mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-09 10:05:41 +00:00
3cd645701a
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186787 91177308-0d34-0410-b5e6-96231b3b80d8
1771 lines
66 KiB
C++
1771 lines
66 KiB
C++
//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the pass which converts floating point instructions from
|
|
// pseudo registers into register stack instructions. This pass uses live
|
|
// variable information to indicate where the FPn registers are used and their
|
|
// lifetimes.
|
|
//
|
|
// The x87 hardware tracks liveness of the stack registers, so it is necessary
|
|
// to implement exact liveness tracking between basic blocks. The CFG edges are
|
|
// partitioned into bundles where the same FP registers must be live in
|
|
// identical stack positions. Instructions are inserted at the end of each basic
|
|
// block to rearrange the live registers to match the outgoing bundle.
|
|
//
|
|
// This approach avoids splitting critical edges at the potential cost of more
|
|
// live register shuffling instructions when critical edges are present.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-codegen"
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/EdgeBundles.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFXCH, "Number of fxch instructions inserted");
|
|
STATISTIC(NumFP , "Number of floating point instructions");
|
|
|
|
namespace {
|
|
struct FPS : public MachineFunctionPass {
|
|
static char ID;
|
|
FPS() : MachineFunctionPass(ID) {
|
|
initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
|
|
// This is really only to keep valgrind quiet.
|
|
// The logic in isLive() is too much for it.
|
|
memset(Stack, 0, sizeof(Stack));
|
|
memset(RegMap, 0, sizeof(RegMap));
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<EdgeBundles>();
|
|
AU.addPreservedID(MachineLoopInfoID);
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const { return "X86 FP Stackifier"; }
|
|
|
|
private:
|
|
const TargetInstrInfo *TII; // Machine instruction info.
|
|
|
|
// Two CFG edges are related if they leave the same block, or enter the same
|
|
// block. The transitive closure of an edge under this relation is a
|
|
// LiveBundle. It represents a set of CFG edges where the live FP stack
|
|
// registers must be allocated identically in the x87 stack.
|
|
//
|
|
// A LiveBundle is usually all the edges leaving a block, or all the edges
|
|
// entering a block, but it can contain more edges if critical edges are
|
|
// present.
|
|
//
|
|
// The set of live FP registers in a LiveBundle is calculated by bundleCFG,
|
|
// but the exact mapping of FP registers to stack slots is fixed later.
|
|
struct LiveBundle {
|
|
// Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
|
|
unsigned Mask;
|
|
|
|
// Number of pre-assigned live registers in FixStack. This is 0 when the
|
|
// stack order has not yet been fixed.
|
|
unsigned FixCount;
|
|
|
|
// Assigned stack order for live-in registers.
|
|
// FixStack[i] == getStackEntry(i) for all i < FixCount.
|
|
unsigned char FixStack[8];
|
|
|
|
LiveBundle() : Mask(0), FixCount(0) {}
|
|
|
|
// Have the live registers been assigned a stack order yet?
|
|
bool isFixed() const { return !Mask || FixCount; }
|
|
};
|
|
|
|
// Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
|
|
// with no live FP registers.
|
|
SmallVector<LiveBundle, 8> LiveBundles;
|
|
|
|
// The edge bundle analysis provides indices into the LiveBundles vector.
|
|
EdgeBundles *Bundles;
|
|
|
|
// Return a bitmask of FP registers in block's live-in list.
|
|
static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
|
|
unsigned Mask = 0;
|
|
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
|
|
E = MBB->livein_end(); I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
if (Reg < X86::FP0 || Reg > X86::FP6)
|
|
continue;
|
|
Mask |= 1 << (Reg - X86::FP0);
|
|
}
|
|
return Mask;
|
|
}
|
|
|
|
// Partition all the CFG edges into LiveBundles.
|
|
void bundleCFG(MachineFunction &MF);
|
|
|
|
MachineBasicBlock *MBB; // Current basic block
|
|
|
|
// The hardware keeps track of how many FP registers are live, so we have
|
|
// to model that exactly. Usually, each live register corresponds to an
|
|
// FP<n> register, but when dealing with calls, returns, and inline
|
|
// assembly, it is sometimes necessary to have live scratch registers.
|
|
unsigned Stack[8]; // FP<n> Registers in each stack slot...
|
|
unsigned StackTop; // The current top of the FP stack.
|
|
|
|
enum {
|
|
NumFPRegs = 16 // Including scratch pseudo-registers.
|
|
};
|
|
|
|
// For each live FP<n> register, point to its Stack[] entry.
|
|
// The first entries correspond to FP0-FP6, the rest are scratch registers
|
|
// used when we need slightly different live registers than what the
|
|
// register allocator thinks.
|
|
unsigned RegMap[NumFPRegs];
|
|
|
|
// Pending fixed registers - Inline assembly needs FP registers to appear
|
|
// in fixed stack slot positions. This is handled by copying FP registers
|
|
// to ST registers before the instruction, and copying back after the
|
|
// instruction.
|
|
//
|
|
// This is modeled with pending ST registers. NumPendingSTs is the number
|
|
// of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
|
|
// register that holds the ST value. The ST registers are not moved into
|
|
// place until immediately before the instruction that needs them.
|
|
//
|
|
// It can happen that we need an ST register to be live when no FP register
|
|
// holds the value:
|
|
//
|
|
// %ST0 = COPY %FP4<kill>
|
|
//
|
|
// When that happens, we allocate a scratch FP register to hold the ST
|
|
// value. That means every register in PendingST must be live.
