llvm-6502/lib/Analysis/BasicAliasAnalysis.cpp
Chandler Carruth 351ba145a7 Actually update the CMake and Makefile builds correctly, and update the
code that includes Intrinsics.gen directly.

This never showed up in my testing because the old Intrinsics.gen was
still kicking around in the make build system and was correct there. =[
Thankfully, some of the bots to clean rebuilds and that caught this.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171373 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 12:09:16 +00:00

1271 lines
49 KiB
C++

//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//
/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
/// object that never escapes from the function.
static bool isNonEscapingLocalObject(const Value *V) {
// If this is a local allocation, check to see if it escapes.
if (isa<AllocaInst>(V) || isNoAliasCall(V))
// Set StoreCaptures to True so that we can assume in our callers that the
// pointer is not the result of a load instruction. Currently
// PointerMayBeCaptured doesn't have any special analysis for the
// StoreCaptures=false case; if it did, our callers could be refined to be
// more precise.
return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
// If this is an argument that corresponds to a byval or noalias argument,
// then it has not escaped before entering the function. Check if it escapes
// inside the function.
if (const Argument *A = dyn_cast<Argument>(V))
if (A->hasByValAttr() || A->hasNoAliasAttr())
// Note even if the argument is marked nocapture we still need to check
// for copies made inside the function. The nocapture attribute only
// specifies that there are no copies made that outlive the function.
return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
return false;
}
/// isEscapeSource - Return true if the pointer is one which would have
/// been considered an escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
return true;
// The load case works because isNonEscapingLocalObject considers all
// stores to be escapes (it passes true for the StoreCaptures argument
// to PointerMayBeCaptured).
if (isa<LoadInst>(V))
return true;
return false;
}
/// getObjectSize - Return the size of the object specified by V, or
/// UnknownSize if unknown.
static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
const TargetLibraryInfo &TLI,
bool RoundToAlign = false) {
uint64_t Size;
if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
return Size;
return AliasAnalysis::UnknownSize;
}
/// isObjectSmallerThan - Return true if we can prove that the object specified
/// by V is smaller than Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
const DataLayout &TD,
const TargetLibraryInfo &TLI) {
// This function needs to use the aligned object size because we allow
// reads a bit past the end given sufficient alignment.
uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
}
/// isObjectSize - Return true if we can prove that the object specified
/// by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size,
const DataLayout &TD, const TargetLibraryInfo &TLI) {
uint64_t ObjectSize = getObjectSize(V, TD, TLI);
return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
}
//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//
namespace {
enum ExtensionKind {
EK_NotExtended,
EK_SignExt,
EK_ZeroExt
};
struct VariableGEPIndex {
const Value *V;
ExtensionKind Extension;
int64_t Scale;
bool operator==(const VariableGEPIndex &Other) const {
return V == Other.V && Extension == Other.Extension &&
Scale == Other.Scale;
}
bool operator!=(const VariableGEPIndex &Other) const {
return !operator==(Other);
}
};
}
/// GetLinearExpression - Analyze the specified value as a linear expression:
/// "A*V + B", where A and B are constant integers. Return the scale and offset
/// values as APInts and return V as a Value*, and return whether we looked
/// through any sign or zero extends. The incoming Value is known to have
/// IntegerType and it may already be sign or zero extended.
///
/// Note that this looks through extends, so the high bits may not be
/// represented in the result.
