llvm-6502/lib/Transforms/InstCombine/InstCombineCalls.cpp
Chandler Carruth 884f263eab [PM] Rename InstCombine.h to InstCombineInternal.h in preparation for
creating a non-internal header file for the InstCombine pass.

I thought about calling this InstCombiner.h or in some way more clearly
associating it with the InstCombiner clas that it is primarily defining,
but there are several other utility interfaces defined within this for
InstCombine. If, in the course of refactoring, those end up moving
elsewhere or going away, it might make more sense to make this the
combiner's header alone.

Naturally, this is a bikeshed to a certain degree, so feel free to lobby
for a different shade of paint if this name just doesn't suit you.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226783 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 05:25:13 +00:00

1813 lines
69 KiB
C++

//===- InstCombineCalls.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitCall and visitInvoke functions.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
STATISTIC(NumSimplified, "Number of library calls simplified");
/// getPromotedType - Return the specified type promoted as it would be to pass
/// though a va_arg area.
static Type *getPromotedType(Type *Ty) {
if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
if (ITy->getBitWidth() < 32)
return Type::getInt32Ty(Ty->getContext());
}
return Ty;
}
/// reduceToSingleValueType - Given an aggregate type which ultimately holds a
/// single scalar element, like {{{type}}} or [1 x type], return type.
static Type *reduceToSingleValueType(Type *T) {
while (!T->isSingleValueType()) {
if (StructType *STy = dyn_cast<StructType>(T)) {
if (STy->getNumElements() == 1)
T = STy->getElementType(0);
else
break;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
if (ATy->getNumElements() == 1)
T = ATy->getElementType();
else
break;
} else
break;
}
return T;
}
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, AC, MI, DT);
unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, AC, MI, DT);
unsigned MinAlign = std::min(DstAlign, SrcAlign);
unsigned CopyAlign = MI->getAlignment();
if (CopyAlign < MinAlign) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
MinAlign, false));
return MI;
}
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
// load/store.
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
if (!MemOpLength) return nullptr;
// Source and destination pointer types are always "i8*" for intrinsic. See
// if the size is something we can handle with a single primitive load/store.
// A single load+store correctly handles overlapping memory in the memmove
// case.
uint64_t Size = MemOpLength->getLimitedValue();
assert(Size && "0-sized memory transferring should be removed already.");
if (Size > 8 || (Size&(Size-1)))
return nullptr; // If not 1/2/4/8 bytes, exit.
// Use an integer load+store unless we can find something better.
unsigned SrcAddrSp =
cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
unsigned DstAddrSp =
cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
// Memcpy forces the use of i8* for the source and destination. That means
// that if you're using memcpy to move one double around, you'll get a cast
// from double* to i8*. We'd much rather use a double load+store rather than
// an i64 load+store, here because this improves the odds that the source or
// dest address will be promotable. See if we can find a better type than the
// integer datatype.
Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
MDNode *CopyMD = nullptr;
if (StrippedDest != MI->getArgOperand(0)) {
Type *SrcETy = cast<PointerType>(StrippedDest->getType())
->getElementType();
if (DL && SrcETy->isSized() && DL->getTypeStoreSize(SrcETy) == Size) {
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
// down through these levels if so.
SrcETy = reduceToSingleValueType(SrcETy);
if (SrcETy->isSingleValueType()) {
NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
// If the memcpy has metadata describing the members, see if we can
// get the TBAA tag describing our copy.
if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
if (M->getNumOperands() == 3 && M->getOperand(0) &&
mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
M->getOperand(1) &&
mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
Size &&
M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
CopyMD = cast<MDNode>(M->getOperand(2));
}
}
}
}
// If the memcpy/memmove provides better alignment info than we can
// infer, use it.
SrcAlign = std::max(SrcAlign, CopyAlign);
DstAlign = std::max(DstAlign, CopyAlign);
Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
L->setAlignment(SrcAlign);
if (CopyMD)
L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
S->setAlignment(DstAlign);
if (CopyMD)
S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
return MI;
}
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
unsigned Alignment = getKnownAlignment(MI->getDest(), DL, AC, MI, DT);
if (MI->getAlignment() < Alignment) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Alignment, false));
return MI;
}
// Extract the length and alignment and fill if they are constant.
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
return nullptr;
uint64_t Len = LenC->getLimitedValue();
Alignment = MI->getAlignment();
assert(Len && "0-sized memory setting should be removed already.");
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
// Alignment 0 is identity for alignment 1 for memset, but not store.
if (Alignment == 0) Alignment = 1;
// Extract the fill value and store.
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
MI->isVolatile());
S->setAlignment(Alignment);
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(LenC->getType()));
return MI;
}
return nullptr;
}
/// visitCallInst - CallInst simplification. This mostly only handles folding
/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
/// the heavy lifting.
///
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (isFreeCall(&CI, TLI))
return visitFree(CI);
// If the caller function is nounwind, mark the call as nounwind, even if the
// callee isn't.
if (CI.getParent()->getParent()->doesNotThrow() &&
!CI.doesNotThrow()) {
CI.setDoesNotThrow();
return &CI;
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
if (!II) return visitCallSite(&CI);
// Intrinsics cannot occur in an invoke, so handle them here instead of in
// visitCallSite.
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
bool Changed = false;
// memmove/cpy/set of zero bytes is a noop.
if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
if (NumBytes->isNullValue())
return EraseInstFromFunction(CI);
if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
if (CI->getZExtValue() == 1) {
// Replace the instruction with just byte operations. We would
// transform other cases to loads/stores, but we don't know if
// alignment is sufficient.
