llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
Bill Wendling 98a366d547 Instead of passing in an unsigned value for the optimization level, use an enum,
which better identifies what the optimization is doing. And is more flexible for
future uses.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70440 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-29 23:29:43 +00:00

1534 lines
53 KiB
C++

//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down register pressure reduction list
// schedulers, using standard algorithms. The basic approach uses a priority
// queue of available nodes to schedule. One at a time, nodes are taken from
// the priority queue (thus in priority order), checked for legality to
// schedule, and emitted if legal.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "ScheduleDAGSDNodes.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <climits>
using namespace llvm;
STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
STATISTIC(NumUnfolds, "Number of nodes unfolded");
STATISTIC(NumDups, "Number of duplicated nodes");
STATISTIC(NumPRCopies, "Number of physical register copies");
static RegisterScheduler
burrListDAGScheduler("list-burr",
"Bottom-up register reduction list scheduling",
createBURRListDAGScheduler);
static RegisterScheduler
tdrListrDAGScheduler("list-tdrr",
"Top-down register reduction list scheduling",
createTDRRListDAGScheduler);
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGRRList - The actual register reduction list scheduler
/// implementation. This supports both top-down and bottom-up scheduling.
///
class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAGSDNodes {
private:
/// isBottomUp - This is true if the scheduling problem is bottom-up, false if
/// it is top-down.
bool isBottomUp;
/// AvailableQueue - The priority queue to use for the available SUnits.
SchedulingPriorityQueue *AvailableQueue;
/// LiveRegDefs - A set of physical registers and their definition
/// that are "live". These nodes must be scheduled before any other nodes that
/// modifies the registers can be scheduled.
unsigned NumLiveRegs;
std::vector<SUnit*> LiveRegDefs;
std::vector<unsigned> LiveRegCycles;
/// Topo - A topological ordering for SUnits which permits fast IsReachable
/// and similar queries.
ScheduleDAGTopologicalSort Topo;
public:
ScheduleDAGRRList(MachineFunction &mf,
bool isbottomup,
SchedulingPriorityQueue *availqueue)
: ScheduleDAGSDNodes(mf), isBottomUp(isbottomup),
AvailableQueue(availqueue), Topo(SUnits) {
}
~ScheduleDAGRRList() {
delete AvailableQueue;
}
void Schedule();
/// IsReachable - Checks if SU is reachable from TargetSU.
bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
return Topo.IsReachable(SU, TargetSU);
}
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
/// create a cycle.
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
return Topo.WillCreateCycle(SU, TargetSU);
}
/// AddPred - adds a predecessor edge to SUnit SU.
/// This returns true if this is a new predecessor.
/// Updates the topological ordering if required.
void AddPred(SUnit *SU, const SDep &D) {
Topo.AddPred(SU, D.getSUnit());
SU->addPred(D);
}
/// RemovePred - removes a predecessor edge from SUnit SU.
/// This returns true if an edge was removed.
/// Updates the topological ordering if required.
void RemovePred(SUnit *SU, const SDep &D) {
Topo.RemovePred(SU, D.getSUnit());
SU->removePred(D);
}
private:
void ReleasePred(SUnit *SU, const SDep *PredEdge);
void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
void ReleaseSuccessors(SUnit *SU);
void CapturePred(SDep *PredEdge);
void ScheduleNodeBottomUp(SUnit*, unsigned);
void ScheduleNodeTopDown(SUnit*, unsigned);
void UnscheduleNodeBottomUp(SUnit*);
void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
SUnit *CopyAndMoveSuccessors(SUnit*);
void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
const TargetRegisterClass*,
const TargetRegisterClass*,
SmallVector<SUnit*, 2>&);
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
void ListScheduleTopDown();
void ListScheduleBottomUp();
/// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
/// Updates the topological ordering if required.
SUnit *CreateNewSUnit(SDNode *N) {
unsigned NumSUnits = SUnits.size();
SUnit *NewNode = NewSUnit(N);
// Update the topological ordering.
if (NewNode->NodeNum >= NumSUnits)
Topo.InitDAGTopologicalSorting();
return NewNode;
}
/// CreateClone - Creates a new SUnit from an existing one.
/// Updates the topological ordering if required.
SUnit *CreateClone(SUnit *N) {
unsigned NumSUnits = SUnits.size();
SUnit *NewNode = Clone(N);
// Update the topological ordering.
if (NewNode->NodeNum >= NumSUnits)
Topo.InitDAGTopologicalSorting();
return NewNode;
}
/// ForceUnitLatencies - Return true, since register-pressure-reducing
/// scheduling doesn't need actual latency information.
bool ForceUnitLatencies() const { return true; }
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
DOUT << "********** List Scheduling **********\n";
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
LiveRegCycles.resize(TRI->getNumRegs(), 0);
// Build the scheduling graph.
