llvm-6502/lib/Target/ARM/ARMBaseRegisterInfo.cpp
Jim Grosbach ab3d00e535 Revert r114340 (improvements in Darwin function prologue/epilogue), as it broke
assumptions about stack layout. Specifically, LR must be saved next to FP.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118026 91177308-0d34-0410-b5e6-96231b3b80d8
2010-11-02 17:35:25 +00:00

1994 lines
68 KiB
C++

//===- ARMBaseRegisterInfo.cpp - ARM Register Information -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the base ARM implementation of TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
namespace llvm {
static cl::opt<bool>
ForceAllBaseRegAlloc("arm-force-base-reg-alloc", cl::Hidden, cl::init(false),
cl::desc("Force use of virtual base registers for stack load/store"));
static cl::opt<bool>
EnableLocalStackAlloc("enable-local-stack-alloc", cl::init(true), cl::Hidden,
cl::desc("Enable pre-regalloc stack frame index allocation"));
}
using namespace llvm;
static cl::opt<bool>
EnableBasePointer("arm-use-base-pointer", cl::Hidden, cl::init(true),
cl::desc("Enable use of a base pointer for complex stack frames"));
ARMBaseRegisterInfo::ARMBaseRegisterInfo(const ARMBaseInstrInfo &tii,
const ARMSubtarget &sti)
: ARMGenRegisterInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
TII(tii), STI(sti),
FramePtr((STI.isTargetDarwin() || STI.isThumb()) ? ARM::R7 : ARM::R11),
BasePtr(ARM::R6) {
}
const unsigned*
ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
static const unsigned CalleeSavedRegs[] = {
ARM::LR, ARM::R11, ARM::R10, ARM::R9, ARM::R8,
ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
};
static const unsigned DarwinCalleeSavedRegs[] = {
// Darwin ABI deviates from ARM standard ABI. R9 is not a callee-saved
// register.
ARM::LR, ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::R11, ARM::R10, ARM::R8,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
};
return STI.isTargetDarwin() ? DarwinCalleeSavedRegs : CalleeSavedRegs;
}
BitVector ARMBaseRegisterInfo::
getReservedRegs(const MachineFunction &MF) const {
// FIXME: avoid re-calculating this everytime.
BitVector Reserved(getNumRegs());
Reserved.set(ARM::SP);
Reserved.set(ARM::PC);
Reserved.set(ARM::FPSCR);
if (hasFP(MF))
Reserved.set(FramePtr);
if (hasBasePointer(MF))
Reserved.set(BasePtr);
// Some targets reserve R9.
if (STI.isR9Reserved())
Reserved.set(ARM::R9);
return Reserved;
}
bool ARMBaseRegisterInfo::isReservedReg(const MachineFunction &MF,
unsigned Reg) const {
switch (Reg) {
default: break;
case ARM::SP:
case ARM::PC:
return true;
case ARM::R6:
if (hasBasePointer(MF))
return true;
break;
case ARM::R7:
case ARM::R11:
if (FramePtr == Reg && hasFP(MF))
return true;
break;
case ARM::R9:
return STI.isR9Reserved();
}
return false;
}
const TargetRegisterClass *
ARMBaseRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
unsigned SubIdx) const {
switch (SubIdx) {
default: return 0;
case ARM::ssub_0:
case ARM::ssub_1:
case ARM::ssub_2:
case ARM::ssub_3: {
// S sub-registers.
if (A->getSize() == 8) {
if (B == &ARM::SPR_8RegClass)
return &ARM::DPR_8RegClass;
assert(B == &ARM::SPRRegClass && "Expecting SPR register class!");
if (A == &ARM::DPR_8RegClass)
return A;
return &ARM::DPR_VFP2RegClass;
}
if (A->getSize() == 16) {
if (B == &ARM::SPR_8RegClass)
return &ARM::QPR_8RegClass;
return &ARM::QPR_VFP2RegClass;
}
if (A->getSize() == 32) {
if (B == &ARM::SPR_8RegClass)
return 0; // Do not allow coalescing!
return &ARM::QQPR_VFP2RegClass;
}
assert(A->getSize() == 64 && "Expecting a QQQQ register class!");
return 0; // Do not allow coalescing!
}
case ARM::dsub_0:
case ARM::dsub_1:
case ARM::dsub_2:
case ARM::dsub_3: {
// D sub-registers.
if (A->getSize() == 16) {
if (B == &ARM::DPR_VFP2RegClass)
return &ARM::QPR_VFP2RegClass;
if (B == &ARM::DPR_8RegClass)
return 0; // Do not allow coalescing!
return A;
}
if (A->getSize() == 32) {
if (B == &ARM::DPR_VFP2RegClass)
return &ARM::QQPR_VFP2RegClass;
if (B == &ARM::DPR_8RegClass)
return 0; // Do not allow coalescing!
return A;
}
assert(A->getSize() == 64 && "Expecting a QQQQ register class!");
if (B != &ARM::DPRRegClass)
return 0; // Do not allow coalescing!
return A;
}
case ARM::dsub_4:
case ARM::dsub_5:
case ARM::dsub_6:
case ARM::dsub_7: {
// D sub-registers of QQQQ registers.
if (A->getSize() == 64 && B == &ARM::DPRRegClass)
return A;
return 0; // Do not allow coalescing!
}
case ARM::qsub_0:
case ARM::qsub_1: {
// Q sub-registers.
if (A->getSize() == 32) {
if (B == &ARM::QPR_VFP2RegClass)
return &ARM::QQPR_VFP2RegClass;
if (B == &ARM::QPR_8RegClass)
return 0; // Do not allow coalescing!
return A;
}
assert(A->getSize() == 64 && "Expecting a QQQQ register class!");
if (B == &ARM::QPRRegClass)
return A;
return 0; // Do not allow coalescing!
}
case ARM::qsub_2:
case ARM::qsub_3: {
// Q sub-registers of QQQQ registers.
if (A->getSize() == 64 && B == &ARM::QPRRegClass)
return A;
return 0; // Do not allow coalescing!
}
}
return 0;
}
bool
ARMBaseRegisterInfo::canCombineSubRegIndices(const TargetRegisterClass *RC,
SmallVectorImpl<unsigned> &SubIndices,
unsigned &NewSubIdx) const {
unsigned Size = RC->getSize() * 8;
if (Size < 6)
return 0;
NewSubIdx = 0; // Whole register.
unsigned NumRegs = SubIndices.size();
if (NumRegs == 8) {
// 8 D registers -> 1 QQQQ register.
return (Size == 512 &&
SubIndices[0] == ARM::dsub_0 &&
SubIndices[1] == ARM::dsub_1 &&
SubIndices[2] == ARM::dsub_2 &&
SubIndices[3] == ARM::dsub_3 &&
SubIndices[4] == ARM::dsub_4 &&
SubIndices[5] == ARM::dsub_5 &&
SubIndices[6] == ARM::dsub_6 &&
SubIndices[7] == ARM::dsub_7);
} else if (NumRegs == 4) {
if (SubIndices[0] == ARM::qsub_0) {
// 4 Q registers -> 1 QQQQ register.
return (Size == 512 &&
SubIndices[1] == ARM::qsub_1 &&
SubIndices[2] == ARM::qsub_2 &&
SubIndices[3] == ARM::qsub_3);
} else if (SubIndices[0] == ARM::dsub_0) {
// 4 D registers -> 1 QQ register.