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
ExtensionKind &Extension,
const DataLayout &TD, unsigned Depth) {
assert(V->getType()->isIntegerTy() && "Not an integer value");
// Limit our recursion depth.
if (Depth == 6) {
Scale = 1;
Offset = 0;
return V;
}
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
switch (BOp->getOpcode()) {
default: break;
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
break;
// FALL THROUGH.
case Instruction::Add:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
TD, Depth+1);
Offset += RHSC->getValue();
return V;
case Instruction::Mul:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
TD, Depth+1);
Offset *= RHSC->getValue();
Scale *= RHSC->getValue();
return V;
case Instruction::Shl:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
TD, Depth+1);
Offset <<= RHSC->getValue().getLimitedValue();
Scale <<= RHSC->getValue().getLimitedValue();
return V;
}
}
}
// Since GEP indices are sign extended anyway, we don't care about the high
// bits of a sign or zero extended value - just scales and offsets. The
// extensions have to be consistent though.
if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
(isa<ZExtInst>(V) && Extension != EK_SignExt)) {
Value *CastOp = cast<CastInst>(V)->getOperand(0);
unsigned OldWidth = Scale.getBitWidth();
unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
Scale = Scale.trunc(SmallWidth);
Offset = Offset.trunc(SmallWidth);
Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
TD, Depth+1);
Scale = Scale.zext(OldWidth);
Offset = Offset.zext(OldWidth);
return Result;
}
Scale = 1;
Offset = 0;
return V;
}
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
/// into a base pointer with a constant offset and a number of scaled symbolic
/// offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
/// the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As such,
/// the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When DataLayout is around, this function is capable of analyzing everything
/// that GetUnderlyingObject can look through. When not, it just looks
/// through pointer casts.
///
static const Value *
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<VariableGEPIndex> &VarIndices,
const DataLayout *TD) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = 6;
BaseOffs = 0;
do {
// See if this is a bitcast or GEP.
const Operator *Op = dyn_cast<Operator>(V);
if (Op == 0) {
// The only non-operator case we can handle are GlobalAliases.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->mayBeOverridden()) {
V = GA->getAliasee();
continue;
}
}
return V;
}
if (Op->getOpcode() == Instruction::BitCast) {
V = Op->getOperand(0);
continue;
}
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
if (GEPOp == 0) {
// If it's not a GEP, hand it off to SimplifyInstruction to see if it
// can come up with something. This matches what GetUnderlyingObject does.
if (const Instruction *I = dyn_cast<Instruction>(V))
// TODO: Get a DominatorTree and use it here.
if (const Value *Simplified =
SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
V = Simplified;
continue;
}
return V;
}
// Don't attempt to analyze GEPs over unsized objects.
if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
->getElementType()->isSized())
return V;
// If we are lacking DataLayout information, we can't compute the offets of
// elements computed by GEPs. However, we can handle bitcast equivalent
// GEPs.
if (TD == 0) {
if (!GEPOp->hasAllZeroIndices())
return V;
V = GEPOp->getOperand(0);
continue;
}
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
gep_type_iterator GTI = gep_type_begin(GEPOp);
for (User::const_op_iterator I = GEPOp->op_begin()+1,
E = GEPOp->op_end(); I != E; ++I) {
Value *Index = *I;
// Compute the (potentially symbolic) offset in bytes for this index.
if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
if (FieldNo == 0) continue;
BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero()) continue;
BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
continue;
}
uint64_t Scale = TD->getTypeAllocSize(*GTI);
ExtensionKind Extension = EK_NotExtended;
// If the integer type is smaller than the pointer size, it is implicitly
// sign extended to pointer size.
unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
if (TD->getPointerSizeInBits() > Width)
Extension = EK_SignExt;
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
*TD, 0);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
BaseOffs += IndexOffset.getSExtValue()*Scale;
Scale *= IndexScale.getSExtValue();
// If we already had an occurrence of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
if (VarIndices[i].V == Index &&
VarIndices[i].Extension == Extension) {
Scale += VarIndices[i].Scale;
VarIndices.erase(VarIndices.begin()+i);
break;
}
}
// Make sure that we have a scale that makes sense for this target's
// pointer size.
if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
Scale <<= ShiftBits;
Scale = (int64_t)Scale >> ShiftBits;
}
if (Scale) {
VariableGEPIndex Entry = {Index, Extension,
static_cast<int64_t>(Scale)};
VarIndices.push_back(Entry);
}
}
// Analyze the base pointer next.
