1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2024-12-22 23:31:32 +00:00
llvm-6502/lib/Target/PowerPC/PPCJITInfo.cpp
Nate Begeman 21e463b2bf More PPC32 -> PPC changes, as well as merging some classes that were
redundant after the change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23759 91177308-0d34-0410-b5e6-96231b3b80d8
2005-10-16 05:39:50 +00:00

244 lines
9.5 KiB
C++

//===-- PPCJITInfo.cpp - Implement the JIT interfaces for the PowerPC -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the JIT interfaces for the 32-bit PowerPC target.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "PPCJITInfo.h"
#include "PPCRelocations.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/Config/alloca.h"
#include <set>
using namespace llvm;
static TargetJITInfo::JITCompilerFn JITCompilerFunction;
#define BUILD_ADDIS(RD,RS,IMM16) \
((15 << 26) | ((RD) << 21) | ((RS) << 16) | ((IMM16) & 65535))
#define BUILD_ORI(RD,RS,UIMM16) \
((24 << 26) | ((RS) << 21) | ((RD) << 16) | ((UIMM16) & 65535))
#define BUILD_MTSPR(RS,SPR) \
((31 << 26) | ((RS) << 21) | ((SPR) << 16) | (467 << 1))
#define BUILD_BCCTRx(BO,BI,LINK) \
((19 << 26) | ((BO) << 21) | ((BI) << 16) | (528 << 1) | ((LINK) & 1))
// Pseudo-ops
#define BUILD_LIS(RD,IMM16) BUILD_ADDIS(RD,0,IMM16)
#define BUILD_MTCTR(RS) BUILD_MTSPR(RS,9)
#define BUILD_BCTR(LINK) BUILD_BCCTRx(20,0,LINK)
static void EmitBranchToAt(void *At, void *To, bool isCall) {
intptr_t Addr = (intptr_t)To;
// FIXME: should special case the short branch case.
unsigned *AtI = (unsigned*)At;
AtI[0] = BUILD_LIS(12, Addr >> 16); // lis r12, hi16(address)
AtI[1] = BUILD_ORI(12, 12, Addr); // ori r12, r12, low16(address)
AtI[2] = BUILD_MTCTR(12); // mtctr r12
AtI[3] = BUILD_BCTR(isCall); // bctr/bctrl
}
extern "C" void PPC32CompilationCallback();
#if defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)
// CompilationCallback stub - We can't use a C function with inline assembly in
// it, because we the prolog/epilog inserted by GCC won't work for us. Instead,
// write our own wrapper, which does things our way, so we have complete control
// over register saving and restoring.
asm(
".text\n"
".align 2\n"
".globl _PPC32CompilationCallback\n"
"_PPC32CompilationCallback:\n"
// Make space for 29 ints r[3-31] and 14 doubles f[0-13]
"stwu r1, -272(r1)\n"
"mflr r11\n"
"stw r11, 280(r1)\n" // Set up a proper stack frame
"stmw r3, 156(r1)\n" // Save all of the integer registers
// Save all call-clobbered FP regs.
"stfd f1, 44(r1)\n" "stfd f2, 52(r1)\n" "stfd f3, 60(r1)\n"
"stfd f4, 68(r1)\n" "stfd f5, 76(r1)\n" "stfd f6, 84(r1)\n"
"stfd f7, 92(r1)\n" "stfd f8, 100(r1)\n" "stfd f9, 108(r1)\n"
"stfd f10, 116(r1)\n" "stfd f11, 124(r1)\n" "stfd f12, 132(r1)\n"
"stfd f13, 140(r1)\n"
// Now that everything is saved, go to the C compilation callback function,
// passing the address of the intregs and fpregs.
"addi r3, r1, 156\n" // &IntRegs[0]
"addi r4, r1, 44\n" // &FPRegs[0]
"bl _PPC32CompilationCallbackC\n"
);
#else
void PPC32CompilationCallback() {
assert(0 && "This is not a power pc, you can't execute this!");
abort();
}
#endif
extern "C" void PPC32CompilationCallbackC(unsigned *IntRegs, double *FPRegs) {
unsigned *CameFromStub = (unsigned*)__builtin_return_address(0+1);
unsigned *CameFromOrig = (unsigned*)__builtin_return_address(1+1);
unsigned *CCStackPtr = (unsigned*)__builtin_frame_address(0);
//unsigned *StubStackPtr = (unsigned*)__builtin_frame_address(1);
unsigned *OrigStackPtr = (unsigned*)__builtin_frame_address(2+1);
// Adjust pointer to the branch, not the return address.
--CameFromStub;
void *Target = JITCompilerFunction(CameFromStub);
// Check to see if CameFromOrig[-1] is a 'bl' instruction, and if we can
// rewrite it to branch directly to the destination. If so, rewrite it so it
// does not need to go through the stub anymore.
unsigned CameFromOrigInst = CameFromOrig[-1];
if ((CameFromOrigInst >> 26) == 18) { // Direct call.
intptr_t Offset = ((intptr_t)Target-(intptr_t)CameFromOrig+4) >> 2;
if (Offset >= -(1 << 23) && Offset < (1 << 23)) { // In range?
// Clear the original target out.
CameFromOrigInst &= (63 << 26) | 3;
// Fill in the new target.
CameFromOrigInst |= (Offset & ((1 << 24)-1)) << 2;
// Replace the call.
CameFromOrig[-1] = CameFromOrigInst;
}
}
// Locate the start of the stub. If this is a short call, adjust backwards
// the short amount, otherwise the full amount.
bool isShortStub = (*CameFromStub >> 26) == 18;
CameFromStub -= isShortStub ? 2 : 6;
// Rewrite the stub with an unconditional branch to the target, for any users
// who took the address of the stub.
