llvm-6502/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
Chris Lattner ad80a46caa Fix iterator invalidation problem
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5895 91177308-0d34-0410-b5e6-96231b3b80d8
2003-04-24 17:52:20 +00:00

288 lines
11 KiB
C++

//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
//
// This file is used to promote memory references to be register references. A
// simple example of the transformation performed by this function is:
//
// FROM CODE TO CODE
// %X = alloca int, uint 1 ret int 42
// store int 42, int *%X
// %Y = load int* %X
// ret int %Y
//
// The code is transformed by looping over all of the alloca instruction,
// calculating dominator frontiers, then inserting phi-nodes following the usual
// SSA construction algorithm. This code does not modify the CFG of the
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "Support/StringExtras.h"
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
/// This is true if there are only loads and stores to the alloca...
///
bool isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
// Only allow direct loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
if (!isa<LoadInst>(*UI))
if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store of the AI, only INTO the AI.
} else {
return false; // Not a load or store?
}
return true;
}
namespace {
struct PromoteMem2Reg {
const std::vector<AllocaInst*> &Allocas; // the alloca instructions..
std::vector<unsigned> VersionNumbers; // Current version counters
DominanceFrontier &DF;
const TargetData &TD;
std::map<Instruction*, unsigned> AllocaLookup; // reverse mapping of above
std::vector<std::vector<BasicBlock*> > PhiNodes;// Idx corresponds 2 Allocas
// List of instructions to remove at end of pass
std::vector<Instruction *> KillList;
std::map<BasicBlock*,
std::vector<PHINode*> > NewPhiNodes; // the PhiNodes we're adding
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominanceFrontier &df,
const TargetData &td)
: Allocas(A), DF(df), TD(td) {}
void run();
private:
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncVals,
std::set<BasicBlock*> &Visited);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
};
} // end of anonymous namespace
void PromoteMem2Reg::run() {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
Function &F = *DF.getRoot()->getParent();
VersionNumbers.resize(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
assert(isAllocaPromotable(Allocas[i], TD) &&
"Cannot promote non-promotable alloca!");
assert(Allocas[i]->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
AllocaLookup[Allocas[i]] = i;
}
// Add each alloca to the KillList. Note: KillList is destroyed MOST recently
// added to least recently.
KillList.assign(Allocas.begin(), Allocas.end());
// Calculate the set of write-locations for each alloca. This is analogous to
// counting the number of 'redefinitions' of each variable.
std::vector<std::vector<BasicBlock*> > WriteSets;// Idx corresponds to Allocas
WriteSets.resize(Allocas.size());
for (unsigned i = 0; i != Allocas.size(); ++i) {
AllocaInst *AI = Allocas[i];
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
if (StoreInst *SI = dyn_cast<StoreInst>(*U))
// jot down the basic-block it came from
WriteSets[i].push_back(SI->getParent());
}
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in
//
PhiNodes.resize(Allocas.size());
for (unsigned i = 0; i != Allocas.size(); ++i) {
for (unsigned j = 0; j != WriteSets[i].size(); j++) {
// Look up the DF for this write, add it to PhiNodes
DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
P != PE; ++P)
QueuePhiNode(*P, i);
}
}
// Perform iterative step
for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
P != PE; ++P)
QueuePhiNode(*P, i);
}
}
}
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
std::vector<Value *> Values(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
std::set<BasicBlock*> Visited; // The basic blocks we've already visited
RenamePass(F.begin(), 0, Values, Visited);
// Remove all instructions marked by being placed in the KillList...
//
while (!KillList.empty()) {
Instruction *I = KillList.back();
KillList.pop_back();
// If there are any uses of these instructions left, they must be in
// sections of dead code that were not processed on the dominance frontier.
// Just delete the users now.
//
while (!I->use_empty()) {
Instruction *U = cast<Instruction>(I->use_back());
if (!U->use_empty()) // If uses remain in dead code segment...
U->replaceAllUsesWith(Constant::getNullValue(U->getType()));
U->getParent()->getInstList().erase(U);
}
I->getParent()->getInstList().erase(I);
}
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
// Look up the basic-block in question
std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
// If the BB already has a phi node added for the i'th alloca then we're done!
if (BBPNs[AllocaNo]) return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." +
utostr(VersionNumbers[AllocaNo]++),
BB->begin());
// Add null incoming values for all predecessors. This ensures that if one of
// the predecessors is not found in the depth-first traversal of the CFG (ie,
// because it is an unreachable predecessor), that all PHI nodes will have the
// correct number of entries for their predecessors.
Value *NullVal = Constant::getNullValue(PN->getType());
// This is neccesary because adding incoming values to the PHI node adds uses
// to the basic blocks being used, which can invalidate the predecessor
// iterator!
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
PN->addIncoming(NullVal, Preds[i]);
BBPNs[AllocaNo] = PN;
PhiNodes[AllocaNo].push_back(BB);
return true;
}
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncomingVals,
std::set<BasicBlock*> &Visited) {
// If this is a BB needing a phi node, lookup/create the phinode for each
// variable we need phinodes for.
std::vector<PHINode *> &BBPNs = NewPhiNodes[BB];
for (unsigned k = 0; k != BBPNs.size(); ++k)
if (PHINode *PN = BBPNs[k]) {
int BBI = PN->getBasicBlockIndex(Pred);
assert(BBI >= 0 && "Predecessor not in basic block yet!");
// At this point we can assume that the array has phi nodes.. let's update
// the incoming data.
PN->setIncomingValue(BBI, IncomingVals[k]);
// also note that the active variable IS designated by the phi node
IncomingVals[k] = PN;
}
// don't revisit nodes
if (Visited.count(BB)) return;
// mark as visited
Visited.insert(BB);
// keep track of the value of each variable we're watching.. how?
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
Instruction *I = II; // get the instruction
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
std::map<Instruction*, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI != AllocaLookup.end()) {
Value *V = IncomingVals[AI->second];
// walk the use list of this load and replace all uses with r
LI->replaceAllUsesWith(V);
KillList.push_back(LI); // Mark the load to be deleted
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Delete this instruction and mark the name as the current holder of the
// value
if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
std::map<Instruction *, unsigned>::iterator ai =AllocaLookup.find(Dest);
if (ai != AllocaLookup.end()) {
// what value were we writing?
IncomingVals[ai->second] = SI->getOperand(0);
KillList.push_back(SI); // Mark the store to be deleted
}
}
} else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
// Recurse across our successors
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
std::vector<Value*> OutgoingVals(IncomingVals);
RenamePass(TI->getSuccessor(i), BB, OutgoingVals, Visited);
}
}
}
}
/// PromoteMemToReg - Promote the specified list of alloca instructions into
/// scalar registers, inserting PHI nodes as appropriate. This function makes
/// use of DominanceFrontier information. This function does not modify the CFG
/// of the function at all. All allocas must be from the same function.
///
void PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
DominanceFrontier &DF, const TargetData &TD) {
PromoteMem2Reg(Allocas, DF, TD).run();
}