BuildSchedGraph();
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
Topo.InitDAGTopologicalSorting();
AvailableQueue->initNodes(SUnits);
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
if (isBottomUp)
ListScheduleBottomUp();
else
ListScheduleTopDown();
AvailableQueue->releaseState();
}
//===----------------------------------------------------------------------===//
// Bottom-Up Scheduling
//===----------------------------------------------------------------------===//
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
--PredSU->NumSuccsLeft;
#ifndef NDEBUG
if (PredSU->NumSuccsLeft < 0) {
cerr << "*** Scheduling failed! ***\n";
PredSU->dump(this);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
// If all the node's successors are scheduled, this node is ready
// to be scheduled. Ignore the special EntrySU node.
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
PredSU->isAvailable = true;
AvailableQueue->push(PredSU);
}
}
void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
// Bottom up: release predecessors
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
ReleasePred(SU, &*I);
if (I->isAssignedRegDep()) {
// This is a physical register dependency and it's impossible or
// expensive to copy the register. Make sure nothing that can
// clobber the register is scheduled between the predecessor and
// this node.
if (!LiveRegDefs[I->getReg()]) {
++NumLiveRegs;
LiveRegDefs[I->getReg()] = I->getSUnit();
LiveRegCycles[I->getReg()] = CurCycle;
}
}
}
}
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
SU->setHeightToAtLeast(CurCycle);
Sequence.push_back(SU);
ReleasePredecessors(SU, CurCycle);
// Release all the implicit physical register defs that are live.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isAssignedRegDep()) {
if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
assert(LiveRegDefs[I->getReg()] == SU &&
"Physical register dependency violated?");
--NumLiveRegs;
LiveRegDefs[I->getReg()] = NULL;
LiveRegCycles[I->getReg()] = 0;
}
}
}
SU->isScheduled = true;
AvailableQueue->ScheduledNode(SU);
}
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
/// unscheduled, incrcease the succ left count of its predecessors. Remove
/// them from AvailableQueue if necessary.
void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
if (PredSU->isAvailable) {
PredSU->isAvailable = false;
if (!PredSU->isPending)
AvailableQueue->remove(PredSU);
}
++PredSU->NumSuccsLeft;
}
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
DOUT << "*** Unscheduling [" << SU->getHeight() << "]: ";
DEBUG(SU->dump(this));
AvailableQueue->UnscheduledNode(SU);
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
CapturePred(&*I);
if (I->isAssignedRegDep() && SU->getHeight() == LiveRegCycles[I->getReg()]) {
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
"Physical register dependency violated?");
--NumLiveRegs;
LiveRegDefs[I->getReg()] = NULL;
LiveRegCycles[I->getReg()] = 0;
}
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isAssignedRegDep()) {
if (!LiveRegDefs[I->getReg()]) {
LiveRegDefs[I->getReg()] = SU;
++NumLiveRegs;
}
if (I->getSUnit()->getHeight() < LiveRegCycles[I->getReg()])
LiveRegCycles[I->getReg()] = I->getSUnit()->getHeight();
}
}
SU->setHeightDirty();
SU->isScheduled = false;
SU->isAvailable = true;
AvailableQueue->push(SU);
}
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
/// BTCycle in order to schedule a specific node.
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
unsigned &CurCycle) {
SUnit *OldSU = NULL;
while (CurCycle > BtCycle) {
OldSU = Sequence.back();
Sequence.pop_back();
if (SU->isSucc(OldSU))
// Don't try to remove SU from AvailableQueue.
SU->isAvailable = false;
UnscheduleNodeBottomUp(OldSU);
--CurCycle;
}
assert(!SU->isSucc(OldSU) && "Something is wrong!");
++NumBacktracks;
}
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
if (SU->getNode()->getFlaggedNode())
return NULL;
SDNode *N = SU->getNode();
if (!N)
return NULL;
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
MVT VT = N->getValueType(i);
if (VT == MVT::Flag)
return NULL;
else if (VT == MVT::Other)
TryUnfold = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
MVT VT = Op.getNode()->getValueType(Op.getResNo());
if (VT == MVT::Flag)
return NULL;
}
if (TryUnfold) {
SmallVector<SDNode*, 2> NewNodes;
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
SDNode *LoadNode = NewNodes[0];
unsigned NumVals = N->getNumValues();
unsigned OldNumVals = SU->getNode()->getNumValues();
for (unsigned i = 0; i != NumVals; ++i)
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
SDValue(LoadNode, 1));
// LoadNode may already exist. This can happen when there is another
// load from the same location and producing the same type of value
// but it has different alignment or volatileness.