}
}
// No other transformations apply to volatile transfers.
if (MI->isVolatile())
return nullptr;
// If we have a memmove and the source operation is a constant global,
// then the source and dest pointers can't alias, so we can change this
// into a call to memcpy.
if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
if (GVSrc->isConstant()) {
Module *M = CI.getParent()->getParent()->getParent();
Intrinsic::ID MemCpyID = Intrinsic::memcpy;
Type *Tys[3] = { CI.getArgOperand(0)->getType(),
CI.getArgOperand(1)->getType(),
CI.getArgOperand(2)->getType() };
CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
Changed = true;
}
}
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
// memmove(x,x,size) -> noop.
if (MTI->getSource() == MTI->getDest())
return EraseInstFromFunction(CI);
}
// If we can determine a pointer alignment that is bigger than currently
// set, update the alignment.
if (isa<MemTransferInst>(MI)) {
if (Instruction *I = SimplifyMemTransfer(MI))
return I;
} else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
if (Instruction *I = SimplifyMemSet(MSI))
return I;
}
if (Changed) return II;
}
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::objectsize: {
uint64_t Size;
if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
return nullptr;
}
case Intrinsic::bswap: {
Value *IIOperand = II->getArgOperand(0);
Value *X = nullptr;
// bswap(bswap(x)) -> x
if (match(IIOperand, m_BSwap(m_Value(X))))
return ReplaceInstUsesWith(CI, X);
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
unsigned C = X->getType()->getPrimitiveSizeInBits() -
IIOperand->getType()->getPrimitiveSizeInBits();
Value *CV = ConstantInt::get(X->getType(), C);
Value *V = Builder->CreateLShr(X, CV);
return new TruncInst(V, IIOperand->getType());
}
break;
}
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// powi(x, 0) -> 1.0
if (Power->isZero())
return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
// powi(x, 1) -> x
if (Power->isOne())
return ReplaceInstUsesWith(CI, II->getArgOperand(0));
// powi(x, -1) -> 1/x
if (Power->isAllOnesValue())
return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
II->getArgOperand(0));
}
break;
case Intrinsic::cttz: {
// If all bits below the first known one are known zero,
// this value is constant.
IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
// FIXME: Try to simplify vectors of integers.
if (!IT) break;
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
unsigned TrailingZeros = KnownOne.countTrailingZeros();
APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, TrailingZeros)));
}
break;
case Intrinsic::ctlz: {
// If all bits above the first known one are known zero,
// this value is constant.
IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
// FIXME: Try to simplify vectors of integers.
if (!IT) break;
uint32_t BitWidth = IT->getBitWidth();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
unsigned LeadingZeros = KnownOne.countLeadingZeros();
APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, LeadingZeros)));
}
break;
case Intrinsic::uadd_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, II);
if (OR == OverflowResult::NeverOverflows)
return CreateOverflowTuple(II, Builder->CreateNUWAdd(LHS, RHS), false);
if (OR == OverflowResult::AlwaysOverflows)
return CreateOverflowTuple(II, Builder->CreateAdd(LHS, RHS), true);
}
// FALL THROUGH uadd into sadd
case Intrinsic::sadd_with_overflow:
// Canonicalize constants into the RHS.
if (isa<Constant>(II->getArgOperand(0)) &&
!isa<Constant>(II->getArgOperand(1))) {
Value *LHS = II->getArgOperand(0);
II->setArgOperand(0, II->getArgOperand(1));
II->setArgOperand(1, LHS);
return II;
}
// X + undef -> undef
if (isa<UndefValue>(II->getArgOperand(1)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// X + 0 -> {X, false}
if (RHS->isZero()) {
return CreateOverflowTuple(II, II->getArgOperand(0), false,
/*ReUseName*/false);
}
}
// We can strength reduce reduce this signed add into a regular add if we
// can prove that it will never overflow.
if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow) {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
if (WillNotOverflowSignedAdd(LHS, RHS, II)) {
return CreateOverflowTuple(II, Builder->CreateNSWAdd(LHS, RHS), false);
}
}
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
// undef - X -> undef
// X - undef -> undef
if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
// X - 0 -> {X, false}
if (ConstRHS->isZero()) {
return CreateOverflowTuple(II, LHS, false, /*ReUseName*/false);
}
}
if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
if (WillNotOverflowSignedSub(LHS, RHS, II)) {
return CreateOverflowTuple(II, Builder->CreateNSWSub(LHS, RHS), false);
}
} else {
if (WillNotOverflowUnsignedSub(LHS, RHS, II)) {
return CreateOverflowTuple(II, Builder->CreateNUWSub(LHS, RHS), false);
}
}
break;
}
case Intrinsic::umul_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, II);
if (OR == OverflowResult::NeverOverflows)
return CreateOverflowTuple(II, Builder->CreateNUWMul(LHS, RHS), false);
if (OR == OverflowResult::AlwaysOverflows)
return CreateOverflowTuple(II, Builder->CreateMul(LHS, RHS), true);
} // FALL THROUGH
case Intrinsic::smul_with_overflow:
// Canonicalize constants into the RHS.
if (isa<Constant>(II->getArgOperand(0)) &&
!isa<Constant>(II->getArgOperand(1))) {
Value *LHS = II->getArgOperand(0);
II->setArgOperand(0, II->getArgOperand(1));
II->setArgOperand(1, LHS);
return II;
}
// X * undef -> undef
if (isa<UndefValue>(II->getArgOperand(1)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// X*0 -> {0, false}
if (RHSI->isZero())
return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
// X * 1 -> {X, false}
if (RHSI->equalsInt(1)) {
return CreateOverflowTuple(II, II->getArgOperand(0), false,
/*ReUseName*/false);
}
}
if (II->getIntrinsicID() == Intrinsic::smul_with_overflow) {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
if (WillNotOverflowSignedMul(LHS, RHS, II)) {
return CreateOverflowTuple(II, Builder->CreateNSWMul(LHS, RHS), false);
}
}
break;
case Intrinsic::minnum:
case Intrinsic::maxnum: {
Value *Arg0 = II->getArgOperand(0);
Value *Arg1 = II->getArgOperand(1);
// fmin(x, x) -> x
if (Arg0 == Arg1)
return ReplaceInstUsesWith(CI, Arg0);
const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
// Canonicalize constants into the RHS.
if (C0 && !C1) {
II->setArgOperand(0, Arg1);
II->setArgOperand(1, Arg0);
return II;
}
// fmin(x, nan) -> x
if (C1 && C1->isNaN())
return ReplaceInstUsesWith(CI, Arg0);
// This is the value because if undef were NaN, we would return the other
// value and cannot return a NaN unless both operands are.
