llvm-6502/lib/CodeGen/RegisterScavenging.cpp
Jim Grosbach b58f498f75 Add register-reuse to frame-index register scavenging. When a target uses
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.

eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.

ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83467 91177308-0d34-0410-b5e6-96231b3b80d8
2009-10-07 17:12:56 +00:00

324 lines
10 KiB
C++

//===-- RegisterScavenging.cpp - Machine register scavenging --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine register scavenger. It can provide
// information, such as unused registers, at any point in a machine basic block.
// It also provides a mechanism to make registers available by evicting them to
// spill slots.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "reg-scavenging"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
/// setUsed - Set the register and its sub-registers as being used.
void RegScavenger::setUsed(unsigned Reg) {
RegsAvailable.reset(Reg);
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs)
RegsAvailable.reset(SubReg);
}
bool RegScavenger::isAliasUsed(unsigned Reg) const {
if (isUsed(Reg))
return true;
for (const unsigned *R = TRI->getAliasSet(Reg); *R; ++R)
if (isUsed(*R))
return true;
return false;
}
void RegScavenger::initRegState() {
ScavengedReg = 0;
ScavengedRC = NULL;
ScavengeRestore = NULL;
// All registers started out unused.
RegsAvailable.set();
// Reserved registers are always used.
RegsAvailable ^= ReservedRegs;
if (!MBB)
return;
// Live-in registers are in use.
for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
E = MBB->livein_end(); I != E; ++I)
setUsed(*I);
// Pristine CSRs are also unavailable.
BitVector PR = MBB->getParent()->getFrameInfo()->getPristineRegs(MBB);
for (int I = PR.find_first(); I>0; I = PR.find_next(I))
setUsed(I);
}
void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
MachineFunction &MF = *mbb->getParent();
const TargetMachine &TM = MF.getTarget();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
MRI = &MF.getRegInfo();
assert((NumPhysRegs == 0 || NumPhysRegs == TRI->getNumRegs()) &&
"Target changed?");
// Self-initialize.
if (!MBB) {
NumPhysRegs = TRI->getNumRegs();
RegsAvailable.resize(NumPhysRegs);
// Create reserved registers bitvector.
ReservedRegs = TRI->getReservedRegs(MF);
// Create callee-saved registers bitvector.
CalleeSavedRegs.resize(NumPhysRegs);
const unsigned *CSRegs = TRI->getCalleeSavedRegs();
if (CSRegs != NULL)
for (unsigned i = 0; CSRegs[i]; ++i)
CalleeSavedRegs.set(CSRegs[i]);
}
// RS used within emit{Pro,Epi}logue()
if (mbb != MBB) {
MBB = mbb;
initRegState();
}
Tracking = false;
}
void RegScavenger::addRegWithSubRegs(BitVector &BV, unsigned Reg) {
BV.set(Reg);
for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
BV.set(*R);
}
void RegScavenger::addRegWithAliases(BitVector &BV, unsigned Reg) {
BV.set(Reg);
for (const unsigned *R = TRI->getAliasSet(Reg); *R; R++)
BV.set(*R);
}
void RegScavenger::forward() {
// Move ptr forward.
if (!Tracking) {
MBBI = MBB->begin();
Tracking = true;
} else {
assert(MBBI != MBB->end() && "Already at the end of the basic block!");
MBBI = next(MBBI);
}
MachineInstr *MI = MBBI;
if (MI == ScavengeRestore) {
ScavengedReg = 0;
ScavengedRC = NULL;
ScavengeRestore = NULL;
}
// Find out which registers are early clobbered, killed, defined, and marked
// def-dead in this instruction.
BitVector EarlyClobberRegs(NumPhysRegs);
BitVector KillRegs(NumPhysRegs);
BitVector DefRegs(NumPhysRegs);
BitVector DeadRegs(NumPhysRegs);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
if (!Reg || isReserved(Reg))
continue;
if (MO.isUse()) {
// Two-address operands implicitly kill.
if (MO.isKill() || MI->isRegTiedToDefOperand(i))
addRegWithSubRegs(KillRegs, Reg);
} else {
assert(MO.isDef());
if (MO.isDead())
addRegWithSubRegs(DeadRegs, Reg);
else
addRegWithSubRegs(DefRegs, Reg);
if (MO.isEarlyClobber())
addRegWithAliases(EarlyClobberRegs, Reg);
}
}
// Verify uses and defs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
if (!Reg || isReserved(Reg))
continue;
if (MO.isUse()) {
assert(isUsed(Reg) && "Using an undefined register!");