V = GEPOp->getOperand(0);
} while (--MaxLookup);
// If the chain of expressions is too deep, just return early.
return V;
}
/// GetIndexDifference - Dest and Src are the variable indices from two
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
/// difference between the two pointers.
static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
const SmallVectorImpl<VariableGEPIndex> &Src) {
if (Src.empty()) return;
for (unsigned i = 0, e = Src.size(); i != e; ++i) {
const Value *V = Src[i].V;
ExtensionKind Extension = Src[i].Extension;
int64_t Scale = Src[i].Scale;
// Find V in Dest. This is N^2, but pointer indices almost never have more
// than a few variable indexes.
for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
// If we found it, subtract off Scale V's from the entry in Dest. If it
// goes to zero, remove the entry.
if (Dest[j].Scale != Scale)
Dest[j].Scale -= Scale;
else
Dest.erase(Dest.begin()+j);
Scale = 0;
break;
}
// If we didn't consume this entry, add it to the end of the Dest list.
if (Scale) {
VariableGEPIndex Entry = { V, Extension, -Scale };
Dest.push_back(Entry);
}
}
}
//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static const Function *getParent(const Value *V) {
if (const Instruction *inst = dyn_cast<Instruction>(V))
return inst->getParent()->getParent();
if (const Argument *arg = dyn_cast<Argument>(V))
return arg->getParent();
return NULL;
}
static bool notDifferentParent(const Value *O1, const Value *O2) {
const Function *F1 = getParent(O1);
const Function *F2 = getParent(O2);
return !F1 || !F2 || F1 == F2;
}
#endif
namespace {
/// BasicAliasAnalysis - This is the primary alias analysis implementation.
struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
static char ID; // Class identification, replacement for typeinfo
BasicAliasAnalysis() : ImmutablePass(ID) {
initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
}
virtual void initializePass() {
InitializeAliasAnalysis(this);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetLibraryInfo>();
}
virtual AliasResult alias(const Location &LocA,
const Location &LocB) {
assert(AliasCache.empty() && "AliasCache must be cleared after use!");
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
"BasicAliasAnalysis doesn't support interprocedural queries.");
AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
LocB.Ptr, LocB.Size, LocB.TBAATag);
// AliasCache rarely has more than 1 or 2 elements, always use
// shrink_and_clear so it quickly returns to the inline capacity of the
// SmallDenseMap if it ever grows larger.
// FIXME: This should really be shrink_to_inline_capacity_and_clear().
AliasCache.shrink_and_clear();
return Alias;
}
virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc);
virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
// The AliasAnalysis base class has some smarts, lets use them.
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
/// pointsToConstantMemory - Chase pointers until we find a (constant
/// global) or not.
virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
/// getModRefBehavior - Return the behavior when calling the given
/// call site.
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
virtual ModRefBehavior getModRefBehavior(const Function *F);
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
virtual void *getAdjustedAnalysisPointer(const void *ID) {
if (ID == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
}
private:
// AliasCache - Track alias queries to guard against recursion.
typedef std::pair<Location, Location> LocPair;
typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
AliasCacheTy AliasCache;
// Visited - Track instructions visited by pointsToConstantMemory.
SmallPtrSet<const Value*, 16> Visited;
// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
// instruction against another.
AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
const MDNode *V1TBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo,
const Value *UnderlyingV1, const Value *UnderlyingV2);
// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
// instruction against another.
AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
const MDNode *PNTBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo);
/// aliasSelect - Disambiguate a Select instruction against another value.
AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
const MDNode *SITBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo);
AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
const MDNode *V1TBAATag,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAATag);
};
} // End of anonymous namespace
// Register this pass...
char BasicAliasAnalysis::ID = 0;
INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
"Basic Alias Analysis (stateless AA impl)",
false, true, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
"Basic Alias Analysis (stateless AA impl)",
false, true, false)
ImmutablePass *llvm::createBasicAliasAnalysisPass() {
return new BasicAliasAnalysis();
}
/// pointsToConstantMemory - Returns whether the given pointer value
/// points to memory that is local to the function, with global constants being
/// considered local to all functions.
bool
BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
assert(Visited.empty() && "Visited must be cleared after use!");
unsigned MaxLookup = 8;
SmallVector<const Value *, 16> Worklist;
Worklist.push_back(Loc.Ptr);
do {
const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
if (!Visited.insert(V)) {
Visited.clear();
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
// An alloca instruction defines local memory.
if (OrLocal && isa<AllocaInst>(V))
continue;
// A global constant counts as local memory for our purposes.
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
// Note: this doesn't require GV to be "ODR" because it isn't legal for a
// global to be marked constant in some modules and non-constant in
// others. GV may even be a declaration, not a definition.
if (!GV->isConstant()) {
Visited.clear();
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
continue;
}
// If both select values point to local memory, then so does the select.
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
// If all values incoming to a phi node point to local memory, then so does
// the phi.
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
// Don't bother inspecting phi nodes with many operands.
if (PN->getNumIncomingValues() > MaxLookup) {
Visited.clear();
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Worklist.push_back(PN->getIncomingValue(i));
continue;
}
// Otherwise be conservative.
Visited.clear();
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
} while (!Worklist.empty() && --MaxLookup);
Visited.clear();
return Worklist.empty();
}
/// getModRefBehavior - Return the behavior when calling the given call site.
AliasAnalysis::ModRefBehavior
BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
if (CS.doesNotAccessMemory())
// Can't do better than this.
return DoesNotAccessMemory;
ModRefBehavior Min = UnknownModRefBehavior;
// If the callsite knows it only reads memory, don't return worse
// than that.
if (CS.onlyReadsMemory())
Min = OnlyReadsMemory;
// The AliasAnalysis base class has some smarts, lets use them.
return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
AliasAnalysis::ModRefBehavior
BasicAliasAnalysis::getModRefBehavior(const Function *F) {
// If the function declares it doesn't access memory, we can't do better.
if (F->doesNotAccessMemory())
return DoesNotAccessMemory;
// For intrinsics, we can check the table.
if (unsigned iid = F->getIntrinsicID()) {
#define GET_INTRINSIC_MODREF_BEHAVIOR
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_MODREF_BEHAVIOR
}
ModRefBehavior Min = UnknownModRefBehavior;
// If the function declares it only reads memory, go with that.
if (F->onlyReadsMemory())
Min = OnlyReadsMemory;
// Otherwise be conservative.
return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
}
/// getModRefInfo - Check to see if the specified callsite can clobber the
/// specified memory object. Since we only look at local properties of this
/// function, we really can't say much about this query. We do, however, use
/// simple "address taken" analysis on local objects.
AliasAnalysis::ModRefResult
BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const Location &Loc) {
assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
"AliasAnalysis query involving multiple functions!");
const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
// If this is a tail call and Loc.Ptr points to a stack location, we know that
// the tail call cannot access or modify the local stack.
// We cannot exclude byval arguments here; these belong to the caller of
// the current function not to the current function, and a tail callee
// may reference them.
if (isa<AllocaInst>(Object))
if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
if (CI->isTailCall())
return NoModRef;
// If the pointer is to a locally allocated object that does not escape,
// then the call can not mod/ref the pointer unless the call takes the pointer
// as an argument, and itself doesn't capture it.
if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
isNonEscapingLocalObject(Object)) {
bool PassedAsArg = false;
unsigned ArgNo = 0;
for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
CI != CE; ++CI, ++ArgNo) {
// Only look at the no-capture or byval pointer arguments. If this
// pointer were passed to arguments that were neither of these, then it
// couldn't be no-capture.
if (!(*CI)->getType()->isPointerTy() ||
(!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
continue;
// If this is a no-capture pointer argument, see if we can tell that it
// is impossible to alias the pointer we're checking. If not, we have to
// assume that the call could touch the pointer, even though it doesn't
// escape.
if (!isNoAlias(Location(*CI), Location(Object))) {
PassedAsArg = true;
break;
}
}
if (!PassedAsArg)
return NoModRef;
}
const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
ModRefResult Min = ModRef;
// Finally, handle specific knowledge of intrinsics.