//
// fmin(undef, x) -> x
if (isa<UndefValue>(Arg0))
return ReplaceInstUsesWith(CI, Arg1);
// fmin(x, undef) -> x
if (isa<UndefValue>(Arg1))
return ReplaceInstUsesWith(CI, Arg0);
Value *X = nullptr;
Value *Y = nullptr;
if (II->getIntrinsicID() == Intrinsic::minnum) {
// fmin(x, fmin(x, y)) -> fmin(x, y)
// fmin(y, fmin(x, y)) -> fmin(x, y)
if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
if (Arg0 == X || Arg0 == Y)
return ReplaceInstUsesWith(CI, Arg1);
}
// fmin(fmin(x, y), x) -> fmin(x, y)
// fmin(fmin(x, y), y) -> fmin(x, y)
if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
if (Arg1 == X || Arg1 == Y)
return ReplaceInstUsesWith(CI, Arg0);
}
// TODO: fmin(nnan x, inf) -> x
// TODO: fmin(nnan ninf x, flt_max) -> x
if (C1 && C1->isInfinity()) {
// fmin(x, -inf) -> -inf
if (C1->isNegative())
return ReplaceInstUsesWith(CI, Arg1);
}
} else {
assert(II->getIntrinsicID() == Intrinsic::maxnum);
// fmax(x, fmax(x, y)) -> fmax(x, y)
// fmax(y, fmax(x, y)) -> fmax(x, y)
if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
if (Arg0 == X || Arg0 == Y)
return ReplaceInstUsesWith(CI, Arg1);
}
// fmax(fmax(x, y), x) -> fmax(x, y)
// fmax(fmax(x, y), y) -> fmax(x, y)
if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
if (Arg1 == X || Arg1 == Y)
return ReplaceInstUsesWith(CI, Arg0);
}
// TODO: fmax(nnan x, -inf) -> x
// TODO: fmax(nnan ninf x, -flt_max) -> x
if (C1 && C1->isInfinity()) {
// fmax(x, inf) -> inf
if (!C1->isNegative())
return ReplaceInstUsesWith(CI, Arg1);
}
}
break;
}
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
// Turn PPC lvx -> load if the pointer is known aligned.
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
16) {
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
PointerType::getUnqual(II->getType()));
return new LoadInst(Ptr);
}
break;
case Intrinsic::ppc_vsx_lxvw4x:
case Intrinsic::ppc_vsx_lxvd2x: {
// Turn PPC VSX loads into normal loads.
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
PointerType::getUnqual(II->getType()));
return new LoadInst(Ptr, Twine(""), false, 1);
}
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, AC, II, DT) >=
16) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
return new StoreInst(II->getArgOperand(0), Ptr);
}
break;
case Intrinsic::ppc_vsx_stxvw4x:
case Intrinsic::ppc_vsx_stxvd2x: {
// Turn PPC VSX stores into normal stores.
Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
}
case Intrinsic::x86_sse_storeu_ps:
case Intrinsic::x86_sse2_storeu_pd:
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
16) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(1)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
return new StoreInst(II->getArgOperand(1), Ptr);
}
break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64: {
// These intrinsics only demand the 0th element of their input vectors. If
// we can simplify the input based on that, do so now.
unsigned VWidth =
cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
APInt DemandedElts(VWidth, 1);
APInt UndefElts(VWidth, 0);
if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
DemandedElts, UndefElts)) {
II->setArgOperand(0, V);
return II;
}
break;
}
// Constant fold <A x Bi> << Ci.
// FIXME: We don't handle _dq because it's a shift of an i128, but is
// represented in the IR as <2 x i64>. A per element shift is wrong.
case Intrinsic::x86_sse2_psll_d:
case Intrinsic::x86_sse2_psll_q:
case Intrinsic::x86_sse2_psll_w:
case Intrinsic::x86_sse2_pslli_d:
case Intrinsic::x86_sse2_pslli_q:
case Intrinsic::x86_sse2_pslli_w:
case Intrinsic::x86_avx2_psll_d:
case Intrinsic::x86_avx2_psll_q:
case Intrinsic::x86_avx2_psll_w:
case Intrinsic::x86_avx2_pslli_d:
case Intrinsic::x86_avx2_pslli_q:
case Intrinsic::x86_avx2_pslli_w:
case Intrinsic::x86_sse2_psrl_d:
case Intrinsic::x86_sse2_psrl_q:
case Intrinsic::x86_sse2_psrl_w:
case Intrinsic::x86_sse2_psrli_d:
case Intrinsic::x86_sse2_psrli_q:
case Intrinsic::x86_sse2_psrli_w:
case Intrinsic::x86_avx2_psrl_d:
case Intrinsic::x86_avx2_psrl_q:
case Intrinsic::x86_avx2_psrl_w:
case Intrinsic::x86_avx2_psrli_d:
case Intrinsic::x86_avx2_psrli_q:
case Intrinsic::x86_avx2_psrli_w: {
// Simplify if count is constant. To 0 if >= BitWidth,
// otherwise to shl/lshr.
auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
if (!CDV && !CInt)
break;
ConstantInt *Count;
if (CDV)
Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
else
Count = CInt;
auto Vec = II->getArgOperand(0);
auto VT = cast<VectorType>(Vec->getType());
if (Count->getZExtValue() >
VT->getElementType()->getPrimitiveSizeInBits() - 1)
return ReplaceInstUsesWith(
CI, ConstantAggregateZero::get(Vec->getType()));
bool isPackedShiftLeft = true;
switch (II->getIntrinsicID()) {
default : break;
case Intrinsic::x86_sse2_psrl_d:
case Intrinsic::x86_sse2_psrl_q:
case Intrinsic::x86_sse2_psrl_w:
case Intrinsic::x86_sse2_psrli_d:
case Intrinsic::x86_sse2_psrli_q:
case Intrinsic::x86_sse2_psrli_w:
case Intrinsic::x86_avx2_psrl_d:
case Intrinsic::x86_avx2_psrl_q:
case Intrinsic::x86_avx2_psrl_w:
case Intrinsic::x86_avx2_psrli_d:
case Intrinsic::x86_avx2_psrli_q:
case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
}
unsigned VWidth = VT->getNumElements();
// Get a constant vector of the same type as the first operand.
auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
if (isPackedShiftLeft)
return BinaryOperator::CreateShl(Vec,
Builder->CreateVectorSplat(VWidth, VTCI));
return BinaryOperator::CreateLShr(Vec,
Builder->CreateVectorSplat(VWidth, VTCI));
}
case Intrinsic::x86_sse41_pmovsxbw:
case Intrinsic::x86_sse41_pmovsxwd:
case Intrinsic::x86_sse41_pmovsxdq:
case Intrinsic::x86_sse41_pmovzxbw:
case Intrinsic::x86_sse41_pmovzxwd:
case Intrinsic::x86_sse41_pmovzxdq: {
// pmov{s|z}x ignores the upper half of their input vectors.
unsigned VWidth =
cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
unsigned LowHalfElts = VWidth / 2;
APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
APInt UndefElts(VWidth, 0);
if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
InputDemandedElts,
UndefElts)) {
II->setArgOperand(0, TmpV);
return II;
}
break;
}
case Intrinsic::x86_sse4a_insertqi: {
// insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
// ones undef
// TODO: eventually we should lower this intrinsic to IR
if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
unsigned Index = CIStart->getZExtValue();
// From AMD documentation: "a value of zero in the field length is
// defined as length of 64".
unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
// From AMD documentation: "If the sum of the bit index + length field
// is greater than 64, the results are undefined".