|
|
|
|
unsigned NumPendingSTs;
|
|
unsigned char PendingST[8];
|
|
|
|
// Set up our stack model to match the incoming registers to MBB.
|
|
void setupBlockStack();
|
|
|
|
// Shuffle live registers to match the expectations of successor blocks.
|
|
void finishBlockStack();
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void dumpStack() const {
|
|
dbgs() << "Stack contents:";
|
|
for (unsigned i = 0; i != StackTop; ++i) {
|
|
dbgs() << " FP" << Stack[i];
|
|
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
|
|
}
|
|
for (unsigned i = 0; i != NumPendingSTs; ++i)
|
|
dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
|
|
dbgs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
/// getSlot - Return the stack slot number a particular register number is
|
|
/// in.
|
|
unsigned getSlot(unsigned RegNo) const {
|
|
assert(RegNo < NumFPRegs && "Regno out of range!");
|
|
return RegMap[RegNo];
|
|
}
|
|
|
|
/// isLive - Is RegNo currently live in the stack?
|
|
bool isLive(unsigned RegNo) const {
|
|
unsigned Slot = getSlot(RegNo);
|
|
return Slot < StackTop && Stack[Slot] == RegNo;
|
|
}
|
|
|
|
/// getScratchReg - Return an FP register that is not currently in use.
|
|
unsigned getScratchReg() const {
|
|
for (int i = NumFPRegs - 1; i >= 8; --i)
|
|
if (!isLive(i))
|
|
return i;
|
|
llvm_unreachable("Ran out of scratch FP registers");
|
|
}
|
|
|
|
/// isScratchReg - Returns trus if RegNo is a scratch FP register.
|
|
static bool isScratchReg(unsigned RegNo) {
|
|
return RegNo > 8 && RegNo < NumFPRegs;
|
|
}
|
|
|
|
/// getStackEntry - Return the X86::FP<n> register in register ST(i).
|
|
unsigned getStackEntry(unsigned STi) const {
|
|
if (STi >= StackTop)
|
|
report_fatal_error("Access past stack top!");
|
|
return Stack[StackTop-1-STi];
|
|
}
|
|
|
|
/// getSTReg - Return the X86::ST(i) register which contains the specified
|
|
/// FP<RegNo> register.
|
|
unsigned getSTReg(unsigned RegNo) const {
|
|
return StackTop - 1 - getSlot(RegNo) + X86::ST0;
|
|
}
|
|
|
|
// pushReg - Push the specified FP<n> register onto the stack.
|
|
void pushReg(unsigned Reg) {
|
|
assert(Reg < NumFPRegs && "Register number out of range!");
|
|
if (StackTop >= 8)
|
|
report_fatal_error("Stack overflow!");
|
|
Stack[StackTop] = Reg;
|
|
RegMap[Reg] = StackTop++;
|
|
}
|
|
|
|
bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
|
|
void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
|
|
DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
|
|
if (isAtTop(RegNo)) return;
|
|
|
|
unsigned STReg = getSTReg(RegNo);
|
|
unsigned RegOnTop = getStackEntry(0);
|
|
|
|
// Swap the slots the regs are in.
|
|
std::swap(RegMap[RegNo], RegMap[RegOnTop]);
|
|
|
|
// Swap stack slot contents.
|
|
if (RegMap[RegOnTop] >= StackTop)
|
|
report_fatal_error("Access past stack top!");
|
|
std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
|
|
|
|
// Emit an fxch to update the runtime processors version of the state.
|
|
BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
|
|
++NumFXCH;
|
|
}
|
|
|
|
void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
|
|
DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
|
|
unsigned STReg = getSTReg(RegNo);
|
|
pushReg(AsReg); // New register on top of stack
|
|
|
|
BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
|
|
}
|
|
|
|
/// duplicatePendingSTBeforeKill - The instruction at I is about to kill
|
|
/// RegNo. If any PendingST registers still need the RegNo value, duplicate
|
|
/// them to new scratch registers.
|
|
void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
|
|
for (unsigned i = 0; i != NumPendingSTs; ++i) {
|
|
if (PendingST[i] != RegNo)
|
|
continue;
|
|
unsigned SR = getScratchReg();
|
|
DEBUG(dbgs() << "Duplicating pending ST" << i
|
|
<< " in FP" << RegNo << " to FP" << SR << '\n');
|
|
duplicateToTop(RegNo, SR, I);
|
|
PendingST[i] = SR;
|
|
}
|
|
}
|
|
|
|
/// popStackAfter - Pop the current value off of the top of the FP stack
|
|
/// after the specified instruction.
|
|
void popStackAfter(MachineBasicBlock::iterator &I);
|
|
|
|
/// freeStackSlotAfter - Free the specified register from the register
|
|
/// stack, so that it is no longer in a register. If the register is
|
|
/// currently at the top of the stack, we just pop the current instruction,
|
|
/// otherwise we store the current top-of-stack into the specified slot,
|
|
/// then pop the top of stack.
|
|
void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
|
|
|
|
/// freeStackSlotBefore - Just the pop, no folding. Return the inserted
|
|
/// instruction.
|
|
MachineBasicBlock::iterator
|
|
freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
|
|
|
|
/// Adjust the live registers to be the set in Mask.
|
|
void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
|
|
|
|
/// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
|
|
/// st(0), FP reg FixStack[1] is st(1) etc.