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
if (II != 0)
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::memcpy:
case Intrinsic::memmove: {
uint64_t Len = UnknownSize;
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
Len = LenCI->getZExtValue();
Value *Dest = II->getArgOperand(0);
Value *Src = II->getArgOperand(1);
// If it can't overlap the source dest, then it doesn't modref the loc.
if (isNoAlias(Location(Dest, Len), Loc)) {
if (isNoAlias(Location(Src, Len), Loc))
return NoModRef;
// If it can't overlap the dest, then worst case it reads the loc.
Min = Ref;
} else if (isNoAlias(Location(Src, Len), Loc)) {
// If it can't overlap the source, then worst case it mutates the loc.
Min = Mod;
}
break;
}
case Intrinsic::memset:
// Since memset is 'accesses arguments' only, the AliasAnalysis base class
// will handle it for the variable length case.
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
uint64_t Len = LenCI->getZExtValue();
Value *Dest = II->getArgOperand(0);
if (isNoAlias(Location(Dest, Len), Loc))
return NoModRef;
}
// We know that memset doesn't load anything.
Min = Mod;
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start: {
uint64_t PtrSize =
cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
if (isNoAlias(Location(II->getArgOperand(1),
PtrSize,
II->getMetadata(LLVMContext::MD_tbaa)),
Loc))
return NoModRef;
break;
}
case Intrinsic::invariant_end: {
uint64_t PtrSize =
cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
if (isNoAlias(Location(II->getArgOperand(2),
PtrSize,
II->getMetadata(LLVMContext::MD_tbaa)),
Loc))
return NoModRef;
break;
}
case Intrinsic::arm_neon_vld1: {
// LLVM's vld1 and vst1 intrinsics currently only support a single
// vector register.
uint64_t Size =
TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
if (isNoAlias(Location(II->getArgOperand(0), Size,
II->getMetadata(LLVMContext::MD_tbaa)),
Loc))
return NoModRef;
break;
}
case Intrinsic::arm_neon_vst1: {
uint64_t Size =
TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
if (isNoAlias(Location(II->getArgOperand(0), Size,
II->getMetadata(LLVMContext::MD_tbaa)),
Loc))
return NoModRef;
break;
}
}
// We can bound the aliasing properties of memset_pattern16 just as we can
// for memcpy/memset. This is particularly important because the
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
// whenever possible.
else if (TLI.has(LibFunc::memset_pattern16) &&
CS.getCalledFunction() &&
CS.getCalledFunction()->getName() == "memset_pattern16") {
const Function *MS = CS.getCalledFunction();
FunctionType *MemsetType = MS->getFunctionType();
if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
isa<PointerType>(MemsetType->getParamType(0)) &&
isa<PointerType>(MemsetType->getParamType(1)) &&
isa<IntegerType>(MemsetType->getParamType(2))) {
uint64_t Len = UnknownSize;
if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
Len = LenCI->getZExtValue();
const Value *Dest = CS.getArgument(0);
const Value *Src = CS.getArgument(1);
// If it can't overlap the source dest, then it doesn't modref the loc.
if (isNoAlias(Location(Dest, Len), Loc)) {
// Always reads 16 bytes of the source.
if (isNoAlias(Location(Src, 16), Loc))
return NoModRef;
// If it can't overlap the dest, then worst case it reads the loc.
Min = Ref;
// Always reads 16 bytes of the source.
} else if (isNoAlias(Location(Src, 16), Loc)) {
// If it can't overlap the source, then worst case it mutates the loc.