// Note that both field index and field length are 8-bit quantities.
// Since variables 'Index' and 'Length' are unsigned values
// obtained from zero-extending field index and field length
// respectively, their sum should never wrap around.
if ((Index + Length) > 64)
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (Length == 64 && Index == 0) {
Value *Vec = II->getArgOperand(1);
Value *Undef = UndefValue::get(Vec->getType());
const uint32_t Mask[] = { 0, 2 };
return ReplaceInstUsesWith(
CI,
Builder->CreateShuffleVector(
Vec, Undef, ConstantDataVector::get(
II->getContext(), makeArrayRef(Mask))));
} else if (auto Source =
dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
if (Source->hasOneUse() &&
Source->getArgOperand(1) == II->getArgOperand(1)) {
// If the source of the insert has only one use and it's another
// insert (and they're both inserting from the same vector), try to
// bundle both together.
auto CISourceWidth =
dyn_cast<ConstantInt>(Source->getArgOperand(2));
auto CISourceStart =
dyn_cast<ConstantInt>(Source->getArgOperand(3));
if (CISourceStart && CISourceWidth) {
unsigned Start = CIStart->getZExtValue();
unsigned Width = CIWidth->getZExtValue();
unsigned End = Start + Width;
unsigned SourceStart = CISourceStart->getZExtValue();
unsigned SourceWidth = CISourceWidth->getZExtValue();
unsigned SourceEnd = SourceStart + SourceWidth;
unsigned NewStart, NewWidth;
bool ShouldReplace = false;
if (Start <= SourceStart && SourceStart <= End) {
NewStart = Start;
NewWidth = std::max(End, SourceEnd) - NewStart;
ShouldReplace = true;
} else if (SourceStart <= Start && Start <= SourceEnd) {
NewStart = SourceStart;
NewWidth = std::max(SourceEnd, End) - NewStart;
ShouldReplace = true;
}
if (ShouldReplace) {
Constant *ConstantWidth = ConstantInt::get(
II->getArgOperand(2)->getType(), NewWidth, false);
Constant *ConstantStart = ConstantInt::get(
II->getArgOperand(3)->getType(), NewStart, false);
Value *Args[4] = { Source->getArgOperand(0),
II->getArgOperand(1), ConstantWidth,
ConstantStart };
Module *M = CI.getParent()->getParent()->getParent();
Value *F =
Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
}
}
}
}
}
}
break;
}
case Intrinsic::x86_sse41_pblendvb:
case Intrinsic::x86_sse41_blendvps:
case Intrinsic::x86_sse41_blendvpd:
case Intrinsic::x86_avx_blendv_ps_256:
case Intrinsic::x86_avx_blendv_pd_256:
case Intrinsic::x86_avx2_pblendvb: {
// Convert blendv* to vector selects if the mask is constant.
// This optimization is convoluted because the intrinsic is defined as
// getting a vector of floats or doubles for the ps and pd versions.
// FIXME: That should be changed.
Value *Mask = II->getArgOperand(2);
if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
auto Tyi1 = Builder->getInt1Ty();
auto SelectorType = cast<VectorType>(Mask->getType());
auto EltTy = SelectorType->getElementType();
unsigned Size = SelectorType->getNumElements();
unsigned BitWidth =
EltTy->isFloatTy()
? 32
: (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
"Wrong arguments for variable blend intrinsic");
SmallVector<Constant *, 32> Selectors;
for (unsigned I = 0; I < Size; ++I) {
// The intrinsics only read the top bit
uint64_t Selector;
if (BitWidth == 8)
Selector = C->getElementAsInteger(I);
else
Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
}
auto NewSelector = ConstantVector::get(Selectors);
return SelectInst::Create(NewSelector, II->getArgOperand(1),
II->getArgOperand(0), "blendv");
} else {
break;
}
}
case Intrinsic::x86_avx_vpermilvar_ps:
case Intrinsic::x86_avx_vpermilvar_ps_256:
case Intrinsic::x86_avx_vpermilvar_pd:
case Intrinsic::x86_avx_vpermilvar_pd_256: {
// Convert vpermil* to shufflevector if the mask is constant.
Value *V = II->getArgOperand(1);
unsigned Size = cast<VectorType>(V->getType())->getNumElements();
assert(Size == 8 || Size == 4 || Size == 2);
uint32_t Indexes[8];
if (auto C = dyn_cast<ConstantDataVector>(V)) {
// The intrinsics only read one or two bits, clear the rest.
for (unsigned I = 0; I < Size; ++I) {
uint32_t Index = C->getElementAsInteger(I) & 0x3;
if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
Index >>= 1;
Indexes[I] = Index;
}
} else if (isa<ConstantAggregateZero>(V)) {
for (unsigned I = 0; I < Size; ++I)
Indexes[I] = 0;
} else {
break;
}
// The _256 variants are a bit trickier since the mask bits always index
// into the corresponding 128 half. In order to convert to a generic
// shuffle, we have to make that explicit.
if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
for (unsigned I = Size / 2; I < Size; ++I)
Indexes[I] += Size / 2;
}
auto NewC =
ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
auto V1 = II->getArgOperand(0);
auto V2 = UndefValue::get(V1->getType());
auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
return ReplaceInstUsesWith(CI, Shuffle);
}
case Intrinsic::ppc_altivec_vperm:
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
// Note that ppc_altivec_vperm has a big-endian bias, so when creating
// a vectorshuffle for little endian, we must undo the transformation
// performed on vec_perm in altivec.h. That is, we must complement
// the permutation mask with respect to 31 and reverse the order of
// V1 and V2.
if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
assert(Mask->getType()->getVectorNumElements() == 16 &&
"Bad type for intrinsic!");
// Check that all of the elements are integer constants or undefs.
bool AllEltsOk = true;
for (unsigned i = 0; i != 16; ++i) {
Constant *Elt = Mask->getAggregateElement(i);
if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
AllEltsOk = false;
break;
}
}
if (AllEltsOk) {
// Cast the input vectors to byte vectors.
Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
Mask->getType());
Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
Mask->getType());
Value *Result = UndefValue::get(Op0->getType());
// Only extract each element once.
Value *ExtractedElts[32];
memset(ExtractedElts, 0, sizeof(ExtractedElts));
for (unsigned i = 0; i != 16; ++i) {
if (isa<UndefValue>(Mask->getAggregateElement(i)))
continue;
unsigned Idx =
cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
Idx &= 31; // Match the hardware behavior.
if (DL && DL->isLittleEndian())
Idx = 31 - Idx;
if (!ExtractedElts[Idx]) {
Value *Op0ToUse = (DL && DL->isLittleEndian()) ? Op1 : Op0;
Value *Op1ToUse = (DL && DL->isLittleEndian()) ? Op0 : Op1;
ExtractedElts[Idx] =
Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
Builder->getInt32(Idx&15));
}
// Insert this value into the result vector.
Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
Builder->getInt32(i));
}
return CastInst::Create(Instruction::BitCast, Result, CI.getType());
}
}
break;
case Intrinsic::arm_neon_vld1:
case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane:
case Intrinsic::arm_neon_vst1:
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane: {
unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, AC, II, DT);
unsigned AlignArg = II->getNumArgOperands() - 1;
ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
II->setArgOperand(AlignArg,
ConstantInt::get(Type::getInt32Ty(II->getContext()),
MemAlign, false));
return II;
}
break;
}
case Intrinsic::arm_neon_vmulls:
case Intrinsic::arm_neon_vmullu:
case Intrinsic::aarch64_neon_smull:
case Intrinsic::aarch64_neon_umull: {
Value *Arg0 = II->getArgOperand(0);
Value *Arg1 = II->getArgOperand(1);
// Handle mul by zero first:
if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
}
// Check for constant LHS & RHS - in this case we just simplify.
bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
VectorType *NewVT = cast<VectorType>(II->getType());
if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
}
// Couldn't simplify - canonicalize constant to the RHS.
std::swap(Arg0, Arg1);
}
// Handle mul by one:
if (Constant *CV1 = dyn_cast<Constant>(Arg1))
if (ConstantInt *Splat =
dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
if (Splat->isOne())
return CastInst::CreateIntegerCast(Arg0, II->getType(),
/*isSigned=*/!Zext);
break;
}
case Intrinsic::AMDGPU_rcp: {
if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
const APFloat &ArgVal = C->getValueAPF();
APFloat Val(ArgVal.getSemantics(), 1.0);
APFloat::opStatus Status = Val.divide(ArgVal,
APFloat::rmNearestTiesToEven);
// Only do this if it was exact and therefore not dependent on the
// rounding mode.
if (Status == APFloat::opOK)
return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
}
break;
}
case Intrinsic::stackrestore: {
// If the save is right next to the restore, remove the restore. This can
// happen when variable allocas are DCE'd.
if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
if (SS->getIntrinsicID() == Intrinsic::stacksave) {
BasicBlock::iterator BI = SS;
if (&*++BI == II)
return EraseInstFromFunction(CI);
}
}
// Scan down this block to see if there is another stack restore in the
// same block without an intervening call/alloca.
BasicBlock::iterator BI = II;
TerminatorInst *TI = II->getParent()->getTerminator();
bool CannotRemove = false;
for (++BI; &*BI != TI; ++BI) {
if (isa<AllocaInst>(BI)) {
CannotRemove = true;
break;
}
if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
// If there is a stackrestore below this one, remove this one.
if (II->getIntrinsicID() == Intrinsic::stackrestore)
return EraseInstFromFunction(CI);
// Otherwise, ignore the intrinsic.
} else {
// If we found a non-intrinsic call, we can't remove the stack
// restore.
CannotRemove = true;
break;
}
}
}
// If the stack restore is in a return, resume, or unwind block and if there
// are no allocas or calls between the restore and the return, nuke the
// restore.
if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
return EraseInstFromFunction(CI);
break;
}
case Intrinsic::assume: {
// Canonicalize assume(a && b) -> assume(a); assume(b);
// Note: New assumption intrinsics created here are registered by
// the InstCombineIRInserter object.
Value *IIOperand = II->getArgOperand(0), *A, *B,
*AssumeIntrinsic = II->getCalledValue();
if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
Builder->CreateCall(AssumeIntrinsic, A, II->getName());
Builder->CreateCall(AssumeIntrinsic, B, II->getName());
return EraseInstFromFunction(*II);
}
// assume(!(a || b)) -> assume(!a); assume(!b);
if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
II->getName());
Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
II->getName());
return EraseInstFromFunction(*II);
}
// assume( (load addr) != null ) -> add 'nonnull' metadata to load
// (if assume is valid at the load)
if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
Value *LHS = ICmp->getOperand(0);
Value *RHS = ICmp->getOperand(1);
if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
isa<LoadInst>(LHS) &&
isa<Constant>(RHS) &&
RHS->getType()->isPointerTy() &&
cast<Constant>(RHS)->isNullValue()) {
LoadInst* LI = cast<LoadInst>(LHS);
if (isValidAssumeForContext(II, LI, DL, DT)) {
MDNode *MD = MDNode::get(II->getContext(), None);
LI->setMetadata(LLVMContext::MD_nonnull, MD);
return EraseInstFromFunction(*II);
}
}
// TODO: apply nonnull return attributes to calls and invokes
// TODO: apply range metadata for range check patterns?
}
// If there is a dominating assume with the same condition as this one,
// then this one is redundant, and should be removed.
APInt KnownZero(1, 0), KnownOne(1, 0);
computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
if (KnownOne.isAllOnesValue())
return EraseInstFromFunction(*II);
break;
}
case Intrinsic::experimental_gc_relocate: {
// Translate facts known about a pointer before relocating into
// facts about the relocate value, while being careful to
// preserve relocation semantics.