if (Size >= 256 &&
SubIndices[1] == ARM::dsub_1 &&
SubIndices[2] == ARM::dsub_2 &&
SubIndices[3] == ARM::dsub_3) {
if (Size == 512)
NewSubIdx = ARM::qqsub_0;
return true;
}
} else if (SubIndices[0] == ARM::dsub_4) {
// 4 D registers -> 1 QQ register (2nd).
if (Size == 512 &&
SubIndices[1] == ARM::dsub_5 &&
SubIndices[2] == ARM::dsub_6 &&
SubIndices[3] == ARM::dsub_7) {
NewSubIdx = ARM::qqsub_1;
return true;
}
} else if (SubIndices[0] == ARM::ssub_0) {
// 4 S registers -> 1 Q register.
if (Size >= 128 &&
SubIndices[1] == ARM::ssub_1 &&
SubIndices[2] == ARM::ssub_2 &&
SubIndices[3] == ARM::ssub_3) {
if (Size >= 256)
NewSubIdx = ARM::qsub_0;
return true;
}
}
} else if (NumRegs == 2) {
if (SubIndices[0] == ARM::qsub_0) {
// 2 Q registers -> 1 QQ register.
if (Size >= 256 && SubIndices[1] == ARM::qsub_1) {
if (Size == 512)
NewSubIdx = ARM::qqsub_0;
return true;
}
} else if (SubIndices[0] == ARM::qsub_2) {
// 2 Q registers -> 1 QQ register (2nd).
if (Size == 512 && SubIndices[1] == ARM::qsub_3) {
NewSubIdx = ARM::qqsub_1;
return true;
}
} else if (SubIndices[0] == ARM::dsub_0) {
// 2 D registers -> 1 Q register.
if (Size >= 128 && SubIndices[1] == ARM::dsub_1) {
if (Size >= 256)
NewSubIdx = ARM::qsub_0;
return true;
}
} else if (SubIndices[0] == ARM::dsub_2) {
// 2 D registers -> 1 Q register (2nd).
if (Size >= 256 && SubIndices[1] == ARM::dsub_3) {
NewSubIdx = ARM::qsub_1;
return true;
}
} else if (SubIndices[0] == ARM::dsub_4) {
// 2 D registers -> 1 Q register (3rd).
if (Size == 512 && SubIndices[1] == ARM::dsub_5) {
NewSubIdx = ARM::qsub_2;
return true;
}
} else if (SubIndices[0] == ARM::dsub_6) {
// 2 D registers -> 1 Q register (3rd).
if (Size == 512 && SubIndices[1] == ARM::dsub_7) {
NewSubIdx = ARM::qsub_3;
return true;
}
} else if (SubIndices[0] == ARM::ssub_0) {
// 2 S registers -> 1 D register.
if (SubIndices[1] == ARM::ssub_1) {
if (Size >= 128)
NewSubIdx = ARM::dsub_0;
return true;
}
} else if (SubIndices[0] == ARM::ssub_2) {
// 2 S registers -> 1 D register (2nd).
if (Size >= 128 && SubIndices[1] == ARM::ssub_3) {
NewSubIdx = ARM::dsub_1;
return true;
}
}
}
return false;
}
const TargetRegisterClass *
ARMBaseRegisterInfo::getPointerRegClass(unsigned Kind) const {
return ARM::GPRRegisterClass;
}
/// getAllocationOrder - Returns the register allocation order for a specified
/// register class in the form of a pair of TargetRegisterClass iterators.
std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
ARMBaseRegisterInfo::getAllocationOrder(const TargetRegisterClass *RC,
unsigned HintType, unsigned HintReg,
const MachineFunction &MF) const {
// Alternative register allocation orders when favoring even / odd registers
// of register pairs.
// No FP, R9 is available.
static const unsigned GPREven1[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7,
ARM::R9, ARM::R11
};
static const unsigned GPROdd1[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R9, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
ARM::R8, ARM::R10
};
// FP is R7, R9 is available.
static const unsigned GPREven2[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R8, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6,
ARM::R9, ARM::R11
};
static const unsigned GPROdd2[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R9, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
ARM::R8, ARM::R10
};
// FP is R11, R9 is available.
static const unsigned GPREven3[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8,
ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7,
ARM::R9
};
static const unsigned GPROdd3[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R6, ARM::R9,
ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R7,
ARM::R8
};
// No FP, R9 is not available.
static const unsigned GPREven4[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8,
ARM::R11
};
static const unsigned GPROdd4[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
ARM::R10
};
// FP is R7, R9 is not available.
static const unsigned GPREven5[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6, ARM::R8,
ARM::R11
};
static const unsigned GPROdd5[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
ARM::R10
};
// FP is R11, R9 is not available.
static const unsigned GPREven6[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6,
ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8
};
static const unsigned GPROdd6[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R7,
ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8
};
if (HintType == ARMRI::RegPairEven) {
if (isPhysicalRegister(HintReg) && getRegisterPairEven(HintReg, MF) == 0)
// It's no longer possible to fulfill this hint. Return the default
// allocation order.
return std::make_pair(RC->allocation_order_begin(MF),
RC->allocation_order_end(MF));
if (!hasFP(MF)) {
if (!STI.isR9Reserved())
return std::make_pair(GPREven1,
GPREven1 + (sizeof(GPREven1)/sizeof(unsigned)));
else
return std::make_pair(GPREven4,
GPREven4 + (sizeof(GPREven4)/sizeof(unsigned)));
} else if (FramePtr == ARM::R7) {
if (!STI.isR9Reserved())
return std::make_pair(GPREven2,
GPREven2 + (sizeof(GPREven2)/sizeof(unsigned)));
else
return std::make_pair(GPREven5,
GPREven5 + (sizeof(GPREven5)/sizeof(unsigned)));
} else { // FramePtr == ARM::R11
if (!STI.isR9Reserved())
return std::make_pair(GPREven3,
GPREven3 + (sizeof(GPREven3)/sizeof(unsigned)));
else
return std::make_pair(GPREven6,
GPREven6 + (sizeof(GPREven6)/sizeof(unsigned)));
}
} else if (HintType == ARMRI::RegPairOdd) {
if (isPhysicalRegister(HintReg) && getRegisterPairOdd(HintReg, MF) == 0)
// It's no longer possible to fulfill this hint. Return the default
// allocation order.
return std::make_pair(RC->allocation_order_begin(MF),
RC->allocation_order_end(MF));
if (!hasFP(MF)) {
if (!STI.isR9Reserved())
return std::make_pair(GPROdd1,
GPROdd1 + (sizeof(GPROdd1)/sizeof(unsigned)));
else
return std::make_pair(GPROdd4,
GPROdd4 + (sizeof(GPROdd4)/sizeof(unsigned)));
} else if (FramePtr == ARM::R7) {
if (!STI.isR9Reserved())
return std::make_pair(GPROdd2,
GPROdd2 + (sizeof(GPROdd2)/sizeof(unsigned)));
else
return std::make_pair(GPROdd5,
GPROdd5 + (sizeof(GPROdd5)/sizeof(unsigned)));
} else { // FramePtr == ARM::R11
if (!STI.isR9Reserved())
return std::make_pair(GPROdd3,
GPROdd3 + (sizeof(GPROdd3)/sizeof(unsigned)));
else
return std::make_pair(GPROdd6,
GPROdd6 + (sizeof(GPROdd6)/sizeof(unsigned)));
}
}
return std::make_pair(RC->allocation_order_begin(MF),
RC->allocation_order_end(MF));
}
/// ResolveRegAllocHint - Resolves the specified register allocation hint
/// to a physical register. Returns the physical register if it is successful.