Min = Mod;
}
}
}
// The AliasAnalysis base class has some smarts, lets use them.
return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
}
static bool areVarIndicesEqual(SmallVector<VariableGEPIndex, 4> &Indices1,
SmallVector<VariableGEPIndex, 4> &Indices2) {
unsigned Size1 = Indices1.size();
unsigned Size2 = Indices2.size();
if (Size1 != Size2)
return false;
for (unsigned I = 0; I != Size1; ++I)
if (Indices1[I] != Indices2[I])
return false;
return true;
}
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
/// against another pointer. We know that V1 is a GEP, but we don't know
/// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
/// UnderlyingV2 is the same for V2.
///
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
const MDNode *V1TBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo,
const Value *UnderlyingV1,
const Value *UnderlyingV2) {
int64_t GEP1BaseOffset;
SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
// If we have two gep instructions with must-alias or not-alias'ing base
// pointers, figure out if the indexes to the GEP tell us anything about the
// derived pointer.
if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
// Check for geps of non-aliasing underlying pointers where the offsets are
// identical.
if (V1Size == V2Size) {
// Do the base pointers alias assuming type and size.
AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
V1TBAAInfo, UnderlyingV2,
V2Size, V2TBAAInfo);
if (PreciseBaseAlias == NoAlias) {
// See if the computed offset from the common pointer tells us about the
// relation of the resulting pointer.
int64_t GEP2BaseOffset;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
const Value *GEP1BasePtr =
DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
assert(TD == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
// Same offsets.
if (GEP1BaseOffset == GEP2BaseOffset &&
areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
return NoAlias;
GEP1VariableIndices.clear();
}
}
// Do the base pointers alias?
AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
UnderlyingV2, UnknownSize, 0);
// If we get a No or May, then return it immediately, no amount of analysis
// will improve this situation.
if (BaseAlias != MustAlias) return BaseAlias;
// Otherwise, we have a MustAlias. Since the base pointers alias each other
// exactly, see if the computed offset from the common pointer tells us
// about the relation of the resulting pointer.
const Value *GEP1BasePtr =
DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
int64_t GEP2BaseOffset;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
assert(TD == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
// Subtract the GEP2 pointer from the GEP1 pointer to find out their
// symbolic difference.
GEP1BaseOffset -= GEP2BaseOffset;
GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
} else {
// Check to see if these two pointers are related by the getelementptr
// instruction. If one pointer is a GEP with a non-zero index of the other
// pointer, we know they cannot alias.
// If both accesses are unknown size, we can't do anything useful here.
if (V1Size == UnknownSize && V2Size == UnknownSize)
return MayAlias;
AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
V2, V2Size, V2TBAAInfo);
if (R != MustAlias)
// If V2 may alias GEP base pointer, conservatively returns MayAlias.
// If V2 is known not to alias GEP base pointer, then the two values
// cannot alias per GEP semantics: "A pointer value formed from a
// getelementptr instruction is associated with the addresses associated
// with the first operand of the getelementptr".
return R;
const Value *GEP1BasePtr =
DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1) {
assert(TD == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
}
// In the two GEP Case, if there is no difference in the offsets of the
// computed pointers, the resultant pointers are a must alias. This
// hapens when we have two lexically identical GEP's (for example).
//
// In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
// must aliases the GEP, the end result is a must alias also.
if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
return MustAlias;
// If there is a constant difference between the pointers, but the difference
// is less than the size of the associated memory object, then we know
// that the objects are partially overlapping. If the difference is
// greater, we know they do not overlap.
if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
if (GEP1BaseOffset >= 0) {
if (V2Size != UnknownSize) {
if ((uint64_t)GEP1BaseOffset < V2Size)
return PartialAlias;
return NoAlias;
}
} else {
if (V1Size != UnknownSize) {
if (-(uint64_t)GEP1BaseOffset < V1Size)
return PartialAlias;
return NoAlias;
}
}
}
// Try to distinguish something like &A[i][1] against &A[42][0].