|
|
void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
|
|
MachineBasicBlock::iterator I);
|
|
|
|
bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
|
|
|
|
void handleZeroArgFP(MachineBasicBlock::iterator &I);
|
|
void handleOneArgFP(MachineBasicBlock::iterator &I);
|
|
void handleOneArgFPRW(MachineBasicBlock::iterator &I);
|
|
void handleTwoArgFP(MachineBasicBlock::iterator &I);
|
|
void handleCompareFP(MachineBasicBlock::iterator &I);
|
|
void handleCondMovFP(MachineBasicBlock::iterator &I);
|
|
void handleSpecialFP(MachineBasicBlock::iterator &I);
|
|
|
|
// Check if a COPY instruction is using FP registers.
|
|
static bool isFPCopy(MachineInstr *MI) {
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
|
|
return X86::RFP80RegClass.contains(DstReg) ||
|
|
X86::RFP80RegClass.contains(SrcReg);
|
|
}
|
|
};
|
|
char FPS::ID = 0;
|
|
}
|
|
|
|
FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
|
|
|
|
/// getFPReg - Return the X86::FPx register number for the specified operand.
|
|
/// For example, this returns 3 for X86::FP3.
|
|
static unsigned getFPReg(const MachineOperand &MO) {
|
|
assert(MO.isReg() && "Expected an FP register!");
|
|
unsigned Reg = MO.getReg();
|
|
assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
|
|
return Reg - X86::FP0;
|
|
}
|
|
|
|
/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
|
|
/// register references into FP stack references.
|
|
///
|
|
bool FPS::runOnMachineFunction(MachineFunction &MF) {
|
|
// We only need to run this pass if there are any FP registers used in this
|
|
// function. If it is all integer, there is nothing for us to do!
|
|
bool FPIsUsed = false;
|
|
|
|
assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
|
|
for (unsigned i = 0; i <= 6; ++i)
|
|
if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
|
|
FPIsUsed = true;
|
|
break;
|
|
}
|
|
|
|
// Early exit.
|
|
if (!FPIsUsed) return false;
|
|
|
|
Bundles = &getAnalysis<EdgeBundles>();
|
|
TII = MF.getTarget().getInstrInfo();
|
|
|
|
// Prepare cross-MBB liveness.
|
|
bundleCFG(MF);
|
|
|
|
StackTop = 0;
|
|
|
|
// Process the function in depth first order so that we process at least one
|
|
// of the predecessors for every reachable block in the function.
|
|
SmallPtrSet<MachineBasicBlock*, 8> Processed;
|
|
MachineBasicBlock *Entry = MF.begin();
|
|
|
|
bool Changed = false;
|
|
for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
|
|
I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
|
|
I != E; ++I)
|
|
Changed |= processBasicBlock(MF, **I);
|
|
|
|
// Process any unreachable blocks in arbitrary order now.
|
|
if (MF.size() != Processed.size())
|
|
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
|
|
if (Processed.insert(BB))
|
|
Changed |= processBasicBlock(MF, *BB);
|
|
|
|
LiveBundles.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
|
|
/// live-out sets for the FP registers. Consistent means that the set of
|
|
/// registers live-out from a block is identical to the live-in set of all
|
|
/// successors. This is not enforced by the normal live-in lists since
|
|
/// registers may be implicitly defined, or not used by all successors.
|
|
void FPS::bundleCFG(MachineFunction &MF) {
|
|
assert(LiveBundles.empty() && "Stale data in LiveBundles");
|
|
LiveBundles.resize(Bundles->getNumBundles());
|
|
|
|
// Gather the actual live-in masks for all MBBs.
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
|
|
MachineBasicBlock *MBB = I;
|
|
const unsigned Mask = calcLiveInMask(MBB);
|
|
if (!Mask)
|
|
continue;
|
|
// Update MBB ingoing bundle mask.
|
|
LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
|
|
}
|
|
}
|
|
|
|
/// processBasicBlock - Loop over all of the instructions in the basic block,
|
|
/// transforming FP instructions into their stack form.
|
|
///
|
|
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
|
|
bool Changed = false;
|
|
MBB = &BB;
|
|
NumPendingSTs = 0;
|
|
|
|
setupBlockStack();
|
|
|
|
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
|
|
MachineInstr *MI = I;
|
|
uint64_t Flags = MI->getDesc().TSFlags;
|
|
|
|
unsigned FPInstClass = Flags & X86II::FPTypeMask;
|
|
if (MI->isInlineAsm())
|
|
FPInstClass = X86II::SpecialFP;
|
|
|
|
if (MI->isCopy() && isFPCopy(MI))
|
|
FPInstClass = X86II::SpecialFP;
|
|
|
|
if (MI->isImplicitDef() &&
|
|
X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
|
|
FPInstClass = X86II::SpecialFP;
|
|
|
|
if (FPInstClass == X86II::NotFP)
|
|
continue; // Efficiently ignore non-fp insts!
|
|
|
|
MachineInstr *PrevMI = 0;
|
|
if (I != BB.begin())
|
|
PrevMI = prior(I);
|
|
|
|
++NumFP; // Keep track of # of pseudo instrs
|
|
DEBUG(dbgs() << "\nFPInst:\t" << *MI);
|
|
|
|
// Get dead variables list now because the MI pointer may be deleted as part
|
|
// of processing!