GCRelocateOperands Operands(II);
Value *DerivedPtr = Operands.derivedPtr();
// Remove the relocation if unused, note that this check is required
// to prevent the cases below from looping forever.
if (II->use_empty())
return EraseInstFromFunction(*II);
// Undef is undef, even after relocation.
// TODO: provide a hook for this in GCStrategy. This is clearly legal for
// most practical collectors, but there was discussion in the review thread
// about whether it was legal for all possible collectors.
if (isa<UndefValue>(DerivedPtr))
return ReplaceInstUsesWith(*II, DerivedPtr);
// The relocation of null will be null for most any collector.
// TODO: provide a hook for this in GCStrategy. There might be some weird
// collector this property does not hold for.
if (isa<ConstantPointerNull>(DerivedPtr))
return ReplaceInstUsesWith(*II, DerivedPtr);
// isKnownNonNull -> nonnull attribute
if (isKnownNonNull(DerivedPtr))
II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
// TODO: dereferenceable -> deref attribute
// TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
// Canonicalize on the type from the uses to the defs
// TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
}
}
return visitCallSite(II);
}
// InvokeInst simplification
//
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
return visitCallSite(&II);
}
/// isSafeToEliminateVarargsCast - If this cast does not affect the value
/// passed through the varargs area, we can eliminate the use of the cast.
static bool isSafeToEliminateVarargsCast(const CallSite CS,
const CastInst * const CI,
const DataLayout * const DL,
const int ix) {
if (!CI->isLosslessCast())
return false;
// If this is a GC intrinsic, avoid munging types. We need types for
// statepoint reconstruction in SelectionDAG.
// TODO: This is probably something which should be expanded to all
// intrinsics since the entire point of intrinsics is that
// they are understandable by the optimizer.
if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
return false;
// The size of ByVal or InAlloca arguments is derived from the type, so we
// can't change to a type with a different size. If the size were
// passed explicitly we could avoid this check.
if (!CS.isByValOrInAllocaArgument(ix))
return true;
Type* SrcTy =
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
return false;
if (!DL || DL->getTypeAllocSize(SrcTy) != DL->getTypeAllocSize(DstTy))
return false;
return true;
}
// Try to fold some different type of calls here.
// Currently we're only working with the checking functions, memcpy_chk,
// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
// strcat_chk and strncat_chk.
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *DL) {
if (!CI->getCalledFunction()) return nullptr;
auto InstCombineRAUW = [this](Instruction *From, Value *With) {
ReplaceInstUsesWith(*From, With);
};
LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
if (Value *With = Simplifier.optimizeCall(CI)) {
++NumSimplified;
return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
}
return nullptr;
}
static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
// Strip off at most one level of pointer casts, looking for an alloca. This
// is good enough in practice and simpler than handling any number of casts.
Value *Underlying = TrampMem->stripPointerCasts();
if (Underlying != TrampMem &&
(!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
return nullptr;
if (!isa<AllocaInst>(Underlying))
return nullptr;
IntrinsicInst *InitTrampoline = nullptr;
for (User *U : TrampMem->users()) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
if (!II)
return nullptr;
if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
if (InitTrampoline)
// More than one init_trampoline writes to this value. Give up.
return nullptr;
InitTrampoline = II;
continue;
}
if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
// Allow any number of calls to adjust.trampoline.
continue;
return nullptr;
}
// No call to init.trampoline found.
if (!InitTrampoline)
return nullptr;
// Check that the alloca is being used in the expected way.
if (InitTrampoline->getOperand(0) != TrampMem)
return nullptr;
return InitTrampoline;
}
static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
Value *TrampMem) {
// Visit all the previous instructions in the basic block, and try to find a
// init.trampoline which has a direct path to the adjust.trampoline.
for (BasicBlock::iterator I = AdjustTramp,
E = AdjustTramp->getParent()->begin(); I != E; ) {
Instruction *Inst = --I;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
II->getOperand(0) == TrampMem)
return II;
if (Inst->mayWriteToMemory())
return nullptr;
}
return nullptr;
}
// Given a call to llvm.adjust.trampoline, find and return the corresponding
// call to llvm.init.trampoline if the call to the trampoline can be optimized
// to a direct call to a function. Otherwise return NULL.
//
static IntrinsicInst *FindInitTrampoline(Value *Callee) {
Callee = Callee->stripPointerCasts();
IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
if (!AdjustTramp ||
AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
return nullptr;
Value *TrampMem = AdjustTramp->getOperand(0);
if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
return IT;
if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
return IT;
return nullptr;
}
// visitCallSite - Improvements for call and invoke instructions.
//
Instruction *InstCombiner::visitCallSite(CallSite CS) {
if (isAllocLikeFn(CS.getInstruction(), TLI))
return visitAllocSite(*CS.getInstruction());
bool Changed = false;
// If the callee is a pointer to a function, attempt to move any casts to the
// arguments of the call/invoke.
Value *Callee = CS.getCalledValue();
if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
return nullptr;
if (Function *CalleeF = dyn_cast<Function>(Callee))
// If the call and callee calling conventions don't match, this call must
// be unreachable, as the call is undefined.
if (CalleeF->getCallingConv() != CS.getCallingConv() &&
// Only do this for calls to a function with a body. A prototype may
// not actually end up matching the implementation's calling conv for a
// variety of reasons (e.g. it may be written in assembly).
!CalleeF->isDeclaration()) {
Instruction *OldCall = CS.getInstruction();
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
OldCall);
// If OldCall does not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!OldCall->getType()->isVoidTy())
ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
if (isa<CallInst>(OldCall))
return EraseInstFromFunction(*OldCall);
// We cannot remove an invoke, because it would change the CFG, just
// change the callee to a null pointer.
cast<InvokeInst>(OldCall)->setCalledFunction(
Constant::getNullValue(CalleeF->getType()));
return nullptr;
}
if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
// If CS does not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!CS.getInstruction()->getType()->isVoidTy())
ReplaceInstUsesWith(*CS.getInstruction(),
UndefValue::get(CS.getInstruction()->getType()));
if (isa<InvokeInst>(CS.getInstruction())) {
// Can't remove an invoke because we cannot change the CFG.
return nullptr;
}
// This instruction is not reachable, just remove it. We insert a store to
// undef so that we know that this code is not reachable, despite the fact
// that we can't modify the CFG here.