bool isNewLoad = true;
SUnit *LoadSU;
if (LoadNode->getNodeId() != -1) {
LoadSU = &SUnits[LoadNode->getNodeId()];
isNewLoad = false;
} else {
LoadSU = CreateNewSUnit(LoadNode);
LoadNode->setNodeId(LoadSU->NodeNum);
ComputeLatency(LoadSU);
}
SUnit *NewSU = CreateNewSUnit(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NewSU->NodeNum);
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
NewSU->isCommutable = true;
ComputeLatency(NewSU);
// Record all the edges to and from the old SU, by category.
SmallVector<SDep, 4> ChainPreds;
SmallVector<SDep, 4> ChainSuccs;
SmallVector<SDep, 4> LoadPreds;
SmallVector<SDep, 4> NodePreds;
SmallVector<SDep, 4> NodeSuccs;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl())
ChainPreds.push_back(*I);
else if (I->getSUnit()->getNode() &&
I->getSUnit()->getNode()->isOperandOf(LoadNode))
LoadPreds.push_back(*I);
else
NodePreds.push_back(*I);
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl())
ChainSuccs.push_back(*I);
else
NodeSuccs.push_back(*I);
}
// Now assign edges to the newly-created nodes.
for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
const SDep &Pred = ChainPreds[i];
RemovePred(SU, Pred);
if (isNewLoad)
AddPred(LoadSU, Pred);
}
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
const SDep &Pred = LoadPreds[i];
RemovePred(SU, Pred);
if (isNewLoad)
AddPred(LoadSU, Pred);
}
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
const SDep &Pred = NodePreds[i];
RemovePred(SU, Pred);
AddPred(NewSU, Pred);
}
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
SDep D = NodeSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
D.setSUnit(NewSU);
AddPred(SuccDep, D);
}
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
SDep D = ChainSuccs[i];
SUnit *SuccDep = D.getSUnit();
D.setSUnit(SU);
RemovePred(SuccDep, D);
if (isNewLoad) {
D.setSUnit(LoadSU);
AddPred(SuccDep, D);
}
}
// Add a data dependency to reflect that NewSU reads the value defined
// by LoadSU.
AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
if (isNewLoad)
AvailableQueue->addNode(LoadSU);
AvailableQueue->addNode(NewSU);
++NumUnfolds;
if (NewSU->NumSuccsLeft == 0) {
NewSU->isAvailable = true;
return NewSU;
}
SU = NewSU;
}
DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
NewSU = CreateClone(SU);
// New SUnit has the exact same predecessors.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (!I->isArtificial())
AddPred(NewSU, *I);
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(NewSU);
AddPred(SuccSU, D);
D.setSUnit(SU);
DelDeps.push_back(std::make_pair(SuccSU, D));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
RemovePred(DelDeps[i].first, DelDeps[i].second);
AvailableQueue->updateNode(SU);
AvailableQueue->addNode(NewSU);
++NumDups;
return NewSU;
}
/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC,
SmallVector<SUnit*, 2> &Copies) {
SUnit *CopyFromSU = CreateNewSUnit(NULL);
CopyFromSU->CopySrcRC = SrcRC;
CopyFromSU->CopyDstRC = DestRC;
SUnit *CopyToSU = CreateNewSUnit(NULL);
CopyToSU->CopySrcRC = DestRC;
CopyToSU->CopyDstRC = SrcRC;
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isArtificial())
continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU->isScheduled) {
SDep D = *I;
D.setSUnit(CopyToSU);
AddPred(SuccSU, D);
DelDeps.push_back(std::make_pair(SuccSU, *I));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
RemovePred(DelDeps[i].first, DelDeps[i].second);
AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
AvailableQueue->updateNode(SU);
AvailableQueue->addNode(CopyFromSU);
AvailableQueue->addNode(CopyToSU);
Copies.push_back(CopyFromSU);
Copies.push_back(CopyToSU);
++NumPRCopies;
}
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
unsigned NumRes = TID.getNumDefs();
for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
}
return N->getValueType(NumRes);
}
/// CheckForLiveRegDef - Return true and update live register vector if the
/// specified register def of the specified SUnit clobbers any "live" registers.
static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
std::vector<SUnit*> &LiveRegDefs,
SmallSet<unsigned, 4> &RegAdded,
SmallVector<unsigned, 4> &LRegs,
const TargetRegisterInfo *TRI) {
bool Added = false;
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
if (RegAdded.insert(Reg)) {
LRegs.push_back(Reg);
Added = true;
}
}
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
if (RegAdded.insert(*Alias)) {
LRegs.push_back(*Alias);
Added = true;
}
}
return Added;
}
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
SmallVector<unsigned, 4> &LRegs){
if (NumLiveRegs == 0)
return false;
SmallSet<unsigned, 4> RegAdded;
// If this node would clobber any "live" register, then it's not ready.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isAssignedRegDep())
CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
RegAdded, LRegs, TRI);
}
for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
if (Node->getOpcode() == ISD::INLINEASM) {
// Inline asm can clobber physical defs.