|
|
SmallVector<unsigned, 8> DeadRegs;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isDead())
|
|
DeadRegs.push_back(MO.getReg());
|
|
}
|
|
|
|
switch (FPInstClass) {
|
|
case X86II::ZeroArgFP: handleZeroArgFP(I); break;
|
|
case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
|
|
case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
|
|
case X86II::TwoArgFP: handleTwoArgFP(I); break;
|
|
case X86II::CompareFP: handleCompareFP(I); break;
|
|
case X86II::CondMovFP: handleCondMovFP(I); break;
|
|
case X86II::SpecialFP: handleSpecialFP(I); break;
|
|
default: llvm_unreachable("Unknown FP Type!");
|
|
}
|
|
|
|
// Check to see if any of the values defined by this instruction are dead
|
|
// after definition. If so, pop them.
|
|
for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
|
|
unsigned Reg = DeadRegs[i];
|
|
if (Reg >= X86::FP0 && Reg <= X86::FP6) {
|
|
DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
|
|
freeStackSlotAfter(I, Reg-X86::FP0);
|
|
}
|
|
}
|
|
|
|
// Print out all of the instructions expanded to if -debug
|
|
DEBUG(
|
|
MachineBasicBlock::iterator PrevI(PrevMI);
|
|
if (I == PrevI) {
|
|
dbgs() << "Just deleted pseudo instruction\n";
|
|
} else {
|
|
MachineBasicBlock::iterator Start = I;
|
|
// Rewind to first instruction newly inserted.
|
|
while (Start != BB.begin() && prior(Start) != PrevI) --Start;
|
|
dbgs() << "Inserted instructions:\n\t";
|
|
Start->print(dbgs(), &MF.getTarget());
|
|
while (++Start != llvm::next(I)) {}
|
|
}
|
|
dumpStack();
|
|
);
|
|
(void)PrevMI;
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
finishBlockStack();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// setupBlockStack - Use the live bundles to set up our model of the stack
|
|
/// to match predecessors' live out stack.
|
|
void FPS::setupBlockStack() {
|
|
DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
|
|
<< " derived from " << MBB->getName() << ".\n");
|
|
StackTop = 0;
|
|
// Get the live-in bundle for MBB.
|
|
const LiveBundle &Bundle =
|
|
LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
|
|
|
|
if (!Bundle.Mask) {
|
|
DEBUG(dbgs() << "Block has no FP live-ins.\n");
|
|
return;
|
|
}
|
|
|
|
// Depth-first iteration should ensure that we always have an assigned stack.
|
|
assert(Bundle.isFixed() && "Reached block before any predecessors");
|
|
|
|
// Push the fixed live-in registers.
|
|
for (unsigned i = Bundle.FixCount; i > 0; --i) {
|
|
MBB->addLiveIn(X86::ST0+i-1);
|
|
DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
|
|
<< unsigned(Bundle.FixStack[i-1]) << '\n');
|
|
pushReg(Bundle.FixStack[i-1]);
|
|
}
|
|
|
|
// Kill off unwanted live-ins. This can happen with a critical edge.
|
|
// FIXME: We could keep these live registers around as zombies. They may need
|
|
// to be revived at the end of a short block. It might save a few instrs.
|
|
adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
|
|
DEBUG(MBB->dump());
|
|
}
|
|
|
|
/// finishBlockStack - Revive live-outs that are implicitly defined out of
|
|
/// MBB. Shuffle live registers to match the expected fixed stack of any
|
|
/// predecessors, and ensure that all predecessors are expecting the same
|
|
/// stack.
|
|
void FPS::finishBlockStack() {
|
|
// The RET handling below takes care of return blocks for us.
|
|
if (MBB->succ_empty())
|
|
return;
|
|
|
|
DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
|
|
<< " derived from " << MBB->getName() << ".\n");
|
|
|
|
// Get MBB's live-out bundle.
|
|
unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
|
|
LiveBundle &Bundle = LiveBundles[BundleIdx];
|
|
|
|
// We may need to kill and define some registers to match successors.
|
|
// FIXME: This can probably be combined with the shuffle below.
|
|
MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
|
|
adjustLiveRegs(Bundle.Mask, Term);
|
|
|
|
if (!Bundle.Mask) {
|
|
DEBUG(dbgs() << "No live-outs.\n");
|
|
return;
|
|
}
|
|
|
|
// Has the stack order been fixed yet?
|
|
DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
|
|
if (Bundle.isFixed()) {
|
|
DEBUG(dbgs() << "Shuffling stack to match.\n");
|
|
shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
|
|
} else {
|
|
// Not fixed yet, we get to choose.
|
|
DEBUG(dbgs() << "Fixing stack order now.\n");
|
|
Bundle.FixCount = StackTop;
|
|
for (unsigned i = 0; i < StackTop; ++i)
|
|
Bundle.FixStack[i] = getStackEntry(i);
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Efficient Lookup Table Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TableEntry {
|
|
uint16_t from;
|
|
uint16_t to;
|
|
bool operator<(const TableEntry &TE) const { return from < TE.from; }
|
|
friend bool operator<(const TableEntry &TE, unsigned V) {
|
|
return TE.from < V;
|
|
}
|
|
friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
|
|
const TableEntry &TE) {
|
|
return V < TE.from;
|
|
}
|
|
};
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
|
|
for (unsigned i = 0; i != NumEntries-1; ++i)
|
|
if (!(Table[i] < Table[i+1])) return false;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
|
|
const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
|
|
if (I != Table+N && I->from == Opcode)
|
|
return I->to;
|
|
return -1;
|
|
}
|
|
|
|
#ifdef NDEBUG
|
|
#define ASSERT_SORTED(TABLE)
|
|
#else
|
|
#define ASSERT_SORTED(TABLE) \
|
|
{ static bool TABLE##Checked = false; \
|
|
if (!TABLE##Checked) { \
|
|
assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
|
|
"All lookup tables must be sorted for efficient access!"); \
|
|
TABLE##Checked = true; \
|
|
} \
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Register File -> Register Stack Mapping Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// OpcodeTable - Sorted map of register instructions to their stack version.
