llvm-6502/lib/Target/X86/X86AsmPrinter.cpp
Anton Korobeynikov ab4022f196 1. Clean up code due to changes in SwitchTo*Section(2)
2. Added partial debug support for mingw\cygwin targets (the same as
   Linux\ELF). Please note, that currently mingw\cygwin uses 'stabs' format
   for storing debug info by default, thus many (runtime) libraries has
   this information included. These formats shouldn't be mixed in one binary
   ('stabs' & 'DWARF'), otherwise binutils tools will be confused.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31311 91177308-0d34-0410-b5e6-96231b3b80d8
2006-10-31 08:31:24 +00:00

334 lines
12 KiB
C++

//===-- X86AsmPrinter.cpp - Convert X86 LLVM IR to X86 assembly -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file the shared super class printer that converts from our internal
// representation of machine-dependent LLVM code to Intel and AT&T format
// assembly language.
// This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#include "X86AsmPrinter.h"
#include "X86ATTAsmPrinter.h"
#include "X86IntelAsmPrinter.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetAsmInfo.h"
using namespace llvm;
Statistic<> llvm::EmittedInsts("asm-printer",
"Number of machine instrs printed");
static X86FunctionInfo calculateFunctionInfo(const Function *F,
const TargetData *TD) {
X86FunctionInfo Info;
uint64_t Size = 0;
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Info.setDecorationStyle(StdCall);
break;
case CallingConv::X86_FastCall:
Info.setDecorationStyle(FastCall);
break;
default:
return Info;
}
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI)
Size += TD->getTypeSize(AI->getType());
// Size should be aligned to DWORD boundary
Size = ((Size + 3)/4)*4;
// We're not supporting tooooo huge arguments :)
Info.setBytesToPopOnReturn((unsigned int)Size);
return Info;
}
/// decorateName - Query FunctionInfoMap and use this information for various
/// name decoration.
void X86SharedAsmPrinter::decorateName(std::string &Name,
const GlobalValue *GV) {
const Function *F = dyn_cast<Function>(GV);
if (!F) return;
// We don't want to decorate non-stdcall or non-fastcall functions right now
unsigned CC = F->getCallingConv();
if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall)
return;
FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F);
const X86FunctionInfo *Info;
if (info_item == FunctionInfoMap.end()) {
// Calculate apropriate function info and populate map
FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData());
Info = &FunctionInfoMap[F];
} else {
Info = &info_item->second;
}
switch (Info->getDecorationStyle()) {
case None:
break;
case StdCall:
if (!F->isVarArg()) // Variadic functions do not receive @0 suffix.
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
break;
case FastCall:
if (!F->isVarArg()) // Variadic functions do not receive @0 suffix.
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
if (Name[0] == '_') {
Name[0] = '@';
} else {
Name = '@' + Name;
}
break;
default:
assert(0 && "Unsupported DecorationStyle");
}
}
/// doInitialization
bool X86SharedAsmPrinter::doInitialization(Module &M) {
if (Subtarget->isTargetDarwin()) {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
if (!Subtarget->is64Bit())
X86PICStyle = PICStyle::Stub;
// Emit initial debug information.
DW.BeginModule(&M);
} else if (Subtarget->isTargetELF() || Subtarget->isTargetCygwin()) {
// Emit initial debug information.
DW.BeginModule(&M);
}
return AsmPrinter::doInitialization(M);
}
bool X86SharedAsmPrinter::doFinalization(Module &M) {
// Note: this code is not shared by the Intel printer as it is too different
// from how MASM does things. When making changes here don't forget to look
// at X86IntelAsmPrinter::doFinalization().