unsigned
ARMBaseRegisterInfo::ResolveRegAllocHint(unsigned Type, unsigned Reg,
const MachineFunction &MF) const {
if (Reg == 0 || !isPhysicalRegister(Reg))
return 0;
if (Type == 0)
return Reg;
else if (Type == (unsigned)ARMRI::RegPairOdd)
// Odd register.
return getRegisterPairOdd(Reg, MF);
else if (Type == (unsigned)ARMRI::RegPairEven)
// Even register.
return getRegisterPairEven(Reg, MF);
return 0;
}
void
ARMBaseRegisterInfo::UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
MachineFunction &MF) const {
MachineRegisterInfo *MRI = &MF.getRegInfo();
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
if ((Hint.first == (unsigned)ARMRI::RegPairOdd ||
Hint.first == (unsigned)ARMRI::RegPairEven) &&
Hint.second && TargetRegisterInfo::isVirtualRegister(Hint.second)) {
// If 'Reg' is one of the even / odd register pair and it's now changed
// (e.g. coalesced) into a different register. The other register of the
// pair allocation hint must be updated to reflect the relationship
// change.
unsigned OtherReg = Hint.second;
Hint = MRI->getRegAllocationHint(OtherReg);
if (Hint.second == Reg)
// Make sure the pair has not already divorced.
MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
}
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
///
bool ARMBaseRegisterInfo::hasFP(const MachineFunction &MF) const {
// Mac OS X requires FP not to be clobbered for backtracing purpose.
if (STI.isTargetDarwin())
return true;
const MachineFrameInfo *MFI = MF.getFrameInfo();
// Always eliminate non-leaf frame pointers.
return ((DisableFramePointerElim(MF) && MFI->hasCalls()) ||
needsStackRealignment(MF) ||
MFI->hasVarSizedObjects() ||
MFI->isFrameAddressTaken());
}
bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (!EnableBasePointer)
return false;
if (needsStackRealignment(MF) && MFI->hasVarSizedObjects())
return true;
// Thumb has trouble with negative offsets from the FP. Thumb2 has a limited
// negative range for ldr/str (255), and thumb1 is positive offsets only.
// It's going to be better to use the SP or Base Pointer instead. When there
// are variable sized objects, we can't reference off of the SP, so we
// reserve a Base Pointer.
if (AFI->isThumbFunction() && MFI->hasVarSizedObjects()) {
// Conservatively estimate whether the negative offset from the frame
// pointer will be sufficient to reach. If a function has a smallish
// frame, it's less likely to have lots of spills and callee saved
// space, so it's all more likely to be within range of the frame pointer.
// If it's wrong, the scavenger will still enable access to work, it just
// won't be optimal.
if (AFI->isThumb2Function() && MFI->getLocalFrameSize() < 128)
return false;
return true;
}
return false;
}
bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We can't realign the stack if:
// 1. Dynamic stack realignment is explicitly disabled,
// 2. This is a Thumb1 function (it's not useful, so we don't bother), or
// 3. There are VLAs in the function and the base pointer is disabled.
return (RealignStack && !AFI->isThumb1OnlyFunction() &&
(!MFI->hasVarSizedObjects() || EnableBasePointer));
}
bool ARMBaseRegisterInfo::
needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *F = MF.getFunction();
unsigned StackAlign = MF.getTarget().getFrameInfo()->getStackAlignment();
bool requiresRealignment = ((MFI->getLocalFrameMaxAlign() > StackAlign) ||
F->hasFnAttr(Attribute::StackAlignment));
return requiresRealignment && canRealignStack(MF);
}
bool ARMBaseRegisterInfo::
cannotEliminateFrame(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
if (DisableFramePointerElim(MF) && MFI->adjustsStack())
return true;
return MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken()
|| needsStackRealignment(MF);
}
/// estimateStackSize - Estimate and return the size of the frame.
static unsigned estimateStackSize(MachineFunction &MF) {
const MachineFrameInfo *FFI = MF.getFrameInfo();
int Offset = 0;
for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
int FixedOff = -FFI->getObjectOffset(i);
if (FixedOff > Offset) Offset = FixedOff;
}
for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
if (FFI->isDeadObjectIndex(i))
continue;
Offset += FFI->getObjectSize(i);
unsigned Align = FFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
}
return (unsigned)Offset;
}
/// estimateRSStackSizeLimit - Look at each instruction that references stack
/// frames and return the stack size limit beyond which some of these
/// instructions will require a scratch register during their expansion later.
unsigned
ARMBaseRegisterInfo::estimateRSStackSizeLimit(MachineFunction &MF) const {
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned Limit = (1 << 12) - 1;
for (MachineFunction::iterator BB = MF.begin(),E = MF.end(); BB != E; ++BB) {
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
if (!I->getOperand(i).isFI()) continue;
// When using ADDri to get the address of a stack object, 255 is the
// largest offset guaranteed to fit in the immediate offset.
if (I->getOpcode() == ARM::ADDri) {
Limit = std::min(Limit, (1U << 8) - 1);
break;
}
// Otherwise check the addressing mode.
switch (I->getDesc().TSFlags & ARMII::AddrModeMask) {
case ARMII::AddrMode3:
case ARMII::AddrModeT2_i8:
Limit = std::min(Limit, (1U << 8) - 1);
break;
case ARMII::AddrMode5:
case ARMII::AddrModeT2_i8s4:
Limit = std::min(Limit, ((1U << 8) - 1) * 4);
break;
case ARMII::AddrModeT2_i12:
// i12 supports only positive offset so these will be converted to
// i8 opcodes. See llvm::rewriteT2FrameIndex.
if (hasFP(MF) && AFI->hasStackFrame())
Limit = std::min(Limit, (1U << 8) - 1);
break;
case ARMII::AddrMode4:
case ARMII::AddrMode6:
// Addressing modes 4 & 6 (load/store) instructions can't encode an
// immediate offset for stack references.
return 0;
default:
break;
}
break; // At most one FI per instruction
}
}
}
return Limit;
}
static unsigned GetFunctionSizeInBytes(const MachineFunction &MF,
const ARMBaseInstrInfo &TII) {
unsigned FnSize = 0;
for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
MBBI != E; ++MBBI) {
const MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
I != E; ++I)
FnSize += TII.GetInstSizeInBytes(I);
}
return FnSize;
}
void
ARMBaseRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
// This tells PEI to spill the FP as if it is any other callee-save register
// to take advantage the eliminateFrameIndex machinery. This also ensures it
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
// to combine multiple loads / stores.
bool CanEliminateFrame = true;
bool CS1Spilled = false;
bool LRSpilled = false;
unsigned NumGPRSpills = 0;
SmallVector<unsigned, 4> UnspilledCS1GPRs;
SmallVector<unsigned, 4> UnspilledCS2GPRs;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
MachineFrameInfo *MFI = MF.getFrameInfo();
// Spill R4 if Thumb2 function requires stack realignment - it will be used as
// scratch register.