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
--NumOps; // Ignore the flag operand.
for (unsigned i = 2; i != NumOps;) {
unsigned Flags =
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
unsigned NumVals = (Flags & 0xffff) >> 3;
++i; // Skip the ID value.
if ((Flags & 7) == 2 || (Flags & 7) == 6) {
// Check for def of register or earlyclobber register.
for (; NumVals; --NumVals, ++i) {
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg))
CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
}
} else
i += NumVals;
}
continue;
}
if (!Node->isMachineOpcode())
continue;
const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
if (!TID.ImplicitDefs)
continue;
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
}
return !LRegs.empty();
}
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGRRList::ListScheduleBottomUp() {
unsigned CurCycle = 0;
// Release any predecessors of the special Exit node.
ReleasePredecessors(&ExitSU, CurCycle);
// Add root to Available queue.
if (!SUnits.empty()) {
SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
RootSU->isAvailable = true;
AvailableQueue->push(RootSU);
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
SmallVector<SUnit*, 4> NotReady;
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
Sequence.reserve(SUnits.size());
while (!AvailableQueue->empty()) {
bool Delayed = false;
LRegsMap.clear();
SUnit *CurSU = AvailableQueue->pop();
while (CurSU) {
SmallVector<unsigned, 4> LRegs;
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
break;
Delayed = true;
LRegsMap.insert(std::make_pair(CurSU, LRegs));
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
NotReady.push_back(CurSU);
CurSU = AvailableQueue->pop();
}
// All candidates are delayed due to live physical reg dependencies.
// Try backtracking, code duplication, or inserting cross class copies
// to resolve it.
if (Delayed && !CurSU) {
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
SUnit *TrySU = NotReady[i];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
// Try unscheduling up to the point where it's safe to schedule
// this node.
unsigned LiveCycle = CurCycle;
for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
unsigned Reg = LRegs[j];
unsigned LCycle = LiveRegCycles[Reg];
LiveCycle = std::min(LiveCycle, LCycle);
}
SUnit *OldSU = Sequence[LiveCycle];
if (!WillCreateCycle(TrySU, OldSU)) {
BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
// Force the current node to be scheduled before the node that
// requires the physical reg dep.
if (OldSU->isAvailable) {
OldSU->isAvailable = false;
AvailableQueue->remove(OldSU);
}
AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true));
// If one or more successors has been unscheduled, then the current
// node is no longer avaialable. Schedule a successor that's now
// available instead.
if (!TrySU->isAvailable)
CurSU = AvailableQueue->pop();
else {
CurSU = TrySU;
TrySU->isPending = false;
NotReady.erase(NotReady.begin()+i);
}
break;
}
}
if (!CurSU) {
// Can't backtrack. If it's too expensive to copy the value, then try
// duplicate the nodes that produces these "too expensive to copy"
// values to break the dependency. In case even that doesn't work,
// insert cross class copies.
// If it's not too expensive, i.e. cost != -1, issue copies.
SUnit *TrySU = NotReady[0];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
// If cross copy register class is null, then it must be possible copy
// the value directly. Do not try duplicate the def.
SUnit *NewDef = 0;
if (DestRC)
NewDef = CopyAndMoveSuccessors(LRDef);
else
DestRC = RC;
if (!NewDef) {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
DOUT << "Adding an edge from SU #" << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n";
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
NewDef = Copies.back();
}
DOUT << "Adding an edge from SU #" << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n";
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
TrySU->isAvailable = false;
CurSU = NewDef;
}
assert(CurSU && "Unable to resolve live physical register dependencies!");
}
// Add the nodes that aren't ready back onto the available list.