assert((!EarlyClobberRegs.test(Reg) || MI->isRegTiedToDefOperand(i)) &&
"Using an early clobbered register!");
} else {
assert(MO.isDef());
#if 0
// FIXME: Enable this once we've figured out how to correctly transfer
// implicit kills during codegen passes like the coalescer.
assert((KillRegs.test(Reg) || isUnused(Reg) ||
isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
"Re-defining a live register!");
#endif
}
}
// Commit the changes.
setUnused(KillRegs);
setUnused(DeadRegs);
setUsed(DefRegs);
}
void RegScavenger::getRegsUsed(BitVector &used, bool includeReserved) {
if (includeReserved)
used = ~RegsAvailable;
else
used = ~RegsAvailable & ~ReservedRegs;
}
/// CreateRegClassMask - Set the bits that represent the registers in the
/// TargetRegisterClass.
static void CreateRegClassMask(const TargetRegisterClass *RC, BitVector &Mask) {
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I != E;
++I)
Mask.set(*I);
}
unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I)
if (!isAliasUsed(*I))
return *I;
return 0;
}
/// findSurvivorReg - Return the candidate register that is unused for the
/// longest after MBBI. UseMI is set to the instruction where the search
/// stopped.
///
/// No more than InstrLimit instructions are inspected.
///
unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator MI,
BitVector &Candidates,
unsigned InstrLimit,
MachineBasicBlock::iterator &UseMI) {
int Survivor = Candidates.find_first();
assert(Survivor > 0 && "No candidates for scavenging");
MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
assert(MI != ME && "MI already at terminator");
for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
// Remove any candidates touched by instruction.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isUndef() || !MO.getReg() ||
TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
Candidates.reset(MO.getReg());
for (const unsigned *R = TRI->getAliasSet(MO.getReg()); *R; R++)
Candidates.reset(*R);
}
// Was our survivor untouched by this instruction?
if (Candidates.test(Survivor))
continue;
// All candidates gone?
if (Candidates.none())
break;
Survivor = Candidates.find_first();
}
// We ran out of candidates, so stop the search.
UseMI = MI;
return Survivor;
}
unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
MachineBasicBlock::iterator I,
int SPAdj) {
// Mask off the registers which are not in the TargetRegisterClass.
BitVector Candidates(NumPhysRegs, false);
CreateRegClassMask(RC, Candidates);
// Do not include reserved registers.
Candidates ^= ReservedRegs & Candidates;
// Exclude all the registers being used by the instruction.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
MachineOperand &MO = I->getOperand(i);
if (MO.isReg() && MO.getReg() != 0 &&
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Candidates.reset(MO.getReg());
}
// Find the register whose use is furthest away.
MachineBasicBlock::iterator UseMI;
unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI);
// If we found an unused register there is no reason to spill it. We have
// probably found a callee-saved register that has been saved in the
// prologue, but happens to be unused at this point.
if (!isAliasUsed(SReg))
return SReg;
assert(ScavengedReg == 0 &&
"Scavenger slot is live, unable to scavenge another register!");
// Avoid infinite regress
ScavengedReg = SReg;
// If the target knows how to save/restore the register, let it do so;
// otherwise, use the emergency stack spill slot.
if (!TRI->saveScavengerRegister(*MBB, I, RC, SReg)) {
// Spill the scavenged register before I.
assert(ScavengingFrameIndex >= 0 &&
"Cannot scavenge register without an emergency spill slot!");
TII->storeRegToStackSlot(*MBB, I, SReg, true, ScavengingFrameIndex, RC);
MachineBasicBlock::iterator II = prior(I);
TRI->eliminateFrameIndex(II, SPAdj, NULL, this);
// Restore the scavenged register before its use (or first terminator).
TII->loadRegFromStackSlot(*MBB, UseMI, SReg, ScavengingFrameIndex, RC);
} else
TRI->restoreScavengerRegister(*MBB, UseMI, RC, SReg);
ScavengeRestore = prior(UseMI);
// Doing this here leads to infinite regress.
// ScavengedReg = SReg;
ScavengedRC = RC;
return SReg;
}