// FIXME: It will be better just to find spare register here.
if (needsStackRealignment(MF) &&
AFI->isThumb2Function())
MF.getRegInfo().setPhysRegUsed(ARM::R4);
// Spill LR if Thumb1 function uses variable length argument lists.
if (AFI->isThumb1OnlyFunction() && AFI->getVarArgsRegSaveSize() > 0)
MF.getRegInfo().setPhysRegUsed(ARM::LR);
// Spill the BasePtr if it's used.
if (hasBasePointer(MF))
MF.getRegInfo().setPhysRegUsed(BasePtr);
// Don't spill FP if the frame can be eliminated. This is determined
// by scanning the callee-save registers to see if any is used.
const unsigned *CSRegs = getCalleeSavedRegs();
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
bool Spilled = false;
if (MF.getRegInfo().isPhysRegUsed(Reg)) {
AFI->setCSRegisterIsSpilled(Reg);
Spilled = true;
CanEliminateFrame = false;
} else {
// Check alias registers too.
for (const unsigned *Aliases = getAliasSet(Reg); *Aliases; ++Aliases) {
if (MF.getRegInfo().isPhysRegUsed(*Aliases)) {
Spilled = true;
CanEliminateFrame = false;
}
}
}
if (!ARM::GPRRegisterClass->contains(Reg))
continue;
if (Spilled) {
NumGPRSpills++;
if (!STI.isTargetDarwin()) {
if (Reg == ARM::LR)
LRSpilled = true;
CS1Spilled = true;
continue;
}
// Keep track if LR and any of R4, R5, R6, and R7 is spilled.
switch (Reg) {
case ARM::LR:
LRSpilled = true;
// Fallthrough
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
CS1Spilled = true;
break;
default:
break;
}
} else {
if (!STI.isTargetDarwin()) {
UnspilledCS1GPRs.push_back(Reg);
continue;
}
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
UnspilledCS1GPRs.push_back(Reg);
break;
default:
UnspilledCS2GPRs.push_back(Reg);
break;
}
}
}
bool ForceLRSpill = false;
if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
unsigned FnSize = GetFunctionSizeInBytes(MF, TII);
// Force LR to be spilled if the Thumb function size is > 2048. This enables
// use of BL to implement far jump. If it turns out that it's not needed
// then the branch fix up path will undo it.
if (FnSize >= (1 << 11)) {
CanEliminateFrame = false;
ForceLRSpill = true;
}
}
// If any of the stack slot references may be out of range of an immediate
// offset, make sure a register (or a spill slot) is available for the
// register scavenger. Note that if we're indexing off the frame pointer, the
// effective stack size is 4 bytes larger since the FP points to the stack
// slot of the previous FP. Also, if we have variable sized objects in the
// function, stack slot references will often be negative, and some of
// our instructions are positive-offset only, so conservatively consider
// that case to want a spill slot (or register) as well. Similarly, if
// the function adjusts the stack pointer during execution and the
// adjustments aren't already part of our stack size estimate, our offset
// calculations may be off, so be conservative.
// FIXME: We could add logic to be more precise about negative offsets
// and which instructions will need a scratch register for them. Is it
// worth the effort and added fragility?
bool BigStack =
(RS &&
(estimateStackSize(MF) + ((hasFP(MF) && AFI->hasStackFrame()) ? 4:0) >=
estimateRSStackSizeLimit(MF)))
|| MFI->hasVarSizedObjects()
|| (MFI->adjustsStack() && !canSimplifyCallFramePseudos(MF));
bool ExtraCSSpill = false;
if (BigStack || !CanEliminateFrame || cannotEliminateFrame(MF)) {
AFI->setHasStackFrame(true);
// If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
// Spill LR as well so we can fold BX_RET to the registers restore (LDM).
if (!LRSpilled && CS1Spilled) {
MF.getRegInfo().setPhysRegUsed(ARM::LR);
AFI->setCSRegisterIsSpilled(ARM::LR);
NumGPRSpills++;
UnspilledCS1GPRs.erase(std::find(UnspilledCS1GPRs.begin(),
UnspilledCS1GPRs.end(), (unsigned)ARM::LR));
ForceLRSpill = false;
ExtraCSSpill = true;
}
if (hasFP(MF)) {
MF.getRegInfo().setPhysRegUsed(FramePtr);
NumGPRSpills++;
}
// If stack and double are 8-byte aligned and we are spilling an odd number
// of GPRs, spill one extra callee save GPR so we won't have to pad between
// the integer and double callee save areas.
unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment();
if (TargetAlign == 8 && (NumGPRSpills & 1)) {
if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
unsigned Reg = UnspilledCS1GPRs[i];
// Don't spill high register if the function is thumb1
if (!AFI->isThumb1OnlyFunction() ||
isARMLowRegister(Reg) || Reg == ARM::LR) {
MF.getRegInfo().setPhysRegUsed(Reg);
AFI->setCSRegisterIsSpilled(Reg);
if (!isReservedReg(MF, Reg))
ExtraCSSpill = true;
break;
}
}
} else if (!UnspilledCS2GPRs.empty() &&
!AFI->isThumb1OnlyFunction()) {
unsigned Reg = UnspilledCS2GPRs.front();
MF.getRegInfo().setPhysRegUsed(Reg);
AFI->setCSRegisterIsSpilled(Reg);
if (!isReservedReg(MF, Reg))
ExtraCSSpill = true;
}
}
// Estimate if we might need to scavenge a register at some point in order
// to materialize a stack offset. If so, either spill one additional
// callee-saved register or reserve a special spill slot to facilitate
// register scavenging. Thumb1 needs a spill slot for stack pointer
// adjustments also, even when the frame itself is small.
if (BigStack && !ExtraCSSpill) {
// If any non-reserved CS register isn't spilled, just spill one or two
// extra. That should take care of it!
unsigned NumExtras = TargetAlign / 4;
SmallVector<unsigned, 2> Extras;
while (NumExtras && !UnspilledCS1GPRs.empty()) {
unsigned Reg = UnspilledCS1GPRs.back();
UnspilledCS1GPRs.pop_back();
if (!isReservedReg(MF, Reg) &&
(!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) ||
Reg == ARM::LR)) {
Extras.push_back(Reg);
NumExtras--;
}
}
// For non-Thumb1 functions, also check for hi-reg CS registers
if (!AFI->isThumb1OnlyFunction()) {
while (NumExtras && !UnspilledCS2GPRs.empty()) {
unsigned Reg = UnspilledCS2GPRs.back();
UnspilledCS2GPRs.pop_back();
if (!isReservedReg(MF, Reg)) {
Extras.push_back(Reg);
NumExtras--;
}
}
}
if (Extras.size() && NumExtras == 0) {
for (unsigned i = 0, e = Extras.size(); i != e; ++i) {
MF.getRegInfo().setPhysRegUsed(Extras[i]);
AFI->setCSRegisterIsSpilled(Extras[i]);
}
} else if (!AFI->isThumb1OnlyFunction()) {
// note: Thumb1 functions spill to R12, not the stack. Reserve a slot
// closest to SP or frame pointer.
const TargetRegisterClass *RC = ARM::GPRRegisterClass;
RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
RC->getAlignment(),
false));
}
}
}
if (ForceLRSpill) {
MF.getRegInfo().setPhysRegUsed(ARM::LR);
AFI->setCSRegisterIsSpilled(ARM::LR);
AFI->setLRIsSpilledForFarJump(true);
}
}
unsigned ARMBaseRegisterInfo::getRARegister() const {
return ARM::LR;
}
unsigned
ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
if (hasFP(MF))
return FramePtr;
return ARM::SP;
}
// Provide a base+offset reference to an FI slot for debug info. It's the
// same as what we use for resolving the code-gen references for now.