|
|
// The first element is an register file pseudo instruction, the second is the
|
|
// concrete X86 instruction which uses the register stack.
|
|
//
|
|
static const TableEntry OpcodeTable[] = {
|
|
{ X86::ABS_Fp32 , X86::ABS_F },
|
|
{ X86::ABS_Fp64 , X86::ABS_F },
|
|
{ X86::ABS_Fp80 , X86::ABS_F },
|
|
{ X86::ADD_Fp32m , X86::ADD_F32m },
|
|
{ X86::ADD_Fp64m , X86::ADD_F64m },
|
|
{ X86::ADD_Fp64m32 , X86::ADD_F32m },
|
|
{ X86::ADD_Fp80m32 , X86::ADD_F32m },
|
|
{ X86::ADD_Fp80m64 , X86::ADD_F64m },
|
|
{ X86::ADD_FpI16m32 , X86::ADD_FI16m },
|
|
{ X86::ADD_FpI16m64 , X86::ADD_FI16m },
|
|
{ X86::ADD_FpI16m80 , X86::ADD_FI16m },
|
|
{ X86::ADD_FpI32m32 , X86::ADD_FI32m },
|
|
{ X86::ADD_FpI32m64 , X86::ADD_FI32m },
|
|
{ X86::ADD_FpI32m80 , X86::ADD_FI32m },
|
|
{ X86::CHS_Fp32 , X86::CHS_F },
|
|
{ X86::CHS_Fp64 , X86::CHS_F },
|
|
{ X86::CHS_Fp80 , X86::CHS_F },
|
|
{ X86::CMOVBE_Fp32 , X86::CMOVBE_F },
|
|
{ X86::CMOVBE_Fp64 , X86::CMOVBE_F },
|
|
{ X86::CMOVBE_Fp80 , X86::CMOVBE_F },
|
|
{ X86::CMOVB_Fp32 , X86::CMOVB_F },
|
|
{ X86::CMOVB_Fp64 , X86::CMOVB_F },
|
|
{ X86::CMOVB_Fp80 , X86::CMOVB_F },
|
|
{ X86::CMOVE_Fp32 , X86::CMOVE_F },
|
|
{ X86::CMOVE_Fp64 , X86::CMOVE_F },
|
|
{ X86::CMOVE_Fp80 , X86::CMOVE_F },
|
|
{ X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
|
|
{ X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
|
|
{ X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
|
|
{ X86::CMOVNB_Fp32 , X86::CMOVNB_F },
|
|
{ X86::CMOVNB_Fp64 , X86::CMOVNB_F },
|
|
{ X86::CMOVNB_Fp80 , X86::CMOVNB_F },
|
|
{ X86::CMOVNE_Fp32 , X86::CMOVNE_F },
|
|
{ X86::CMOVNE_Fp64 , X86::CMOVNE_F },
|
|
{ X86::CMOVNE_Fp80 , X86::CMOVNE_F },
|
|
{ X86::CMOVNP_Fp32 , X86::CMOVNP_F },
|
|
{ X86::CMOVNP_Fp64 , X86::CMOVNP_F },
|
|
{ X86::CMOVNP_Fp80 , X86::CMOVNP_F },
|
|
{ X86::CMOVP_Fp32 , X86::CMOVP_F },
|
|
{ X86::CMOVP_Fp64 , X86::CMOVP_F },
|
|
{ X86::CMOVP_Fp80 , X86::CMOVP_F },
|
|
{ X86::COS_Fp32 , X86::COS_F },
|
|
{ X86::COS_Fp64 , X86::COS_F },
|
|
{ X86::COS_Fp80 , X86::COS_F },
|
|
{ X86::DIVR_Fp32m , X86::DIVR_F32m },
|
|
{ X86::DIVR_Fp64m , X86::DIVR_F64m },
|
|
{ X86::DIVR_Fp64m32 , X86::DIVR_F32m },
|
|
{ X86::DIVR_Fp80m32 , X86::DIVR_F32m },
|
|
{ X86::DIVR_Fp80m64 , X86::DIVR_F64m },
|
|
{ X86::DIVR_FpI16m32, X86::DIVR_FI16m},
|
|
{ X86::DIVR_FpI16m64, X86::DIVR_FI16m},
|
|
{ X86::DIVR_FpI16m80, X86::DIVR_FI16m},
|
|
{ X86::DIVR_FpI32m32, X86::DIVR_FI32m},
|
|
{ X86::DIVR_FpI32m64, X86::DIVR_FI32m},
|
|
{ X86::DIVR_FpI32m80, X86::DIVR_FI32m},
|
|
{ X86::DIV_Fp32m , X86::DIV_F32m },
|
|
{ X86::DIV_Fp64m , X86::DIV_F64m },
|
|
{ X86::DIV_Fp64m32 , X86::DIV_F32m },
|
|
{ X86::DIV_Fp80m32 , X86::DIV_F32m },
|
|
{ X86::DIV_Fp80m64 , X86::DIV_F64m },
|
|
{ X86::DIV_FpI16m32 , X86::DIV_FI16m },
|
|
{ X86::DIV_FpI16m64 , X86::DIV_FI16m },
|
|
{ X86::DIV_FpI16m80 , X86::DIV_FI16m },
|
|
{ X86::DIV_FpI32m32 , X86::DIV_FI32m },
|
|
{ X86::DIV_FpI32m64 , X86::DIV_FI32m },
|
|
{ X86::DIV_FpI32m80 , X86::DIV_FI32m },
|
|
{ X86::ILD_Fp16m32 , X86::ILD_F16m },
|
|
{ X86::ILD_Fp16m64 , X86::ILD_F16m },
|
|
{ X86::ILD_Fp16m80 , X86::ILD_F16m },
|
|
{ X86::ILD_Fp32m32 , X86::ILD_F32m },
|
|
{ X86::ILD_Fp32m64 , X86::ILD_F32m },
|
|
{ X86::ILD_Fp32m80 , X86::ILD_F32m },
|
|
{ X86::ILD_Fp64m32 , X86::ILD_F64m },
|
|