const TargetData *TD = TM.getTargetData();
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->hasInitializer()) continue; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(I))
continue;
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
unsigned Size = TD->getTypeSize(C->getType());
unsigned Align = TD->getPreferredAlignmentLog(I);
if (C->isNullValue() && /* FIXME: Verify correct */
!I->hasSection() &&
(I->hasInternalLinkage() || I->hasWeakLinkage() ||
I->hasLinkOnceLinkage() ||
(Subtarget->isTargetDarwin() &&
I->hasExternalLinkage()))) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (I->hasExternalLinkage()) {
O << "\t.globl\t" << name << "\n";
O << "\t.zerofill __DATA__, __common, " << name << ", "
<< Size << ", " << Align;
} else {
SwitchToDataSection(TAI->getDataSection(), I);
if (TAI->getLCOMMDirective() != NULL) {
if (I->hasInternalLinkage()) {
O << TAI->getLCOMMDirective() << name << "," << Size;
if (Subtarget->isTargetDarwin())
O << "," << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
} else
O << TAI->getCOMMDirective() << name << "," << Size;
} else {
if (!Subtarget->isTargetCygwin()) {
if (I->hasInternalLinkage())
O << "\t.local\t" << name << "\n";
}
O << TAI->getCOMMDirective() << name << "," << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << "," << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
}
O << "\t\t" << TAI->getCommentString() << " " << I->getName() << "\n";
} else {
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl " << name << "\n"
<< "\t.weak_definition " << name << "\n";
SwitchToDataSection(".section __DATA,__const_coal,coalesced", I);
} else if (Subtarget->isTargetCygwin()) {
std::string SectionName(".section\t.data$linkonce." +
name +
",\"aw\"");
SwitchToDataSection(SectionName.c_str(), I);
O << "\t.globl " << name << "\n"
<< "\t.linkonce same_size\n";
} else {
std::string SectionName("\t.section\t.llvm.linkonce.d." +
name +
",\"aw\",@progbits");
SwitchToDataSection(SectionName.c_str(), I);
O << "\t.weak " << name << "\n";
}
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::DLLExportLinkage:
DLLExportedGVs.insert(Mang->makeNameProper(I->getName(),""));
// FALL THROUGH
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage: {
if (I->isConstant()) {
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
if (TAI->getCStringSection() && CVA && CVA->isCString()) {
SwitchToDataSection(TAI->getCStringSection(), I);
break;
}
}
// FIXME: special handling for ".ctors" & ".dtors" sections
if (I->hasSection() &&
(I->getSection() == ".ctors" ||
I->getSection() == ".dtors")) {
std::string SectionName = ".section " + I->getSection();
if (Subtarget->isTargetCygwin()) {
SectionName += ",\"aw\"";
} else {
assert(!Subtarget->isTargetDarwin());
SectionName += ",\"aw\",@progbits";
}
SwitchToDataSection(SectionName.c_str());
} else {
SwitchToDataSection(TAI->getDataSection(), I);
}
break;
}
default:
assert(0 && "Unknown linkage type!");
}
EmitAlignment(Align, I);
O << name << ":\t\t\t\t" << TAI->getCommentString() << " " << I->getName()
<< "\n";
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size " << name << ", " << Size << "\n";
EmitGlobalConstant(C);
O << '\n';
}
}
// Output linker support code for dllexported globals
if (DLLExportedGVs.begin() != DLLExportedGVs.end()) {
SwitchToDataSection(".section .drectve");
}
for (std::set<std::string>::iterator i = DLLExportedGVs.begin(),
e = DLLExportedGVs.end();
i != e; ++i) {
O << "\t.ascii \" -export:" << *i << ",data\"\n";
}
if (DLLExportedFns.begin() != DLLExportedFns.end()) {
SwitchToDataSection(".section .drectve");
}
for (std::set<std::string>::iterator i = DLLExportedFns.begin(),
e = DLLExportedFns.end();
i != e; ++i) {
O << "\t.ascii \" -export:" << *i << "\"\n";
}
if (Subtarget->isTargetDarwin()) {
SwitchToDataSection("");
// Output stubs for dynamically-linked functions
unsigned j = 1;
for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i, ++j) {
SwitchToDataSection(".section __IMPORT,__jump_table,symbol_stubs,"
"self_modifying_code+pure_instructions,5", 0);
O << "L" << *i << "$stub:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\thlt ; hlt ; hlt ; hlt ; hlt\n";
}
O << "\n";
// Output stubs for external and common global variables.
if (GVStubs.begin() != GVStubs.end())
SwitchToDataSection(
".section __IMPORT,__pointers,non_lazy_symbol_pointers");
for (std::set<std::string>::iterator i = GVStubs.begin(), e = GVStubs.end();
i != e; ++i) {
O << "L" << *i << "$non_lazy_ptr:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\t.long\t0\n";
}
// Emit final debug information.
DW.EndModule();
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
} else if (Subtarget->isTargetELF() || Subtarget->isTargetCygwin()) {
// Emit final debug information.
DW.EndModule();
}
AsmPrinter::doFinalization(M);
return false; // success
}
/// createX86CodePrinterPass - Returns a pass that prints the X86 assembly code
/// for a MachineFunction to the given output stream, using the given target
/// machine description.
///
FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,
X86TargetMachine &tm) {
const X86Subtarget *Subtarget = &tm.getSubtarget<X86Subtarget>();
if (Subtarget->isFlavorIntel()) {
return new X86IntelAsmPrinter(o, tm, tm.getTargetAsmInfo());
} else {
return new X86ATTAsmPrinter(o, tm, tm.getTargetAsmInfo());
}
}