// FIXME: This can go wrong when references are SP-relative and simple call
// frames aren't used.
int
ARMBaseRegisterInfo::getFrameIndexReference(const MachineFunction &MF, int FI,
unsigned &FrameReg) const {
return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
}
int
ARMBaseRegisterInfo::ResolveFrameIndexReference(const MachineFunction &MF,
int FI,
unsigned &FrameReg,
int SPAdj) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
int FPOffset = Offset - AFI->getFramePtrSpillOffset();
bool isFixed = MFI->isFixedObjectIndex(FI);
FrameReg = ARM::SP;
Offset += SPAdj;
if (AFI->isGPRCalleeSavedArea1Frame(FI))
return Offset - AFI->getGPRCalleeSavedArea1Offset();
else if (AFI->isGPRCalleeSavedArea2Frame(FI))
return Offset - AFI->getGPRCalleeSavedArea2Offset();
else if (AFI->isDPRCalleeSavedAreaFrame(FI))
return Offset - AFI->getDPRCalleeSavedAreaOffset();
// When dynamically realigning the stack, use the frame pointer for
// parameters, and the stack/base pointer for locals.
if (needsStackRealignment(MF)) {
assert (hasFP(MF) && "dynamic stack realignment without a FP!");
if (isFixed) {
FrameReg = getFrameRegister(MF);
Offset = FPOffset;
} else if (MFI->hasVarSizedObjects()) {
assert(hasBasePointer(MF) &&
"VLAs and dynamic stack alignment, but missing base pointer!");
FrameReg = BasePtr;
}
return Offset;
}
// If there is a frame pointer, use it when we can.
if (hasFP(MF) && AFI->hasStackFrame()) {
// Use frame pointer to reference fixed objects. Use it for locals if
// there are VLAs (and thus the SP isn't reliable as a base).
if (isFixed || (MFI->hasVarSizedObjects() && !hasBasePointer(MF))) {
FrameReg = getFrameRegister(MF);
return FPOffset;
} else if (MFI->hasVarSizedObjects()) {
assert(hasBasePointer(MF) && "missing base pointer!");
// Try to use the frame pointer if we can, else use the base pointer
// since it's available. This is handy for the emergency spill slot, in
// particular.
if (AFI->isThumb2Function()) {
if (FPOffset >= -255 && FPOffset < 0) {
FrameReg = getFrameRegister(MF);
return FPOffset;
}
} else
FrameReg = BasePtr;
} else if (AFI->isThumb2Function()) {
// In Thumb2 mode, the negative offset is very limited. Try to avoid
// out of range references.
if (FPOffset >= -255 && FPOffset < 0) {
FrameReg = getFrameRegister(MF);
return FPOffset;
}
} else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
// Otherwise, use SP or FP, whichever is closer to the stack slot.
FrameReg = getFrameRegister(MF);
return FPOffset;
}
}
// Use the base pointer if we have one.
if (hasBasePointer(MF))
FrameReg = BasePtr;
return Offset;
}
int
ARMBaseRegisterInfo::getFrameIndexOffset(const MachineFunction &MF,
int FI) const {
unsigned FrameReg;
return getFrameIndexReference(MF, FI, FrameReg);
}
unsigned ARMBaseRegisterInfo::getEHExceptionRegister() const {
llvm_unreachable("What is the exception register");
return 0;
}
unsigned ARMBaseRegisterInfo::getEHHandlerRegister() const {
llvm_unreachable("What is the exception handler register");
return 0;
}
int ARMBaseRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
return ARMGenRegisterInfo::getDwarfRegNumFull(RegNum, 0);
}
unsigned ARMBaseRegisterInfo::getRegisterPairEven(unsigned Reg,
const MachineFunction &MF) const {
switch (Reg) {
default: break;
// Return 0 if either register of the pair is a special register.
// So no R12, etc.
case ARM::R1:
return ARM::R0;
case ARM::R3:
return ARM::R2;
case ARM::R5:
return ARM::R4;
case ARM::R7:
return (isReservedReg(MF, ARM::R7) || isReservedReg(MF, ARM::R6))
? 0 : ARM::R6;
case ARM::R9:
return isReservedReg(MF, ARM::R9) ? 0 :ARM::R8;
case ARM::R11:
return isReservedReg(MF, ARM::R11) ? 0 : ARM::R10;
case ARM::S1:
return ARM::S0;
case ARM::S3:
return ARM::S2;
case ARM::S5:
return ARM::S4;
case ARM::S7:
return ARM::S6;
case ARM::S9:
return ARM::S8;
case ARM::S11:
return ARM::S10;
case ARM::S13:
return ARM::S12;
case ARM::S15:
return ARM::S14;
case ARM::S17:
return ARM::S16;
case ARM::S19:
return ARM::S18;
case ARM::S21:
return ARM::S20;
case ARM::S23:
return ARM::S22;
case ARM::S25:
return ARM::S24;
case ARM::S27:
return ARM::S26;
case ARM::S29:
return ARM::S28;
case ARM::S31:
return ARM::S30;
case ARM::D1:
return ARM::D0;
case ARM::D3:
return ARM::D2;
case ARM::D5:
return ARM::D4;
case ARM::D7:
return ARM::D6;
case ARM::D9:
return ARM::D8;
case ARM::D11:
return ARM::D10;
case ARM::D13:
return ARM::D12;
case ARM::D15:
return ARM::D14;
case ARM::D17:
return ARM::D16;
case ARM::D19:
return ARM::D18;
case ARM::D21:
return ARM::D20;
case ARM::D23:
return ARM::D22;
case ARM::D25:
return ARM::D24;
case ARM::D27:
return ARM::D26;
case ARM::D29:
return ARM::D28;
case ARM::D31:
return ARM::D30;
}
return 0;
}
unsigned ARMBaseRegisterInfo::getRegisterPairOdd(unsigned Reg,
const MachineFunction &MF) const {
switch (Reg) {
default: break;
// Return 0 if either register of the pair is a special register.
// So no R12, etc.
case ARM::R0:
return ARM::R1;
case ARM::R2:
return ARM::R3;
case ARM::R4:
return ARM::R5;
case ARM::R6:
return (isReservedReg(MF, ARM::R7) || isReservedReg(MF, ARM::R6))
? 0 : ARM::R7;
case ARM::R8:
return isReservedReg(MF, ARM::R9) ? 0 :ARM::R9;
case ARM::R10:
return isReservedReg(MF, ARM::R11) ? 0 : ARM::R11;
case ARM::S0:
return ARM::S1;
case ARM::S2:
return ARM::S3;
case ARM::S4:
return ARM::S5;
case ARM::S6:
return ARM::S7;
case ARM::S8:
return ARM::S9;
case ARM::S10:
return ARM::S11;
case ARM::S12:
return ARM::S13;
case ARM::S14:
return ARM::S15;
case ARM::S16:
return ARM::S17;
case ARM::S18:
return ARM::S19;
case ARM::S20:
return ARM::S21;
case ARM::S22:
return ARM::S23;
case ARM::S24:
return ARM::S25;
case ARM::S26:
return ARM::S27;
case ARM::S28:
return ARM::S29;
case ARM::S30:
return ARM::S31;
case ARM::D0:
return ARM::D1;
case ARM::D2:
return ARM::D3;
case ARM::D4:
return ARM::D5;
case ARM::D6:
return ARM::D7;
case ARM::D8:
return ARM::D9;
case ARM::D10:
return ARM::D11;
case ARM::D12:
return ARM::D13;
case ARM::D14:
return ARM::D15;
case ARM::D16:
return ARM::D17;
case ARM::D18:
return ARM::D19;
case ARM::D20:
return ARM::D21;
case ARM::D22:
return ARM::D23;
case ARM::D24:
return ARM::D25;
case ARM::D26:
return ARM::D27;
case ARM::D28:
return ARM::D29;
case ARM::D30:
return ARM::D31;
}
return 0;
}
/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
void ARMBaseRegisterInfo::
emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
DebugLoc dl,
unsigned DestReg, unsigned SubIdx, int Val,
ARMCC::CondCodes Pred,
unsigned PredReg) const {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
const Constant *C =
ConstantInt::get(Type::getInt32Ty(MF.getFunction()->getContext()), Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
.addReg(DestReg, getDefRegState(true), SubIdx)
.addConstantPoolIndex(Idx)
.addImm(0).addImm(Pred).addReg(PredReg);
}
bool ARMBaseRegisterInfo::
requiresRegisterScavenging(const MachineFunction &MF) const {
return true;
}
bool ARMBaseRegisterInfo::
requiresFrameIndexScavenging(const MachineFunction &MF) const {
return true;
}
bool ARMBaseRegisterInfo::
requiresVirtualBaseRegisters(const MachineFunction &MF) const {
return EnableLocalStackAlloc;
}
// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
// not required, we reserve argument space for call sites in the function
// immediately on entry to the current function. This eliminates the need for
// add/sub sp brackets around call sites. Returns true if the call frame is
// included as part of the stack frame.