EmitBranchToAt(CameFromStub, Target, false);
// Change the SP so that we pop two stack frames off when we return.
*CCStackPtr = (intptr_t)OrigStackPtr;
// Put the address of the stub and the LR value that originally came into the
// stub in a place that is easy to get on the stack after we restore all regs.
CCStackPtr[2] = (intptr_t)Target;
CCStackPtr[1] = (intptr_t)CameFromOrig;
// Note, this is not a standard epilog!
#if defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)
register unsigned *IRR asm ("r2") = IntRegs;
register double *FRR asm ("r3") = FPRegs;
__asm__ __volatile__ (
"lfd f1, 0(%0)\n" "lfd f2, 8(%0)\n" "lfd f3, 16(%0)\n"
"lfd f4, 24(%0)\n" "lfd f5, 32(%0)\n" "lfd f6, 40(%0)\n"
"lfd f7, 48(%0)\n" "lfd f8, 56(%0)\n" "lfd f9, 64(%0)\n"
"lfd f10, 72(%0)\n" "lfd f11, 80(%0)\n" "lfd f12, 88(%0)\n"
"lfd f13, 96(%0)\n"
"lmw r3, 0(%1)\n" // Load all integer regs
"lwz r0,4(r1)\n" // Get CameFromOrig (LR into stub)
"mtlr r0\n" // Put it in the LR register
"lwz r0,8(r1)\n" // Get target function pointer
"mtctr r0\n" // Put it into the CTR register
"lwz r1,0(r1)\n" // Pop two frames off
"bctr\n" :: // Return to stub!
"b" (FRR), "b" (IRR));
#endif
}
TargetJITInfo::LazyResolverFn
PPCJITInfo::getLazyResolverFunction(JITCompilerFn Fn) {
JITCompilerFunction = Fn;
return PPC32CompilationCallback;
}
void *PPCJITInfo::emitFunctionStub(void *Fn, MachineCodeEmitter &MCE) {
// If this is just a call to an external function, emit a branch instead of a
// call. The code is the same except for one bit of the last instruction.
if (Fn != PPC32CompilationCallback) {
MCE.startFunctionStub(4*4);
void *Addr = (void*)(intptr_t)MCE.getCurrentPCValue();
MCE.emitWord(0);
MCE.emitWord(0);
MCE.emitWord(0);
MCE.emitWord(0);
EmitBranchToAt(Addr, Fn, false);
return MCE.finishFunctionStub(0);
}
MCE.startFunctionStub(4*7);
MCE.emitWord(0x9421ffe0); // stwu r1,-32(r1)
MCE.emitWord(0x7d6802a6); // mflr r11
MCE.emitWord(0x91610028); // stw r11, 40(r1)
void *Addr = (void*)(intptr_t)MCE.getCurrentPCValue();
MCE.emitWord(0);
MCE.emitWord(0);
MCE.emitWord(0);
MCE.emitWord(0);
EmitBranchToAt(Addr, Fn, true/*is call*/);
return MCE.finishFunctionStub(0);
}
void PPCJITInfo::relocate(void *Function, MachineRelocation *MR,
unsigned NumRelocs, unsigned char* GOTBase) {
for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
unsigned *RelocPos = (unsigned*)Function + MR->getMachineCodeOffset()/4;
intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
switch ((PPC::RelocationType)MR->getRelocationType()) {
default: assert(0 && "Unknown relocation type!");
case PPC::reloc_pcrel_bx:
// PC-relative relocation for b and bl instructions.
ResultPtr = (ResultPtr-(intptr_t)RelocPos) >> 2;
assert(ResultPtr >= -(1 << 23) && ResultPtr < (1 << 23) &&
"Relocation out of range!");
*RelocPos |= (ResultPtr & ((1 << 24)-1)) << 2;
break;
case PPC::reloc_absolute_ptr_high: // Pointer relocations.
case PPC::reloc_absolute_ptr_low: {
// Pointer relocations are used for the PPC external stubs and lazy
// resolver pointers that the Darwin ABI likes to use. Basically, the
// address of the global is actually stored in memory, and the address of
// the pointer is relocated into instructions instead of the pointer
// itself. Because we have to keep the mapping anyway, we just return
// pointers to the values in the map as our new location.
static std::set<void*> Pointers;
ResultPtr = (intptr_t)&*Pointers.insert((void*)ResultPtr).first;
}
// FALL THROUGH
case PPC::reloc_absolute_high: // high bits of ref -> low 16 of instr
case PPC::reloc_absolute_low: // low bits of ref -> low 16 of instr
ResultPtr += MR->getConstantVal();
// If this is a high-part access, get the high-part.
if (MR->getRelocationType() == PPC::reloc_absolute_high ||
MR->getRelocationType() == PPC::reloc_absolute_ptr_high) {
// If the low part will have a carry (really a borrow) from the low
// 16-bits into the high 16, add a bit to borrow from.
if (((int)ResultPtr << 16) < 0)
ResultPtr += 1 << 16;
ResultPtr >>= 16;
}
// Do the addition then mask, so the addition does not overflow the 16-bit
// immediate section of the instruction.
unsigned LowBits = (*RelocPos + ResultPtr) & 65535;
unsigned HighBits = *RelocPos & ~65535;
*RelocPos = LowBits | HighBits; // Slam into low 16-bits
break;
}
}
}
void PPCJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
EmitBranchToAt(Old, New, false);
}