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
CS.getInstruction());
return EraseInstFromFunction(*CS.getInstruction());
}
if (IntrinsicInst *II = FindInitTrampoline(Callee))
return transformCallThroughTrampoline(CS, II);
PointerType *PTy = cast<PointerType>(Callee->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
if (FTy->isVarArg()) {
int ix = FTy->getNumParams();
// See if we can optimize any arguments passed through the varargs area of
// the call.
for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
E = CS.arg_end(); I != E; ++I, ++ix) {
CastInst *CI = dyn_cast<CastInst>(*I);
if (CI && isSafeToEliminateVarargsCast(CS, CI, DL, ix)) {
*I = CI->getOperand(0);
Changed = true;
}
}
}
if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
// Inline asm calls cannot throw - mark them 'nounwind'.
CS.setDoesNotThrow();
Changed = true;
}
// Try to optimize the call if possible, we require DataLayout for most of
// this. None of these calls are seen as possibly dead so go ahead and
// delete the instruction now.
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
Instruction *I = tryOptimizeCall(CI, DL);
// If we changed something return the result, etc. Otherwise let
// the fallthrough check.
if (I) return EraseInstFromFunction(*I);
}
return Changed ? CS.getInstruction() : nullptr;
}
// transformConstExprCastCall - If the callee is a constexpr cast of a function,
// attempt to move the cast to the arguments of the call/invoke.
//
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Function *Callee =
dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
if (!Callee)
return false;
// The prototype of thunks are a lie, don't try to directly call such
// functions.
if (Callee->hasFnAttribute("thunk"))
return false;
Instruction *Caller = CS.getInstruction();
const AttributeSet &CallerPAL = CS.getAttributes();
// Okay, this is a cast from a function to a different type. Unless doing so
// would cause a type conversion of one of our arguments, change this call to
// be a direct call with arguments casted to the appropriate types.
//
FunctionType *FT = Callee->getFunctionType();
Type *OldRetTy = Caller->getType();
Type *NewRetTy = FT->getReturnType();
// Check to see if we are changing the return type...
if (OldRetTy != NewRetTy) {
if (NewRetTy->isStructTy())
return false; // TODO: Handle multiple return values.
if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
if (Callee->isDeclaration())
return false; // Cannot transform this return value.
if (!Caller->use_empty() &&
// void -> non-void is handled specially
!NewRetTy->isVoidTy())
return false; // Cannot transform this return value.
}
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
if (RAttrs.
hasAttributes(AttributeFuncs::
typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
AttributeSet::ReturnIndex))
return false; // Attribute not compatible with transformed value.
}
// If the callsite is an invoke instruction, and the return value is used by
// a PHI node in a successor, we cannot change the return type of the call
// because there is no place to put the cast instruction (without breaking
// the critical edge). Bail out in this case.
if (!Caller->use_empty())
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
for (User *U : II->users())
if (PHINode *PN = dyn_cast<PHINode>(U))
if (PN->getParent() == II->getNormalDest() ||
PN->getParent() == II->getUnwindDest())
return false;
}
unsigned NumActualArgs = CS.arg_size();
unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
// Prevent us turning:
// declare void @takes_i32_inalloca(i32* inalloca)
// call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
//
// into:
// call void @takes_i32_inalloca(i32* null)
if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
return false;
CallSite::arg_iterator AI = CS.arg_begin();
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
Type *ActTy = (*AI)->getType();
if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
return false; // Cannot transform this parameter value.
if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
hasAttributes(AttributeFuncs::
typeIncompatible(ParamTy, i + 1), i + 1))
return false; // Attribute not compatible with transformed value.
if (CS.isInAllocaArgument(i))
return false; // Cannot transform to and from inalloca.
// If the parameter is passed as a byval argument, then we have to have a
// sized type and the sized type has to have the same size as the old type.
if (ParamTy != ActTy &&
CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
Attribute::ByVal)) {
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
if (!ParamPTy || !ParamPTy->getElementType()->isSized() || !DL)
return false;
Type *CurElTy = ActTy->getPointerElementType();
if (DL->getTypeAllocSize(CurElTy) !=
DL->getTypeAllocSize(ParamPTy->getElementType()))
return false;
}
}
if (Callee->isDeclaration()) {
// Do not delete arguments unless we have a function body.
if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
return false;
// If the callee is just a declaration, don't change the varargsness of the
// call. We don't want to introduce a varargs call where one doesn't
// already exist.
PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
return false;
// If both the callee and the cast type are varargs, we still have to make
// sure the number of fixed parameters are the same or we have the same
// ABI issues as if we introduce a varargs call.
if (FT->isVarArg() &&
cast<FunctionType>(APTy->getElementType())->isVarArg() &&
FT->getNumParams() !=
cast<FunctionType>(APTy->getElementType())->getNumParams())
return false;
}
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
!CallerPAL.isEmpty())
// In this case we have more arguments than the new function type, but we
// won't be dropping them. Check that these extra arguments have attributes
// that are compatible with being a vararg call argument.
for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
unsigned Index = CallerPAL.getSlotIndex(i - 1);
if (Index <= FT->getNumParams())
break;
// Check if it has an attribute that's incompatible with varargs.
AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
if (PAttrs.hasAttribute(Index, Attribute::StructRet))
return false;
}
// Okay, we decided that this is a safe thing to do: go ahead and start
// inserting cast instructions as necessary.
std::vector<Value*> Args;
Args.reserve(NumActualArgs);
SmallVector<AttributeSet, 8> attrVec;
attrVec.reserve(NumCommonArgs);
// Get any return attributes.
AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
RAttrs.
removeAttributes(AttributeFuncs::
typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
AttributeSet::ReturnIndex);
// Add the new return attributes.
if (RAttrs.hasAttributes())
attrVec.push_back(AttributeSet::get(Caller->getContext(),
AttributeSet::ReturnIndex, RAttrs));
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
if ((*AI)->getType() == ParamTy) {
Args.push_back(*AI);
} else {
Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
}
// Add any parameter attributes.
AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
if (PAttrs.hasAttributes())
attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
PAttrs));
}
// If the function takes more arguments than the call was taking, add them
// now.
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
Args.push_back(Constant::getNullValue(FT->getParamType(i)));
// If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
// TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
if (FT->isVarArg()) {
// Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Type *PTy = getPromotedType((*AI)->getType());
if (PTy != (*AI)->getType()) {
// Must promote to pass through va_arg area!