// Grab the least significant bit set in any of the scales.
if (!GEP1VariableIndices.empty()) {
uint64_t Modulo = 0;
for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
Modulo = Modulo ^ (Modulo & (Modulo - 1));
// We can compute the difference between the two addresses
// mod Modulo. Check whether that difference guarantees that the
// two locations do not alias.
uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
if (V1Size != UnknownSize && V2Size != UnknownSize &&
ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
return NoAlias;
}
// Statically, we can see that the base objects are the same, but the
// pointers have dynamic offsets which we can't resolve. And none of our
// little tricks above worked.
//
// TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
// practical effect of this is protecting TBAA in the case of dynamic
// indices into arrays of unions or malloc'd memory.
return PartialAlias;
}
static AliasAnalysis::AliasResult
MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
// If the results agree, take it.
if (A == B)
return A;
// A mix of PartialAlias and MustAlias is PartialAlias.
if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
(B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
return AliasAnalysis::PartialAlias;
// Otherwise, we don't know anything.
return AliasAnalysis::MayAlias;
}
/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
/// instruction against another.
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
const MDNode *SITBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo) {
// If the values are Selects with the same condition, we can do a more precise
// check: just check for aliases between the values on corresponding arms.
if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
if (SI->getCondition() == SI2->getCondition()) {
AliasResult Alias =
aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
SI2->getTrueValue(), V2Size, V2TBAAInfo);
if (Alias == MayAlias)
return MayAlias;
AliasResult ThisAlias =
aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
SI2->getFalseValue(), V2Size, V2TBAAInfo);
return MergeAliasResults(ThisAlias, Alias);
}
// If both arms of the Select node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
AliasResult Alias =
aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
if (Alias == MayAlias)
return MayAlias;
AliasResult ThisAlias =
aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
return MergeAliasResults(ThisAlias, Alias);
}
// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
// against another.
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
const MDNode *PNTBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo) {
// If the values are PHIs in the same block, we can do a more precise
// as well as efficient check: just check for aliases between the values
// on corresponding edges.
if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
if (PN2->getParent() == PN->getParent()) {
LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
Location(V2, V2Size, V2TBAAInfo));
if (PN > V2)
std::swap(Locs.first, Locs.second);
// Analyse the PHIs' inputs under the assumption that the PHIs are
// NoAlias.
// If the PHIs are May/MustAlias there must be (recursively) an input
// operand from outside the PHIs' cycle that is MayAlias/MustAlias or
// there must be an operation on the PHIs within the PHIs' value cycle
// that causes a MayAlias.
// Pretend the phis do not alias.
AliasResult Alias = NoAlias;
assert(AliasCache.count(Locs) &&
"There must exist an entry for the phi node");
AliasResult OrigAliasResult = AliasCache[Locs];
AliasCache[Locs] = NoAlias;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
AliasResult ThisAlias =
aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
V2Size, V2TBAAInfo);
Alias = MergeAliasResults(ThisAlias, Alias);
if (Alias == MayAlias)
break;
}
// Reset if speculation failed.
if (Alias != NoAlias)
AliasCache[Locs] = OrigAliasResult;
return Alias;
}
SmallPtrSet<Value*, 4> UniqueSrc;
SmallVector<Value*, 4> V1Srcs;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *PV1 = PN->getIncomingValue(i);
if (isa<PHINode>(PV1))
// If any of the source itself is a PHI, return MayAlias conservatively
// to avoid compile time explosion. The worst possible case is if both
// sides are PHI nodes. In which case, this is O(m x n) time where 'm'
// and 'n' are the number of PHI sources.
return MayAlias;
if (UniqueSrc.insert(PV1))
V1Srcs.push_back(PV1);
}
AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
V1Srcs[0], PNSize, PNTBAAInfo);
// Early exit if the check of the first PHI source against V2 is MayAlias.