{ X86::ILD_Fp64m64 , X86::ILD_F64m },
|
|
{ X86::ILD_Fp64m80 , X86::ILD_F64m },
|
|
{ X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
|
|
{ X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
|
|
{ X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
|
|
{ X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
|
|
{ X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
|
|
{ X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
|
|
{ X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
|
|
{ X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
|
|
{ X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
|
|
{ X86::IST_Fp16m32 , X86::IST_F16m },
|
|
{ X86::IST_Fp16m64 , X86::IST_F16m },
|
|
{ X86::IST_Fp16m80 , X86::IST_F16m },
|
|
{ X86::IST_Fp32m32 , X86::IST_F32m },
|
|
{ X86::IST_Fp32m64 , X86::IST_F32m },
|
|
{ X86::IST_Fp32m80 , X86::IST_F32m },
|
|
{ X86::IST_Fp64m32 , X86::IST_FP64m },
|
|
{ X86::IST_Fp64m64 , X86::IST_FP64m },
|
|
{ X86::IST_Fp64m80 , X86::IST_FP64m },
|
|
{ X86::LD_Fp032 , X86::LD_F0 },
|
|
{ X86::LD_Fp064 , X86::LD_F0 },
|
|
{ X86::LD_Fp080 , X86::LD_F0 },
|
|
{ X86::LD_Fp132 , X86::LD_F1 },
|
|
{ X86::LD_Fp164 , X86::LD_F1 },
|
|
{ X86::LD_Fp180 , X86::LD_F1 },
|
|
{ X86::LD_Fp32m , X86::LD_F32m },
|
|
{ X86::LD_Fp32m64 , X86::LD_F32m },
|
|
{ X86::LD_Fp32m80 , X86::LD_F32m },
|
|
{ X86::LD_Fp64m , X86::LD_F64m },
|
|
{ X86::LD_Fp64m80 , X86::LD_F64m },
|
|
{ X86::LD_Fp80m , X86::LD_F80m },
|
|
{ X86::MUL_Fp32m , X86::MUL_F32m },
|
|
{ X86::MUL_Fp64m , X86::MUL_F64m },
|
|
{ X86::MUL_Fp64m32 , X86::MUL_F32m },
|
|
{ X86::MUL_Fp80m32 , X86::MUL_F32m },
|
|
{ X86::MUL_Fp80m64 , X86::MUL_F64m },
|
|
{ X86::MUL_FpI16m32 , X86::MUL_FI16m },
|
|
{ X86::MUL_FpI16m64 , X86::MUL_FI16m },
|
|
{ X86::MUL_FpI16m80 , X86::MUL_FI16m },
|
|
{ X86::MUL_FpI32m32 , X86::MUL_FI32m },
|
|
{ X86::MUL_FpI32m64 , X86::MUL_FI32m },
|
|
{ X86::MUL_FpI32m80 , X86::MUL_FI32m },
|
|
{ X86::SIN_Fp32 , X86::SIN_F },
|
|
{ X86::SIN_Fp64 , X86::SIN_F },
|
|
{ X86::SIN_Fp80 , X86::SIN_F },
|
|
{ X86::SQRT_Fp32 , X86::SQRT_F },
|
|
{ X86::SQRT_Fp64 , X86::SQRT_F },
|
|
{ X86::SQRT_Fp80 , X86::SQRT_F },
|
|
{ X86::ST_Fp32m , X86::ST_F32m },
|
|
{ X86::ST_Fp64m , X86::ST_F64m },
|
|
{ X86::ST_Fp64m32 , X86::ST_F32m },
|
|
{ X86::ST_Fp80m32 , X86::ST_F32m },
|
|
{ X86::ST_Fp80m64 , X86::ST_F64m },
|
|
{ X86::ST_FpP80m , X86::ST_FP80m },
|
|
{ X86::SUBR_Fp32m , X86::SUBR_F32m },
|
|
{ X86::SUBR_Fp64m , X86::SUBR_F64m },
|
|
{ X86::SUBR_Fp64m32 , X86::SUBR_F32m },
|
|
{ X86::SUBR_Fp80m32 , X86::SUBR_F32m },
|
|
{ X86::SUBR_Fp80m64 , X86::SUBR_F64m },
|
|
{ X86::SUBR_FpI16m32, X86::SUBR_FI16m},
|
|
{ X86::SUBR_FpI16m64, X86::SUBR_FI16m},
|
|
{ X86::SUBR_FpI16m80, X86::SUBR_FI16m},
|
|
{ X86::SUBR_FpI32m32, X86::SUBR_FI32m},
|
|
{ X86::SUBR_FpI32m64, X86::SUBR_FI32m},
|
|
{ X86::SUBR_FpI32m80, X86::SUBR_FI32m},
|
|
{ X86::SUB_Fp32m , X86::SUB_F32m },
|
|
{ X86::SUB_Fp64m , X86::SUB_F64m },
|
|
{ X86::SUB_Fp64m32 , X86::SUB_F32m },
|
|
{ X86::SUB_Fp80m32 , X86::SUB_F32m },
|
|
{ X86::SUB_Fp80m64 , X86::SUB_F64m },
|
|
{ X86::SUB_FpI16m32 , X86::SUB_FI16m },
|
|
{ X86::SUB_FpI16m64 , X86::SUB_FI16m },
|
|
{ X86::SUB_FpI16m80 , X86::SUB_FI16m },
|
|
{ X86::SUB_FpI32m32 , X86::SUB_FI32m },
|
|
{ X86::SUB_FpI32m64 , X86::SUB_FI32m },
|
|
{ X86::SUB_FpI32m80 , X86::SUB_FI32m },