Instruction::CastOps opcode =
CastInst::getCastOpcode(*AI, false, PTy, false);
Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
} else {
Args.push_back(*AI);
}
// Add any parameter attributes.
AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
if (PAttrs.hasAttributes())
attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
PAttrs));
}
}
}
AttributeSet FnAttrs = CallerPAL.getFnAttributes();
if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
attrVec);
Instruction *NC;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
II->getUnwindDest(), Args);
NC->takeName(II);
cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
} else {
CallInst *CI = cast<CallInst>(Caller);
NC = Builder->CreateCall(Callee, Args);
NC->takeName(CI);
if (CI->isTailCall())
cast<CallInst>(NC)->setTailCall();
cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
cast<CallInst>(NC)->setAttributes(NewCallerPAL);
}
// Insert a cast of the return type as necessary.
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
if (!NV->getType()->isVoidTy()) {
NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
NC->setDebugLoc(Caller->getDebugLoc());
// If this is an invoke instruction, we should insert it after the first
// non-phi, instruction in the normal successor block.
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
InsertNewInstBefore(NC, *I);
} else {
// Otherwise, it's a call, just insert cast right after the call.
InsertNewInstBefore(NC, *Caller);
}
Worklist.AddUsersToWorkList(*Caller);
} else {
NV = UndefValue::get(Caller->getType());
}
}
if (!Caller->use_empty())
ReplaceInstUsesWith(*Caller, NV);
else if (Caller->hasValueHandle()) {
if (OldRetTy == NV->getType())
ValueHandleBase::ValueIsRAUWd(Caller, NV);
else
// We cannot call ValueIsRAUWd with a different type, and the
// actual tracked value will disappear.
ValueHandleBase::ValueIsDeleted(Caller);
}
EraseInstFromFunction(*Caller);
return true;
}
// transformCallThroughTrampoline - Turn a call to a function created by
// init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
// underlying function.
//
Instruction *
InstCombiner::transformCallThroughTrampoline(CallSite CS,
IntrinsicInst *Tramp) {
Value *Callee = CS.getCalledValue();
PointerType *PTy = cast<PointerType>(Callee->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const AttributeSet &Attrs = CS.getAttributes();
// If the call already has the 'nest' attribute somewhere then give up -
// otherwise 'nest' would occur twice after splicing in the chain.
if (Attrs.hasAttrSomewhere(Attribute::Nest))
return nullptr;
assert(Tramp &&
"transformCallThroughTrampoline called with incorrect CallSite.");
Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
PointerType *NestFPTy = cast<PointerType>(NestF->getType());
FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
const AttributeSet &NestAttrs = NestF->getAttributes();
if (!NestAttrs.isEmpty()) {
unsigned NestIdx = 1;
Type *NestTy = nullptr;
AttributeSet NestAttr;
// Look for a parameter marked with the 'nest' attribute.
for (FunctionType::param_iterator I = NestFTy->param_begin(),
E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
// Record the parameter type and any other attributes.
NestTy = *I;
NestAttr = NestAttrs.getParamAttributes(NestIdx);
break;
}
if (NestTy) {
Instruction *Caller = CS.getInstruction();
std::vector<Value*> NewArgs;
NewArgs.reserve(CS.arg_size() + 1);
SmallVector<AttributeSet, 8> NewAttrs;
NewAttrs.reserve(Attrs.getNumSlots() + 1);
// Insert the nest argument into the call argument list, which may
// mean appending it. Likewise for attributes.
// Add any result attributes.
if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
Attrs.getRetAttributes()));
{
unsigned Idx = 1;
CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
do {
if (Idx == NestIdx) {
// Add the chain argument and attributes.
Value *NestVal = Tramp->getArgOperand(2);
if (NestVal->getType() != NestTy)
NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
NewArgs.push_back(NestVal);
NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
NestAttr));
}
if (I == E)
break;
// Add the original argument and attributes.
NewArgs.push_back(*I);
AttributeSet Attr = Attrs.getParamAttributes(Idx);
if (Attr.hasAttributes(Idx)) {
AttrBuilder B(Attr, Idx);
NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
Idx + (Idx >= NestIdx), B));
}
++Idx, ++I;
} while (1);
}
// Add any function attributes.
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
Attrs.getFnAttributes()));
// The trampoline may have been bitcast to a bogus type (FTy).
// Handle this by synthesizing a new function type, equal to FTy
// with the chain parameter inserted.
std::vector<Type*> NewTypes;
NewTypes.reserve(FTy->getNumParams()+1);
// Insert the chain's type into the list of parameter types, which may
// mean appending it.
{
unsigned Idx = 1;
FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end();
do {
if (Idx == NestIdx)
// Add the chain's type.
NewTypes.push_back(NestTy);
if (I == E)
break;
// Add the original type.
NewTypes.push_back(*I);
++Idx, ++I;
} while (1);
}
// Replace the trampoline call with a direct call. Let the generic
// code sort out any function type mismatches.
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FTy->isVarArg());
Constant *NewCallee =
NestF->getType() == PointerType::getUnqual(NewFTy) ?
NestF : ConstantExpr::getBitCast(NestF,
PointerType::getUnqual(NewFTy));
const AttributeSet &NewPAL =
AttributeSet::get(FTy->getContext(), NewAttrs);
Instruction *NewCaller;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
NewCaller = InvokeInst::Create(NewCallee,
II->getNormalDest(), II->getUnwindDest(),
NewArgs);
cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
} else {
NewCaller = CallInst::Create(NewCallee, NewArgs);
if (cast<CallInst>(Caller)->isTailCall())
cast<CallInst>(NewCaller)->setTailCall();
cast<CallInst>(NewCaller)->
setCallingConv(cast<CallInst>(Caller)->getCallingConv());
cast<CallInst>(NewCaller)->setAttributes(NewPAL);
}
return NewCaller;
}
}
// Replace the trampoline call with a direct call. Since there is no 'nest'
// parameter, there is no need to adjust the argument list. Let the generic
// code sort out any function type mismatches.
Constant *NewCallee =
NestF->getType() == PTy ? NestF :
ConstantExpr::getBitCast(NestF, PTy);
CS.setCalledFunction(NewCallee);
return CS.getInstruction();
}