llvm-6502/lib/CodeGen
Evan Cheng aaeea9e64f Refine DebugLoc per review comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63132 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-27 21:15:07 +00:00
..
AsmPrinter Assorted debug info fixes. 2009-01-27 00:45:04 +00:00
SelectionDAG Add an assertion to the form of SelectionDAG::getConstant that takes 2009-01-27 20:39:34 +00:00
BranchFolding.cpp Delete unnecessary parens around return values. 2009-01-08 22:19:34 +00:00
CMakeLists.txt
DeadMachineInstructionElim.cpp
ELFWriter.cpp Add the private linkage. 2009-01-15 20:18:42 +00:00
ELFWriter.h
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp
IntrinsicLowering.cpp
LatencyPriorityQueue.cpp
LiveInterval.cpp
LiveIntervalAnalysis.cpp Change TargetInstrInfo::isMoveInstr to return source and destination sub-register indices as well. 2009-01-20 19:12:24 +00:00
LiveStackAnalysis.cpp
LiveVariables.cpp Fix PR3243: a LiveVariables bug. When HandlePhysRegKill is checking whether the last reference is also the last def (i.e. dead def), it should also check if last reference is the current machine instruction being processed. This can happen when it is processing a physical register use and setting the current machine instruction as sub-register's last ref. 2009-01-20 21:25:12 +00:00
LLVMTargetMachine.cpp
LoopAligner.cpp
LowerSubregs.cpp
MachineBasicBlock.cpp Delete unnecessary parens around return values. 2009-01-08 22:19:34 +00:00
MachineDominators.cpp
MachineFunction.cpp Refine DebugLoc per review comments. 2009-01-27 21:15:07 +00:00
MachineInstr.cpp
MachineLICM.cpp Simplify the MachineLICM pass by having it only traverse outer 2009-01-15 22:01:38 +00:00
MachineLoopInfo.cpp
MachineModuleInfo.cpp Removoe MachineModuleInfo methods (and related DebugInfoDesc class hierarchy) that were used to handle debug info. 2009-01-13 23:54:55 +00:00
MachinePassRegistry.cpp
MachineRegisterInfo.cpp
MachineSink.cpp
MachOWriter.cpp Add the private linkage. 2009-01-15 20:18:42 +00:00
MachOWriter.h Rename getABITypeSize to getTypePaddedSize, as 2009-01-12 20:38:59 +00:00
Makefile Removed trailing whitespace from Makefiles. 2009-01-09 16:44:42 +00:00
OcamlGC.cpp Registry.h should not depend on CommandLine.h. 2009-01-16 07:02:28 +00:00
Passes.cpp
PBQP.cpp
PBQP.h
PHIElimination.cpp
PhysRegTracker.h
PostRASchedulerList.cpp Instead of adding dependence edges between terminator instructions 2009-01-16 22:10:20 +00:00
PreAllocSplitting.cpp Make the pre-split-limit option more useful by using a per-function counter. 2009-01-27 05:01:15 +00:00
PrologEpilogInserter.cpp
PseudoSourceValue.cpp
README.txt
RegAllocBigBlock.cpp Change TargetInstrInfo::isMoveInstr to return source and destination sub-register indices as well. 2009-01-20 19:12:24 +00:00
RegAllocLinearScan.cpp Change TargetInstrInfo::isMoveInstr to return source and destination sub-register indices as well. 2009-01-20 19:12:24 +00:00
RegAllocLocal.cpp Change TargetInstrInfo::isMoveInstr to return source and destination sub-register indices as well. 2009-01-20 19:12:24 +00:00
RegAllocPBQP.cpp Change TargetInstrInfo::isMoveInstr to return source and destination sub-register indices as well. 2009-01-20 19:12:24 +00:00
RegAllocSimple.cpp
RegisterCoalescer.cpp
RegisterScavenging.cpp
ScheduleDAG.cpp Instead of adding dependence edges between terminator instructions 2009-01-16 22:10:20 +00:00
ScheduleDAGEmit.cpp Instead of adding dependence edges between terminator instructions 2009-01-16 22:10:20 +00:00
ScheduleDAGInstrs.cpp Instead of adding dependence edges between terminator instructions 2009-01-16 22:10:20 +00:00
ScheduleDAGPrinter.cpp Move a few containers out of ScheduleDAGInstrs::BuildSchedGraph 2009-01-15 19:20:50 +00:00
ShadowStackGC.cpp Registry.h should not depend on CommandLine.h. 2009-01-16 07:02:28 +00:00
SimpleRegisterCoalescing.cpp Only check if coalescing is worthwhile when the result is targeting a more restrictive register class. 2009-01-23 05:48:59 +00:00
SimpleRegisterCoalescing.h Cross register class coalescing. Not yet enabled. 2009-01-23 02:15:19 +00:00
StackProtector.cpp Rename getABITypeSize to getTypePaddedSize, as 2009-01-12 20:38:59 +00:00
StackSlotColoring.cpp
StrongPHIElimination.cpp
TargetInstrInfoImpl.cpp
TwoAddressInstructionPass.cpp Teach 2addr pass to be do more commuting. If both uses of a two-address instruction are killed, but the first operand has a use before and after the def, commute if the second operand does not suffer from the same issue. 2009-01-25 03:53:59 +00:00
UnreachableBlockElim.cpp
VirtRegMap.cpp Change TargetInstrInfo::isMoveInstr to return source and destination sub-register indices as well. 2009-01-20 19:12:24 +00:00
VirtRegMap.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

I think we should have a "hasSideEffects" flag (which is automatically set for
stuff that "isLoad" "isCall" etc), and the remat pass should eventually be able
to remat any instruction that has no side effects, if it can handle it and if
profitable.

For now, I'd suggest having the remat stuff work like this:

1. I need to spill/reload this thing.
2. Check to see if it has side effects.
3. Check to see if it is simple enough: e.g. it only has one register
destination and no register input.
4. If so, clone the instruction, do the xform, etc.

Advantages of this are:

1. the .td file describes the behavior of the instructions, not the way the
   algorithm should work.
2. as remat gets smarter in the future, we shouldn't have to be changing the .td
   files.
3. it is easier to explain what the flag means in the .td file, because you
   don't have to pull in the explanation of how the current remat algo works.

Some potential added complexities:

1. Some instructions have to be glued to it's predecessor or successor. All of
   the PC relative instructions and condition code setting instruction. We could
   mark them as hasSideEffects, but that's not quite right. PC relative loads
   from constantpools can be remat'ed, for example. But it requires more than
   just cloning the instruction. Some instructions can be remat'ed but it
   expands to more than one instruction. But allocator will have to make a
   decision.

4. As stated in 3, not as simple as cloning in some cases. The target will have
   to decide how to remat it. For example, an ARM 2-piece constant generation
   instruction is remat'ed as a load from constantpool.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvments:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4