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
NotReady[i]->isPending = false;
// May no longer be available due to backtracking.
if (NotReady[i]->isAvailable)
AvailableQueue->push(NotReady[i]);
}
NotReady.clear();
if (CurSU)
ScheduleNodeBottomUp(CurSU, CurCycle);
++CurCycle;
}
// Reverse the order if it is bottom up.
std::reverse(Sequence.begin(), Sequence.end());
#ifndef NDEBUG
VerifySchedule(isBottomUp);
#endif
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
--SuccSU->NumPredsLeft;
#ifndef NDEBUG
if (SuccSU->NumPredsLeft < 0) {
cerr << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
SuccSU->isAvailable = true;
AvailableQueue->push(SuccSU);
}
}
void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
// Top down: release successors
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
assert(!I->isAssignedRegDep() &&
"The list-tdrr scheduler doesn't yet support physreg dependencies!");
ReleaseSucc(SU, &*I);
}
}
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
Sequence.push_back(SU);
ReleaseSuccessors(SU);
SU->isScheduled = true;
AvailableQueue->ScheduledNode(SU);
}
/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGRRList::ListScheduleTopDown() {
unsigned CurCycle = 0;
// Release any successors of the special Entry node.
ReleaseSuccessors(&EntrySU);
// All leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.empty()) {
AvailableQueue->push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
Sequence.reserve(SUnits.size());
while (!AvailableQueue->empty()) {
SUnit *CurSU = AvailableQueue->pop();
if (CurSU)
ScheduleNodeTopDown(CurSU, CurCycle);
++CurCycle;
}
#ifndef NDEBUG
VerifySchedule(isBottomUp);
#endif
}
//===----------------------------------------------------------------------===//
// RegReductionPriorityQueue Implementation
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
//
namespace {
template<class SF>
class RegReductionPriorityQueue;
/// Sorting functions for the Available queue.
struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
bool operator()(const SUnit* left, const SUnit* right) const;
};
struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
bool operator()(const SUnit* left, const SUnit* right) const;
};
} // end anonymous namespace
/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
/// Smaller number is the higher priority.
static unsigned
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
if (SethiUllmanNumber != 0)
return SethiUllmanNumber;
unsigned Extra = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain preds
SUnit *PredSU = I->getSUnit();
unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
if (PredSethiUllman > SethiUllmanNumber) {
SethiUllmanNumber = PredSethiUllman;
Extra = 0;
} else if (PredSethiUllman == SethiUllmanNumber)
++Extra;
}
SethiUllmanNumber += Extra;
if (SethiUllmanNumber == 0)
SethiUllmanNumber = 1;
return SethiUllmanNumber;
}
namespace {
template<class SF>
class VISIBILITY_HIDDEN RegReductionPriorityQueue
: public SchedulingPriorityQueue {
PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
unsigned currentQueueId;
protected:
// SUnits - The SUnits for the current graph.
std::vector<SUnit> *SUnits;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
ScheduleDAGRRList *scheduleDAG;
// SethiUllmanNumbers - The SethiUllman number for each node.
std::vector<unsigned> SethiUllmanNumbers;
public:
RegReductionPriorityQueue(const TargetInstrInfo *tii,
const TargetRegisterInfo *tri) :
Queue(SF(this)), currentQueueId(0),
TII(tii), TRI(tri), scheduleDAG(NULL) {}
void initNodes(std::vector<SUnit> &sunits) {
SUnits = &sunits;
// Add pseudo dependency edges for two-address nodes.
AddPseudoTwoAddrDeps();
// Reroute edges to nodes with multiple uses.
PrescheduleNodesWithMultipleUses();
// Calculate node priorities.
CalculateSethiUllmanNumbers();
}
void addNode(const SUnit *SU) {
unsigned SUSize = SethiUllmanNumbers.size();
if (SUnits->size() > SUSize)
SethiUllmanNumbers.resize(SUSize*2, 0);
CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}
void updateNode(const SUnit *SU) {
SethiUllmanNumbers[SU->NodeNum] = 0;
CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}
void releaseState() {
SUnits = 0;
SethiUllmanNumbers.clear();
}
unsigned getNodePriority(const SUnit *SU) const {
assert(SU->NodeNum < SethiUllmanNumbers.size());
unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
// CopyToReg should be close to its uses to facilitate coalescing and
// avoid spilling.
return 0;
if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
Opc == TargetInstrInfo::SUBREG_TO_REG ||
Opc == TargetInstrInfo::INSERT_SUBREG)
// EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
// close to their uses to facilitate coalescing.
return 0;
if (SU->NumSuccs == 0 && SU->NumPreds != 0)
// If SU does not have a register use, i.e. it doesn't produce a value
// that would be consumed (e.g. store), then it terminates a chain of
// computation. Give it a large SethiUllman number so it will be
// scheduled right before its predecessors that it doesn't lengthen
// their live ranges.
return 0xffff;
if (SU->NumPreds == 0 && SU->NumSuccs != 0)
// If SU does not have a register def, schedule it close to its uses
// because it does not lengthen any live ranges.