|
|
{ X86::TST_Fp32 , X86::TST_F },
|
|
{ X86::TST_Fp64 , X86::TST_F },
|
|
{ X86::TST_Fp80 , X86::TST_F },
|
|
{ X86::UCOM_FpIr32 , X86::UCOM_FIr },
|
|
{ X86::UCOM_FpIr64 , X86::UCOM_FIr },
|
|
{ X86::UCOM_FpIr80 , X86::UCOM_FIr },
|
|
{ X86::UCOM_Fpr32 , X86::UCOM_Fr },
|
|
{ X86::UCOM_Fpr64 , X86::UCOM_Fr },
|
|
{ X86::UCOM_Fpr80 , X86::UCOM_Fr },
|
|
};
|
|
|
|
static unsigned getConcreteOpcode(unsigned Opcode) {
|
|
ASSERT_SORTED(OpcodeTable);
|
|
int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
|
|
assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
|
|
return Opc;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PopTable - Sorted map of instructions to their popping version. The first
|
|
// element is an instruction, the second is the version which pops.
|
|
//
|
|
static const TableEntry PopTable[] = {
|
|
{ X86::ADD_FrST0 , X86::ADD_FPrST0 },
|
|
|
|
{ X86::DIVR_FrST0, X86::DIVR_FPrST0 },
|
|
{ X86::DIV_FrST0 , X86::DIV_FPrST0 },
|
|
|
|
{ X86::IST_F16m , X86::IST_FP16m },
|
|
{ X86::IST_F32m , X86::IST_FP32m },
|
|
|
|
{ X86::MUL_FrST0 , X86::MUL_FPrST0 },
|
|
|
|
{ X86::ST_F32m , X86::ST_FP32m },
|
|
{ X86::ST_F64m , X86::ST_FP64m },
|
|
{ X86::ST_Frr , X86::ST_FPrr },
|
|
|
|
{ X86::SUBR_FrST0, X86::SUBR_FPrST0 },
|
|
{ X86::SUB_FrST0 , X86::SUB_FPrST0 },
|
|
|
|
{ X86::UCOM_FIr , X86::UCOM_FIPr },
|
|
|
|
{ X86::UCOM_FPr , X86::UCOM_FPPr },
|
|
{ X86::UCOM_Fr , X86::UCOM_FPr },
|
|
};
|
|
|
|
/// popStackAfter - Pop the current value off of the top of the FP stack after
|
|
/// the specified instruction. This attempts to be sneaky and combine the pop
|
|
/// into the instruction itself if possible. The iterator is left pointing to
|
|
/// the last instruction, be it a new pop instruction inserted, or the old
|
|
/// instruction if it was modified in place.
|
|
///
|
|
void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
|
|
MachineInstr* MI = I;
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
ASSERT_SORTED(PopTable);
|
|
if (StackTop == 0)
|
|
report_fatal_error("Cannot pop empty stack!");
|
|
RegMap[Stack[--StackTop]] = ~0; // Update state
|
|
|
|
// Check to see if there is a popping version of this instruction...
|
|
int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
|
|
if (Opcode != -1) {
|
|
I->setDesc(TII->get(Opcode));
|
|
if (Opcode == X86::UCOM_FPPr)
|
|
I->RemoveOperand(0);
|
|
} else { // Insert an explicit pop
|
|
I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
|
|
}
|
|
}
|
|
|
|
/// freeStackSlotAfter - Free the specified register from the register stack, so
|
|
/// that it is no longer in a register. If the register is currently at the top
|
|
/// of the stack, we just pop the current instruction, otherwise we store the
|
|
/// current top-of-stack into the specified slot, then pop the top of stack.
|
|
void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
|
|
if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
|
|
popStackAfter(I);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, store the top of stack into the dead slot, killing the operand
|
|
// without having to add in an explicit xchg then pop.
|
|
//
|
|
I = freeStackSlotBefore(++I, FPRegNo);
|
|
}
|
|
|
|
/// freeStackSlotBefore - Free the specified register without trying any
|
|
/// folding.