bool ARMBaseRegisterInfo::
hasReservedCallFrame(const MachineFunction &MF) const {
const MachineFrameInfo *FFI = MF.getFrameInfo();
unsigned CFSize = FFI->getMaxCallFrameSize();
// It's not always a good idea to include the call frame as part of the
// stack frame. ARM (especially Thumb) has small immediate offset to
// address the stack frame. So a large call frame can cause poor codegen
// and may even makes it impossible to scavenge a register.
if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
return false;
return !MF.getFrameInfo()->hasVarSizedObjects();
}
// canSimplifyCallFramePseudos - If there is a reserved call frame, the
// call frame pseudos can be simplified. Unlike most targets, having a FP
// is not sufficient here since we still may reference some objects via SP
// even when FP is available in Thumb2 mode.
bool ARMBaseRegisterInfo::
canSimplifyCallFramePseudos(const MachineFunction &MF) const {
return hasReservedCallFrame(MF) || MF.getFrameInfo()->hasVarSizedObjects();
}
static void
emitSPUpdate(bool isARM,
MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
DebugLoc dl, const ARMBaseInstrInfo &TII,
int NumBytes,
ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
if (isARM)
emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
Pred, PredReg, TII);
else
emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
Pred, PredReg, TII);
}
void ARMBaseRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (!hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
MachineInstr *Old = I;
DebugLoc dl = Old->getDebugLoc();
unsigned Amount = Old->getOperand(0).getImm();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateCallFramePseudoInstr does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
// Replace the pseudo instruction with a new instruction...
unsigned Opc = Old->getOpcode();
int PIdx = Old->findFirstPredOperandIdx();
ARMCC::CondCodes Pred = (PIdx == -1)
? ARMCC::AL : (ARMCC::CondCodes)Old->getOperand(PIdx).getImm();
if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
// Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
unsigned PredReg = Old->getOperand(2).getReg();
emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, Pred, PredReg);
} else {
// Note: PredReg is operand 3 for ADJCALLSTACKUP.
unsigned PredReg = Old->getOperand(3).getReg();
assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
emitSPUpdate(isARM, MBB, I, dl, TII, Amount, Pred, PredReg);
}
}
}
MBB.erase(I);
}
int64_t ARMBaseRegisterInfo::
getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const {
const TargetInstrDesc &Desc = MI->getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
int64_t InstrOffs = 0;;
int Scale = 1;
unsigned ImmIdx = 0;
switch (AddrMode) {
case ARMII::AddrModeT2_i8:
case ARMII::AddrModeT2_i12:
case ARMII::AddrMode_i12:
InstrOffs = MI->getOperand(Idx+1).getImm();
Scale = 1;
break;
case ARMII::AddrMode5: {
// VFP address mode.
const MachineOperand &OffOp = MI->getOperand(Idx+1);
InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
Scale = 4;
break;
}
case ARMII::AddrMode2: {
ImmIdx = Idx+2;
InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm());
if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
break;
}
case ARMII::AddrMode3: {
ImmIdx = Idx+2;
InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm());
if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
break;
}
case ARMII::AddrModeT1_s: {
ImmIdx = Idx+1;
InstrOffs = MI->getOperand(ImmIdx).getImm();
Scale = 4;
break;
}
default:
llvm_unreachable("Unsupported addressing mode!");
break;
}
return InstrOffs * Scale;
}
/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool ARMBaseRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) {
assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
}
// It's the load/store FI references that cause issues, as it can be difficult
// to materialize the offset if it won't fit in the literal field. Estimate
// based on the size of the local frame and some conservative assumptions
// about the rest of the stack frame (note, this is pre-regalloc, so
// we don't know everything for certain yet) whether this offset is likely
// to be out of range of the immediate. Return true if so.
// We only generate virtual base registers for loads and stores, so
// return false for everything else.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12:
case ARM::STRi12: case ARM::STRH: case ARM::STRBi12:
case ARM::t2LDRi12: case ARM::t2LDRi8:
case ARM::t2STRi12: case ARM::t2STRi8:
case ARM::VLDRS: case ARM::VLDRD:
case ARM::VSTRS: case ARM::VSTRD:
case ARM::tSTRspi: case ARM::tLDRspi:
if (ForceAllBaseRegAlloc)
return true;
break;
default:
return false;
}
// Without a virtual base register, if the function has variable sized
// objects, all fixed-size local references will be via the frame pointer,
// Approximate the offset and see if it's legal for the instruction.
// Note that the incoming offset is based on the SP value at function entry,
// so it'll be negative.
MachineFunction &MF = *MI->getParent()->getParent();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Estimate an offset from the frame pointer.
// Conservatively assume all callee-saved registers get pushed. R4-R6
// will be earlier than the FP, so we ignore those.
// R7, LR
int64_t FPOffset = Offset - 8;
// ARM and Thumb2 functions also need to consider R8-R11 and D8-D15
if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction())
FPOffset -= 80;
// Estimate an offset from the stack pointer.
// The incoming offset is relating to the SP at the start of the function,
// but when we access the local it'll be relative to the SP after local
// allocation, so adjust our SP-relative offset by that allocation size.
Offset = -Offset;
Offset += MFI->getLocalFrameSize();
// Assume that we'll have at least some spill slots allocated.
// FIXME: This is a total SWAG number. We should run some statistics
// and pick a real one.
Offset += 128; // 128 bytes of spill slots
// If there is a frame pointer, try using it.
// The FP is only available if there is no dynamic realignment. We
// don't know for sure yet whether we'll need that, so we guess based
// on whether there are any local variables that would trigger it.
unsigned StackAlign = MF.getTarget().getFrameInfo()->getStackAlignment();
if (hasFP(MF) &&
!((MFI->getLocalFrameMaxAlign() > StackAlign) && canRealignStack(MF))) {
if (isFrameOffsetLegal(MI, FPOffset))
return false;
}
// If we can reference via the stack pointer, try that.