return 0;
return SethiUllmanNumbers[SU->NodeNum];
}
unsigned size() const { return Queue.size(); }
bool empty() const { return Queue.empty(); }
void push(SUnit *U) {
assert(!U->NodeQueueId && "Node in the queue already");
U->NodeQueueId = ++currentQueueId;
Queue.push(U);
}
void push_all(const std::vector<SUnit *> &Nodes) {
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
push(Nodes[i]);
}
SUnit *pop() {
if (empty()) return NULL;
SUnit *V = Queue.top();
Queue.pop();
V->NodeQueueId = 0;
return V;
}
void remove(SUnit *SU) {
assert(!Queue.empty() && "Queue is empty!");
assert(SU->NodeQueueId != 0 && "Not in queue!");
Queue.erase_one(SU);
SU->NodeQueueId = 0;
}
void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
scheduleDAG = scheduleDag;
}
protected:
bool canClobber(const SUnit *SU, const SUnit *Op);
void AddPseudoTwoAddrDeps();
void PrescheduleNodesWithMultipleUses();
void CalculateSethiUllmanNumbers();
};
typedef RegReductionPriorityQueue<bu_ls_rr_sort>
BURegReductionPriorityQueue;
typedef RegReductionPriorityQueue<td_ls_rr_sort>
TDRegReductionPriorityQueue;
}
/// closestSucc - Returns the scheduled cycle of the successor which is
/// closest to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
unsigned MaxHeight = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain succs
unsigned Height = I->getSUnit()->getHeight();
// If there are bunch of CopyToRegs stacked up, they should be considered
// to be at the same position.
if (I->getSUnit()->getNode() &&
I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
Height = closestSucc(I->getSUnit())+1;
if (Height > MaxHeight)
MaxHeight = Height;
}
return MaxHeight;
}
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers, i.e. number of data dependencies.
static unsigned calcMaxScratches(const SUnit *SU) {
unsigned Scratches = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl()) continue; // ignore chain preds
Scratches++;
}
return Scratches;
}
// Bottom up
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
unsigned LPriority = SPQ->getNodePriority(left);
unsigned RPriority = SPQ->getNodePriority(right);
if (LPriority != RPriority)
return LPriority > RPriority;
// Try schedule def + use closer when Sethi-Ullman numbers are the same.
// e.g.
// t1 = op t2, c1
// t3 = op t4, c2
//
// and the following instructions are both ready.
// t2 = op c3
// t4 = op c4
//
// Then schedule t2 = op first.
// i.e.
// t4 = op c4
// t2 = op c3
// t1 = op t2, c1
// t3 = op t4, c2
//
// This creates more short live intervals.
unsigned LDist = closestSucc(left);
unsigned RDist = closestSucc(right);
if (LDist != RDist)
return LDist < RDist;
// How many registers becomes live when the node is scheduled.
unsigned LScratch = calcMaxScratches(left);
unsigned RScratch = calcMaxScratches(right);
if (LScratch != RScratch)
return LScratch > RScratch;
if (left->getHeight() != right->getHeight())
return left->getHeight() > right->getHeight();
if (left->getDepth() != right->getDepth())
return left->getDepth() < right->getDepth();
assert(left->NodeQueueId && right->NodeQueueId &&
"NodeQueueId cannot be zero");
return (left->NodeQueueId > right->NodeQueueId);
}
template<class SF>
bool
RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
if (SU->isTwoAddress) {
unsigned Opc = SU->getNode()->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
unsigned NumRes = TID.getNumDefs();
unsigned NumOps = TID.getNumOperands() - NumRes;
for (unsigned i = 0; i != NumOps; ++i) {
if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
SDNode *DU = SU->getNode()->getOperand(i).getNode();
if (DU->getNodeId() != -1 &&
Op->OrigNode == &(*SUnits)[DU->getNodeId()])
return true;
}
}
}
return false;
}
/// hasCopyToRegUse - Return true if SU has a value successor that is a
/// CopyToReg node.
static bool hasCopyToRegUse(const SUnit *SU) {
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl()) continue;
const SUnit *SuccSU = I->getSUnit();
if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
return true;
}
return false;
}
/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
/// physical register defs.
static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) {
SDNode *N = SuccSU->getNode();
unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
assert(ImpDefs && "Caller should check hasPhysRegDefs");
for (const SDNode *SUNode = SU->getNode(); SUNode;
SUNode = SUNode->getFlaggedNode()) {
if (!SUNode->isMachineOpcode())
continue;
const unsigned *SUImpDefs =
TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
if (!SUImpDefs)
return false;
for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
MVT VT = N->getValueType(i);
if (VT == MVT::Flag || VT == MVT::Other)
continue;
if (!N->hasAnyUseOfValue(i))
continue;
unsigned Reg = ImpDefs[i - NumDefs];
for (;*SUImpDefs; ++SUImpDefs) {
unsigned SUReg = *SUImpDefs;
if (TRI->regsOverlap(Reg, SUReg))
return true;
}
}
}
return false;
}
/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
/// are not handled well by the general register pressure reduction
/// heuristics. When presented with code like this:
///
/// N
/// / |
/// / |
/// U store
/// |
/// ...
