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
<< std::string(F->getName().size(), '=') << "\n");
initializeRPOT();
initializeLoops();
// Visit loops in post-order to find thelocal mass distribution, and then do
// the full function.
computeMassInLoops();
computeMassInFunction();
finalizeMetrics();
}
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
const BlockT *Entry = F->begin();
RPOT.reserve(F->size());
std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
std::reverse(RPOT.begin(), RPOT.end());
assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
"More nodes in function than Block Frequency Info supports");
DEBUG(dbgs() << "reverse-post-order-traversal\n");
for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
BlockNode Node = getNode(I);
DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
Nodes[*I] = Node;
}
Working.resize(RPOT.size());
Freqs.resize(RPOT.size());
}
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
DEBUG(dbgs() << "loop-detection\n");
if (LI->empty())
return;
// Visit loops top down and assign them an index.
std::deque<const LoopT *> Q;
Q.insert(Q.end(), LI->begin(), LI->end());
while (!Q.empty()) {
const LoopT *Loop = Q.front();
Q.pop_front();
Q.insert(Q.end(), Loop->begin(), Loop->end());
// Save the order this loop was visited.
BlockNode Header = getNode(Loop->getHeader());
assert(Header.isValid());
Loops.emplace_back(new LoopData(Header));
Working[Header.Index].Loop = Loops.back().get();
DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
}
// Visit nodes in reverse post-order and add them to their deepest containing
// loop.
for (size_t Index = 0; Index < RPOT.size(); ++Index) {
const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
if (!Loop)
continue;
// If this is a loop header, find its parent loop (if any).
if (Working[Index].isLoopHeader())
if (!(Loop = Loop->getParentLoop()))
continue;
// Add this node to its containing loop's member list.
BlockNode Header = getNode(Loop->getHeader());
assert(Header.isValid());
const auto &HeaderData = Working[Header.Index];
assert(HeaderData.isLoopHeader());
Working[Index].ContainingLoop = HeaderData.Loop;
HeaderData.Loop->Members.push_back(Index);
DEBUG(dbgs() << " - loop = " << getBlockName(Header)
<< ": member = " << getBlockName(Index) << "\n");
}
}
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
// Visit loops with the deepest first, and the top-level loops last.
for (const auto &L : make_range(Loops.rbegin(), Loops.rend()))
computeMassInLoop(L->Header);
}
template <class BT>
void BlockFrequencyInfoImpl<BT>::computeMassInLoop(const BlockNode &LoopHead) {
// Compute mass in loop.
DEBUG(dbgs() << "compute-mass-in-loop: " << getBlockName(LoopHead) << "\n");
Working[LoopHead.Index].Mass = BlockMass::getFull();
propagateMassToSuccessors(LoopHead, LoopHead);
for (const BlockNode &M : getLoopPackage(LoopHead).Members)
propagateMassToSuccessors(LoopHead, M);
computeLoopScale(LoopHead);
packageLoop(LoopHead);
}
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
// Compute mass in function.
DEBUG(dbgs() << "compute-mass-in-function\n");
assert(!Working.empty() && "no blocks in function");
assert(!Working[0].isLoopHeader() && "entry block is a loop header");
Working[0].Mass = BlockMass::getFull();
for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
// Check for nodes that have been packaged.
BlockNode Node = getNode(I);
if (Working[Node.Index].hasLoopHeader())
continue;
propagateMassToSuccessors(BlockNode(), Node);
}
}
template <class BT>
void
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(const BlockNode &LoopHead,
const BlockNode &Node) {
DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
// Calculate probability for successors.
Distribution Dist;
if (Node != LoopHead && Working[Node.Index].isLoopHeader())
addLoopSuccessorsToDist(LoopHead, Node, Dist);
else {
const BlockT *BB = getBlock(Node);
for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
SI != SE; ++SI)
// Do not dereference SI, or getEdgeWeight() is linear in the number of
// successors.
addToDist(Dist, LoopHead, Node, getNode(*SI), BPI->getEdgeWeight(BB, SI));
}
// Distribute mass to successors, saving exit and backedge data in the
// loop header.
distributeMass(Node, LoopHead, Dist);
}
template <class BT>
raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
if (!F)
return OS;
OS << "block-frequency-info: " << F->getName() << "\n";
for (const BlockT &BB : *F)
OS << " - " << bfi_detail::getBlockName(&BB)
<< ": float = " << getFloatingBlockFreq(&BB)
<< ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
// Add an extra newline for readability.
OS << "\n";
return OS;
}
}
#undef DEBUG_TYPE
#endif