// FIXME: This (and the code that resolves the references) can be improved
// to only disallow SP relative references in the live range of
// the VLA(s). In practice, it's unclear how much difference that
// would make, but it may be worth doing.
if (!MFI->hasVarSizedObjects() && isFrameOffsetLegal(MI, Offset))
return false;
// The offset likely isn't legal, we want to allocate a virtual base register.
return true;
}
/// materializeFrameBaseRegister - Insert defining instruction(s) for
/// BaseReg to be a pointer to FrameIdx before insertion point I.
void ARMBaseRegisterInfo::
materializeFrameBaseRegister(MachineBasicBlock::iterator I, unsigned BaseReg,
int FrameIdx, int64_t Offset) const {
ARMFunctionInfo *AFI =
I->getParent()->getParent()->getInfo<ARMFunctionInfo>();
unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
(AFI->isThumb1OnlyFunction() ? ARM::tADDrSPi : ARM::t2ADDri);
MachineInstrBuilder MIB =
BuildMI(*I->getParent(), I, I->getDebugLoc(), TII.get(ADDriOpc), BaseReg)
.addFrameIndex(FrameIdx).addImm(Offset);
if (!AFI->isThumb1OnlyFunction())
AddDefaultCC(AddDefaultPred(MIB));
}
void
ARMBaseRegisterInfo::resolveFrameIndex(MachineBasicBlock::iterator I,
unsigned BaseReg, int64_t Offset) const {
MachineInstr &MI = *I;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
int Off = Offset; // ARM doesn't need the general 64-bit offsets
unsigned i = 0;
assert(!AFI->isThumb1OnlyFunction() &&
"This resolveFrameIndex does not support Thumb1!");
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
bool Done = false;
if (!AFI->isThumbFunction())
Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII);
else {
assert(AFI->isThumb2Function());
Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII);
}
assert (Done && "Unable to resolve frame index!");
}
bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
int64_t Offset) const {
const TargetInstrDesc &Desc = MI->getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
unsigned i = 0;
while (!MI->getOperand(i).isFI()) {
++i;
assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
}
// AddrMode4 and AddrMode6 cannot handle any offset.
if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
return Offset == 0;
unsigned NumBits = 0;
unsigned Scale = 1;
bool isSigned = true;
switch (AddrMode) {
case ARMII::AddrModeT2_i8:
case ARMII::AddrModeT2_i12:
// i8 supports only negative, and i12 supports only positive, so
// based on Offset sign, consider the appropriate instruction
Scale = 1;
if (Offset < 0) {
NumBits = 8;
Offset = -Offset;
} else {
NumBits = 12;
}
break;
case ARMII::AddrMode5:
// VFP address mode.
NumBits = 8;
Scale = 4;
break;
case ARMII::AddrMode_i12:
case ARMII::AddrMode2:
NumBits = 12;
break;
case ARMII::AddrMode3:
NumBits = 8;
break;
case ARMII::AddrModeT1_s:
NumBits = 5;
Scale = 4;
isSigned = false;
break;
default:
llvm_unreachable("Unsupported addressing mode!");
break;
}
Offset += getFrameIndexInstrOffset(MI, i);
// Make sure the offset is encodable for instructions that scale the
// immediate.
if ((Offset & (Scale-1)) != 0)
return false;
if (isSigned && Offset < 0)
Offset = -Offset;
unsigned Mask = (1 << NumBits) - 1;
if ((unsigned)Offset <= Mask * Scale)
return true;
return false;
}
void
ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const {
unsigned i = 0;
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateFrameIndex does not support Thumb1!");
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getIndex();
unsigned FrameReg;
int Offset = ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj);
// Special handling of dbg_value instructions.
if (MI.isDebugValue()) {
MI.getOperand(i). ChangeToRegister(FrameReg, false /*isDef*/);
MI.getOperand(i+1).ChangeToImmediate(Offset);
return;
}
// Modify MI as necessary to handle as much of 'Offset' as possible
bool Done = false;
if (!AFI->isThumbFunction())
Done = rewriteARMFrameIndex(MI, i, FrameReg, Offset, TII);
else {
assert(AFI->isThumb2Function());
Done = rewriteT2FrameIndex(MI, i, FrameReg, Offset, TII);
}
if (Done)
return;
// If we get here, the immediate doesn't fit into the instruction. We folded
// as much as possible above, handle the rest, providing a register that is
// SP+LargeImm.
assert((Offset ||
(MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 ||
(MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6) &&
"This code isn't needed if offset already handled!");
unsigned ScratchReg = 0;
int PIdx = MI.findFirstPredOperandIdx();
ARMCC::CondCodes Pred = (PIdx == -1)
? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
if (Offset == 0)
// Must be addrmode4/6.
MI.getOperand(i).ChangeToRegister(FrameReg, false, false, false);
else {
ScratchReg = MF.getRegInfo().createVirtualRegister(ARM::GPRRegisterClass);
if (!AFI->isThumbFunction())
emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
Offset, Pred, PredReg, TII);
else {
assert(AFI->isThumb2Function());
emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
Offset, Pred, PredReg, TII);
}
MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true);
}
}
/// Move iterator past the next bunch of callee save load / store ops for
/// the particular spill area (1: integer area 1, 2: integer area 2,
/// 3: fp area, 0: don't care).
static void movePastCSLoadStoreOps(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
int Opc1, int Opc2, unsigned Area,
const ARMSubtarget &STI) {
while (MBBI != MBB.end() &&
((MBBI->getOpcode() == Opc1) || (MBBI->getOpcode() == Opc2)) &&
MBBI->getOperand(1).isFI()) {
if (Area != 0) {
bool Done = false;
unsigned Category = 0;
switch (MBBI->getOperand(0).getReg()) {
case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7:
case ARM::LR:
Category = 1;
break;
case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11:
Category = STI.isTargetDarwin() ? 2 : 1;
break;
case ARM::D8: case ARM::D9: case ARM::D10: case ARM::D11:
case ARM::D12: case ARM::D13: case ARM::D14: case ARM::D15:
Category = 3;
break;
default:
Done = true;
break;
}
if (Done || Category != Area)
break;
}
++MBBI;
}
}
void ARMBaseRegisterInfo::
emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This emitPrologue does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
unsigned NumBytes = MFI->getStackSize();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
// Determine the sizes of each callee-save spill areas and record which frame
// belongs to which callee-save spill areas.
unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
int FramePtrSpillFI = 0;
// Allocate the vararg register save area. This is not counted in NumBytes.
if (VARegSaveSize)
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -VARegSaveSize);
if (!AFI->hasStackFrame()) {
if (NumBytes != 0)
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes);
return;
}
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
int FI = CSI[i].getFrameIdx();
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
if (Reg == FramePtr)
FramePtrSpillFI = FI;
AFI->addGPRCalleeSavedArea1Frame(FI);
GPRCS1Size += 4;
break;
case ARM::R8:
case ARM::R9:
case ARM::R10:
case ARM::R11:
if (Reg == FramePtr)
FramePtrSpillFI = FI;
if (STI.isTargetDarwin()) {
AFI->addGPRCalleeSavedArea2Frame(FI);
GPRCS2Size += 4;
} else {
AFI->addGPRCalleeSavedArea1Frame(FI);
GPRCS1Size += 4;
}
break;
default:
AFI->addDPRCalleeSavedAreaFrame(FI);
DPRCSSize += 8;
}
}
// Build the new SUBri to adjust SP for integer callee-save spill area 1.
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -GPRCS1Size);
movePastCSLoadStoreOps(MBB, MBBI, ARM::STRi12, ARM::t2STRi12, 1, STI);
// Set FP to point to the stack slot that contains the previous FP.
// For Darwin, FP is R7, which has now been stored in spill area 1.
// Otherwise, if this is not Darwin, all the callee-saved registers go
// into spill area 1, including the FP in R11. In either case, it is
// now safe to emit this assignment.
bool HasFP = hasFP(MF);
if (HasFP) {
unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri : ARM::t2ADDri;
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, dl, TII.get(ADDriOpc), FramePtr)
.addFrameIndex(FramePtrSpillFI).addImm(0);
AddDefaultCC(AddDefaultPred(MIB));
}
// Build the new SUBri to adjust SP for integer callee-save spill area 2.