///
/// the heuristics tend to push the store up, but since the
/// operand of the store has another use (U), this would increase
/// the length of that other use (the U->N edge).
///
/// This function transforms code like the above to route U's
/// dependence through the store when possible, like this:
///
/// N
/// ||
/// ||
/// store
/// |
/// U
/// |
/// ...
///
/// This results in the store being scheduled immediately
/// after N, which shortens the U->N live range, reducing
/// register pressure.
///
template<class SF>
void RegReductionPriorityQueue<SF>::PrescheduleNodesWithMultipleUses() {
// Visit all the nodes in topological order, working top-down.
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
SUnit *SU = &(*SUnits)[i];
// For now, only look at nodes with no data successors, such as stores.
// These are especially important, due to the heuristics in
// getNodePriority for nodes with no data successors.
if (SU->NumSuccs != 0)
continue;
// For now, only look at nodes with exactly one data predecessor.
if (SU->NumPreds != 1)
continue;
// Avoid prescheduling copies to virtual registers, which don't behave
// like other nodes from the perspective of scheduling heuristics.
if (SDNode *N = SU->getNode())
if (N->getOpcode() == ISD::CopyToReg &&
TargetRegisterInfo::isVirtualRegister
(cast<RegisterSDNode>(N->getOperand(1))->getReg()))
continue;
// Locate the single data predecessor.
SUnit *PredSU = 0;
for (SUnit::const_pred_iterator II = SU->Preds.begin(),
EE = SU->Preds.end(); II != EE; ++II)
if (!II->isCtrl()) {
PredSU = II->getSUnit();
break;
}
assert(PredSU);
// Don't rewrite edges that carry physregs, because that requires additional
// support infrastructure.
if (PredSU->hasPhysRegDefs)
continue;
// Short-circuit the case where SU is PredSU's only data successor.
if (PredSU->NumSuccs == 1)
continue;
// Avoid prescheduling to copies from virtual registers, which don't behave
// like other nodes from the perspective of scheduling // heuristics.
if (SDNode *N = SU->getNode())
if (N->getOpcode() == ISD::CopyFromReg &&
TargetRegisterInfo::isVirtualRegister
(cast<RegisterSDNode>(N->getOperand(1))->getReg()))
continue;
// Perform checks on the successors of PredSU.
for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
EE = PredSU->Succs.end(); II != EE; ++II) {
SUnit *PredSuccSU = II->getSUnit();
if (PredSuccSU == SU) continue;
// If PredSU has another successor with no data successors, for
// now don't attempt to choose either over the other.
if (PredSuccSU->NumSuccs == 0)
goto outer_loop_continue;
// Don't break physical register dependencies.
if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
goto outer_loop_continue;
// Don't introduce graph cycles.
if (scheduleDAG->IsReachable(SU, PredSuccSU))
goto outer_loop_continue;
}
// Ok, the transformation is safe and the heuristics suggest it is
// profitable. Update the graph.
DOUT << "Prescheduling SU # " << SU->NodeNum
<< " next to PredSU # " << PredSU->NodeNum
<< " to guide scheduling in the presence of multiple uses\n";
for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
SDep Edge = PredSU->Succs[i];
assert(!Edge.isAssignedRegDep());
SUnit *SuccSU = Edge.getSUnit();
if (SuccSU != SU) {
Edge.setSUnit(PredSU);
scheduleDAG->RemovePred(SuccSU, Edge);
scheduleDAG->AddPred(SU, Edge);
Edge.setSUnit(SU);
scheduleDAG->AddPred(SuccSU, Edge);
--i;
}
}
outer_loop_continue:;
}
}
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
/// it as a def&use operand. Add a pseudo control edge from it to the other
/// node (if it won't create a cycle) so the two-address one will be scheduled
/// first (lower in the schedule). If both nodes are two-address, favor the
/// one that has a CopyToReg use (more likely to be a loop induction update).