// Other results are not possible.
if (Alias == MayAlias)
return MayAlias;
// If all sources of the PHI node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
Value *V = V1Srcs[i];
AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
V, PNSize, PNTBAAInfo);
Alias = MergeAliasResults(ThisAlias, Alias);
if (Alias == MayAlias)
break;
}
return Alias;
}
// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
// such as array references.
//
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
const MDNode *V1TBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo) {
// If either of the memory references is empty, it doesn't matter what the
// pointer values are.
if (V1Size == 0 || V2Size == 0)
return NoAlias;
// Strip off any casts if they exist.
V1 = V1->stripPointerCasts();
V2 = V2->stripPointerCasts();
// Are we checking for alias of the same value?
if (V1 == V2) return MustAlias;
if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
return NoAlias; // Scalars cannot alias each other
// Figure out what objects these things are pointing to if we can.
const Value *O1 = GetUnderlyingObject(V1, TD);
const Value *O2 = GetUnderlyingObject(V2, TD);
// Null values in the default address space don't point to any object, so they
// don't alias any other pointer.
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
if (CPN->getType()->getAddressSpace() == 0)
return NoAlias;
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
if (CPN->getType()->getAddressSpace() == 0)
return NoAlias;
if (O1 != O2) {
// If V1/V2 point to two different objects we know that we have no alias.
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
return NoAlias;
// Constant pointers can't alias with non-const isIdentifiedObject objects.
if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
(isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
return NoAlias;
// Arguments can't alias with local allocations or noalias calls
// in the same function.
if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
(isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
return NoAlias;
// Most objects can't alias null.
if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
(isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
return NoAlias;
// If one pointer is the result of a call/invoke or load and the other is a
// non-escaping local object within the same function, then we know the
// object couldn't escape to a point where the call could return it.
//
// Note that if the pointers are in different functions, there are a
// variety of complications. A call with a nocapture argument may still
// temporary store the nocapture argument's value in a temporary memory
// location if that memory location doesn't escape. Or it may pass a
// nocapture value to other functions as long as they don't capture it.
if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
return NoAlias;
if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
return NoAlias;
}
// If the size of one access is larger than the entire object on the other
// side, then we know such behavior is undefined and can assume no alias.
if (TD)
if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) ||
(V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI)))
return NoAlias;
// Check the cache before climbing up use-def chains. This also terminates
// otherwise infinitely recursive queries.
LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
Location(V2, V2Size, V2TBAAInfo));
if (V1 > V2)
std::swap(Locs.first, Locs.second);
std::pair<AliasCacheTy::iterator, bool> Pair =
AliasCache.insert(std::make_pair(Locs, MayAlias));
if (!Pair.second)
return Pair.first->second;
// FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
// GEP can't simplify, we don't even look at the PHI cases.
if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
std::swap(V1, V2);
std::swap(V1Size, V2Size);
std::swap(O1, O2);
std::swap(V1TBAAInfo, V2TBAAInfo);
}
if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
if (Result != MayAlias) return AliasCache[Locs] = Result;
}
if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
std::swap(V1, V2);
std::swap(V1Size, V2Size);
std::swap(V1TBAAInfo, V2TBAAInfo);
}
if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
V2, V2Size, V2TBAAInfo);
if (Result != MayAlias) return AliasCache[Locs] = Result;
}
if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
std::swap(V1, V2);
std::swap(V1Size, V2Size);
std::swap(V1TBAAInfo, V2TBAAInfo);
}
if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
V2, V2Size, V2TBAAInfo);
if (Result != MayAlias) return AliasCache[Locs] = Result;
}
// If both pointers are pointing into the same object and one of them
// accesses is accessing the entire object, then the accesses must
// overlap in some way.
if (TD && O1 == O2)
if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) ||
(V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI)))
return AliasCache[Locs] = PartialAlias;
AliasResult Result =
AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
Location(V2, V2Size, V2TBAAInfo));
return AliasCache[Locs] = Result;
}