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -GPRCS2Size);
// Build the new SUBri to adjust SP for FP callee-save spill area.
movePastCSLoadStoreOps(MBB, MBBI, ARM::STRi12, ARM::t2STRi12, 2, STI);
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRCSSize);
// Determine starting offsets of spill areas.
unsigned DPRCSOffset = NumBytes - (GPRCS1Size + GPRCS2Size + DPRCSSize);
unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
if (HasFP)
AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) +
NumBytes);
AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
movePastCSLoadStoreOps(MBB, MBBI, ARM::VSTRD, 0, 3, STI);
NumBytes = DPRCSOffset;
if (NumBytes) {
// Adjust SP after all the callee-save spills.
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes);
if (HasFP)
AFI->setShouldRestoreSPFromFP(true);
}
if (STI.isTargetELF() && hasFP(MF)) {
MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
AFI->getFramePtrSpillOffset());
AFI->setShouldRestoreSPFromFP(true);
}
AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
// If we need dynamic stack realignment, do it here. Be paranoid and make
// sure if we also have VLAs, we have a base pointer for frame access.
if (needsStackRealignment(MF)) {
unsigned MaxAlign = MFI->getMaxAlignment();
assert (!AFI->isThumb1OnlyFunction());
if (!AFI->isThumbFunction()) {
// Emit bic sp, sp, MaxAlign
AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl,
TII.get(ARM::BICri), ARM::SP)
.addReg(ARM::SP, RegState::Kill)
.addImm(MaxAlign-1)));
} else {
// We cannot use sp as source/dest register here, thus we're emitting the
// following sequence:
// mov r4, sp
// bic r4, r4, MaxAlign
// mov sp, r4
// FIXME: It will be better just to find spare register here.
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVgpr2tgpr), ARM::R4)
.addReg(ARM::SP, RegState::Kill);
AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl,
TII.get(ARM::t2BICri), ARM::R4)
.addReg(ARM::R4, RegState::Kill)
.addImm(MaxAlign-1)));
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVtgpr2gpr), ARM::SP)
.addReg(ARM::R4, RegState::Kill);
}
AFI->setShouldRestoreSPFromFP(true);
}
// If we need a base pointer, set it up here. It's whatever the value
// of the stack pointer is at this point. Any variable size objects
// will be allocated after this, so we can still use the base pointer
// to reference locals.
if (hasBasePointer(MF)) {
if (isARM)
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), BasePtr)
.addReg(ARM::SP)
.addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
else
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVgpr2gpr), BasePtr)
.addReg(ARM::SP);
}
// If the frame has variable sized objects then the epilogue must restore
// the sp from fp.
if (!AFI->shouldRestoreSPFromFP() && MFI->hasVarSizedObjects())
AFI->setShouldRestoreSPFromFP(true);
}
static bool isCalleeSavedRegister(unsigned Reg, const unsigned *CSRegs) {
for (unsigned i = 0; CSRegs[i]; ++i)
if (Reg == CSRegs[i])
return true;
return false;
}
static bool isCSRestore(MachineInstr *MI,
const ARMBaseInstrInfo &TII,
const unsigned *CSRegs) {
return ((MI->getOpcode() == (int)ARM::VLDRD ||
MI->getOpcode() == (int)ARM::LDRi12 ||
MI->getOpcode() == (int)ARM::t2LDRi12) &&
MI->getOperand(1).isFI() &&
isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs));
}
void ARMBaseRegisterInfo::
emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = prior(MBB.end());
assert(MBBI->getDesc().isReturn() &&
"Can only insert epilog into returning blocks");
unsigned RetOpcode = MBBI->getOpcode();
DebugLoc dl = MBBI->getDebugLoc();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This emitEpilogue does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
int NumBytes = (int)MFI->getStackSize();
if (!AFI->hasStackFrame()) {
if (NumBytes != 0)
emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
} else {
// Unwind MBBI to point to first LDR / VLDRD.
const unsigned *CSRegs = getCalleeSavedRegs();
if (MBBI != MBB.begin()) {
do
--MBBI;
while (MBBI != MBB.begin() && isCSRestore(MBBI, TII, CSRegs));
if (!isCSRestore(MBBI, TII, CSRegs))
++MBBI;
}
// Move SP to start of FP callee save spill area.
NumBytes -= (AFI->getGPRCalleeSavedArea1Size() +
AFI->getGPRCalleeSavedArea2Size() +
AFI->getDPRCalleeSavedAreaSize());
// Reset SP based on frame pointer only if the stack frame extends beyond
// frame pointer stack slot or target is ELF and the function has FP.
if (AFI->shouldRestoreSPFromFP()) {
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
if (NumBytes) {
if (isARM)
emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
ARMCC::AL, 0, TII);
else
emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
ARMCC::AL, 0, TII);
} else {
// Thumb2 or ARM.
if (isARM)
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
.addReg(FramePtr).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
else
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVgpr2gpr), ARM::SP)
.addReg(FramePtr);
}
} else if (NumBytes)
emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
// Move SP to start of integer callee save spill area 2.
movePastCSLoadStoreOps(MBB, MBBI, ARM::VLDRD, 0, 3, STI);
emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedAreaSize());
// Move SP to start of integer callee save spill area 1.
movePastCSLoadStoreOps(MBB, MBBI, ARM::LDRi12, ARM::t2LDRi12, 2, STI);
emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getGPRCalleeSavedArea2Size());
// Move SP to SP upon entry to the function.
movePastCSLoadStoreOps(MBB, MBBI, ARM::LDRi12, ARM::t2LDRi12, 1, STI);
emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getGPRCalleeSavedArea1Size());
}
if (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNdiND ||
RetOpcode == ARM::TCRETURNri || RetOpcode == ARM::TCRETURNriND) {
// Tail call return: adjust the stack pointer and jump to callee.
MBBI = prior(MBB.end());
MachineOperand &JumpTarget = MBBI->getOperand(0);
// Jump to label or value in register.
if (RetOpcode == ARM::TCRETURNdi) {
BuildMI(MBB, MBBI, dl,
TII.get(STI.isThumb() ? ARM::TAILJMPdt : ARM::TAILJMPd)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
JumpTarget.getTargetFlags());
} else if (RetOpcode == ARM::TCRETURNdiND) {
BuildMI(MBB, MBBI, dl,
TII.get(STI.isThumb() ? ARM::TAILJMPdNDt : ARM::TAILJMPdND)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
JumpTarget.getTargetFlags());
} else if (RetOpcode == ARM::TCRETURNri) {
BuildMI(MBB, MBBI, dl, TII.get(ARM::TAILJMPr)).
addReg(JumpTarget.getReg(), RegState::Kill);
} else if (RetOpcode == ARM::TCRETURNriND) {
BuildMI(MBB, MBBI, dl, TII.get(ARM::TAILJMPrND)).
addReg(JumpTarget.getReg(), RegState::Kill);
}
MachineInstr *NewMI = prior(MBBI);
for (unsigned i = 1, e = MBBI->getNumOperands(); i != e; ++i)
NewMI->addOperand(MBBI->getOperand(i));
// Delete the pseudo instruction TCRETURN.
MBB.erase(MBBI);
}
if (VARegSaveSize)
emitSPUpdate(isARM, MBB, MBBI, dl, TII, VARegSaveSize);
}
#include "ARMGenRegisterInfo.inc"