/// If both are two-address, but one is commutable while the other is not
/// commutable, favor the one that's not commutable.
template<class SF>
void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
SUnit *SU = &(*SUnits)[i];
if (!SU->isTwoAddress)
continue;
SDNode *Node = SU->getNode();
if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
continue;
unsigned Opc = Node->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
unsigned NumRes = TID.getNumDefs();
unsigned NumOps = TID.getNumOperands() - NumRes;
for (unsigned j = 0; j != NumOps; ++j) {
if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
continue;
SDNode *DU = SU->getNode()->getOperand(j).getNode();
if (DU->getNodeId() == -1)
continue;
const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
if (!DUSU) continue;
for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
E = DUSU->Succs.end(); I != E; ++I) {
if (I->isCtrl()) continue;
SUnit *SuccSU = I->getSUnit();
if (SuccSU == SU)
continue;
// Be conservative. Ignore if nodes aren't at roughly the same
// depth and height.
if (SuccSU->getHeight() < SU->getHeight() &&
(SU->getHeight() - SuccSU->getHeight()) > 1)
continue;
// Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
// constrains whatever is using the copy, instead of the copy
// itself. In the case that the copy is coalesced, this
// preserves the intent of the pseudo two-address heurietics.
while (SuccSU->Succs.size() == 1 &&
SuccSU->getNode()->isMachineOpcode() &&
SuccSU->getNode()->getMachineOpcode() ==
TargetInstrInfo::COPY_TO_REGCLASS)
SuccSU = SuccSU->Succs.front().getSUnit();
// Don't constrain non-instruction nodes.
if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
continue;
// Don't constrain nodes with physical register defs if the
// predecessor can clobber them.
if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
continue;
}
// Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
// these may be coalesced away. We want them close to their uses.
unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
SuccOpc == TargetInstrInfo::INSERT_SUBREG ||
SuccOpc == TargetInstrInfo::SUBREG_TO_REG)
continue;
if ((!canClobber(SuccSU, DUSU) ||
(hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
(!SU->isCommutable && SuccSU->isCommutable)) &&
!scheduleDAG->IsReachable(SuccSU, SU)) {
DOUT << "Adding a pseudo-two-addr edge from SU # " << SU->NodeNum
<< " to SU #" << SuccSU->NodeNum << "\n";
scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
}
}
}
}
}
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
template<class SF>
void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
SethiUllmanNumbers.assign(SUnits->size(), 0);
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
}
/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
/// predecessors of the successors of the SUnit SU. Stop when the provided
/// limit is exceeded.
static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
unsigned Limit) {
unsigned Sum = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
const SUnit *SuccSU = I->getSUnit();
for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
EE = SuccSU->Preds.end(); II != EE; ++II) {
SUnit *PredSU = II->getSUnit();
if (!PredSU->isScheduled)
if (++Sum > Limit)
return Sum;
}
}
return Sum;
}
// Top down
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
unsigned LPriority = SPQ->getNodePriority(left);
unsigned RPriority = SPQ->getNodePriority(right);
bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
bool LIsFloater = LIsTarget && left->NumPreds == 0;
bool RIsFloater = RIsTarget && right->NumPreds == 0;
unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
if (left->NumSuccs == 0 && right->NumSuccs != 0)
return false;
else if (left->NumSuccs != 0 && right->NumSuccs == 0)
return true;
if (LIsFloater)
LBonus -= 2;
if (RIsFloater)
RBonus -= 2;
if (left->NumSuccs == 1)
LBonus += 2;
if (right->NumSuccs == 1)
RBonus += 2;
if (LPriority+LBonus != RPriority+RBonus)
return LPriority+LBonus < RPriority+RBonus;
if (left->getDepth() != right->getDepth())
return left->getDepth() < right->getDepth();
if (left->NumSuccsLeft != right->NumSuccsLeft)
return left->NumSuccsLeft > right->NumSuccsLeft;
assert(left->NodeQueueId && right->NodeQueueId &&
"NodeQueueId cannot be zero");
return (left->NodeQueueId > right->NodeQueueId);
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
llvm::ScheduleDAGSDNodes *
llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
const TargetMachine &TM = IS->TM;
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
ScheduleDAGRRList *SD =
new ScheduleDAGRRList(*IS->MF, true, PQ);
PQ->setScheduleDAG(SD);
return SD;
}
llvm::ScheduleDAGSDNodes *
llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
const TargetMachine &TM = IS->TM;
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
TDRegReductionPriorityQueue *PQ = new TDRegReductionPriorityQueue(TII, TRI);
ScheduleDAGRRList *SD =
new ScheduleDAGRRList(*IS->MF, false, PQ);
PQ->setScheduleDAG(SD);
return SD;
}