|
|
MachineBasicBlock::iterator
|
|
FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
|
|
unsigned STReg = getSTReg(FPRegNo);
|
|
unsigned OldSlot = getSlot(FPRegNo);
|
|
unsigned TopReg = Stack[StackTop-1];
|
|
Stack[OldSlot] = TopReg;
|
|
RegMap[TopReg] = OldSlot;
|
|
RegMap[FPRegNo] = ~0;
|
|
Stack[--StackTop] = ~0;
|
|
return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
|
|
}
|
|
|
|
/// adjustLiveRegs - Kill and revive registers such that exactly the FP
|
|
/// registers with a bit in Mask are live.
|
|
void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
|
|
unsigned Defs = Mask;
|
|
unsigned Kills = 0;
|
|
for (unsigned i = 0; i < StackTop; ++i) {
|
|
unsigned RegNo = Stack[i];
|
|
if (!(Defs & (1 << RegNo)))
|
|
// This register is live, but we don't want it.
|
|
Kills |= (1 << RegNo);
|
|
else
|
|
// We don't need to imp-def this live register.
|
|
Defs &= ~(1 << RegNo);
|
|
}
|
|
assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
|
|
|
|
// Produce implicit-defs for free by using killed registers.
|
|
while (Kills && Defs) {
|
|
unsigned KReg = countTrailingZeros(Kills);
|
|
unsigned DReg = countTrailingZeros(Defs);
|
|
DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
|
|
std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
|
|
std::swap(RegMap[KReg], RegMap[DReg]);
|
|
Kills &= ~(1 << KReg);
|
|
Defs &= ~(1 << DReg);
|
|
}
|
|
|
|
// Kill registers by popping.
|
|
if (Kills && I != MBB->begin()) {
|
|
MachineBasicBlock::iterator I2 = llvm::prior(I);
|
|
while (StackTop) {
|
|
unsigned KReg = getStackEntry(0);
|
|
if (!(Kills & (1 << KReg)))
|
|
break;
|
|
DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
|
|
popStackAfter(I2);
|
|
Kills &= ~(1 << KReg);
|
|
}
|
|
}
|
|
|
|
// Manually kill the rest.
|
|
while (Kills) {
|
|
unsigned KReg = countTrailingZeros(Kills);
|
|
DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
|
|
freeStackSlotBefore(I, KReg);
|
|
Kills &= ~(1 << KReg);
|
|
}
|
|
|
|
// Load zeros for all the imp-defs.
|
|
while(Defs) {
|
|
unsigned DReg = countTrailingZeros(Defs);
|
|
DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
|
|
BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
|
|
pushReg(DReg);
|
|
Defs &= ~(1 << DReg);
|
|
}
|
|
|
|
// Now we should have the correct registers live.
|
|
DEBUG(dumpStack());
|
|
assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
|
|
}
|
|
|
|
/// shuffleStackTop - emit fxch instructions before I to shuffle the top
|
|
/// FixCount entries into the order given by FixStack.
|
|
/// FIXME: Is there a better algorithm than insertion sort?
|
|
void FPS::shuffleStackTop(const unsigned char *FixStack,
|
|
unsigned FixCount,
|
|
MachineBasicBlock::iterator I) {
|
|
// Move items into place, starting from the desired stack bottom.
|
|
while (FixCount--) {
|
|
// Old register at position FixCount.
|
|
unsigned OldReg = getStackEntry(FixCount);
|
|
// Desired register at position FixCount.
|
|
unsigned Reg = FixStack[FixCount];
|
|
if (Reg == OldReg)
|
|
continue;
|
|
// (Reg st0) (OldReg st0) = (Reg OldReg st0)
|
|
moveToTop(Reg, I);
|
|
if (FixCount > 0)
|
|
moveToTop(OldReg, I);
|
|
}
|
|
DEBUG(dumpStack());
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction transformation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
|
|
///
|
|
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
|
|
MachineInstr *MI = I;
|
|
unsigned DestReg = getFPReg(MI->getOperand(0));
|
|
|
|
// Change from the pseudo instruction to the concrete instruction.
|
|
MI->RemoveOperand(0); // Remove the explicit ST(0) operand
|
|
MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
|
|
|
|
// Result gets pushed on the stack.
|
|
pushReg(DestReg);
|
|
}
|
|
|
|
/// handleOneArgFP - fst <mem>, ST(0)
|
|
///
|
|
void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
|
|
MachineInstr *MI = I;
|
|
unsigned NumOps = MI->getDesc().getNumOperands();
|
|
assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
|
|
"Can only handle fst* & ftst instructions!");
|
|
|
|
// Is this the last use of the source register?
|
|
unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
|
|
bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
|
|
|
|
if (KillsSrc)
|
|
duplicatePendingSTBeforeKill(Reg, I);
|
|
|
|
// FISTP64m is strange because there isn't a non-popping versions.
|
|
// If we have one _and_ we don't want to pop the operand, duplicate the value
|
|
// on the stack instead of moving it. This ensure that popping the value is
|
|
// always ok.
|
|
// Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
|
|
//
|
|
if (!KillsSrc &&
|
|
(MI->getOpcode() == X86::IST_Fp64m32 ||
|
|
MI->getOpcode() == X86::ISTT_Fp16m32 ||
|
|
MI->getOpcode() == X86::ISTT_Fp32m32 ||
|
|
MI->getOpcode() == X86::ISTT_Fp64m32 ||
|
|
MI->getOpcode() == X86::IST_Fp64m64 ||
|
|
MI->getOpcode() == X86::ISTT_Fp16m64 ||
|
|
MI->getOpcode() == X86::ISTT_Fp32m64 ||
|
|
MI->getOpcode() == X86::ISTT_Fp64m64 ||
|
|
MI->getOpcode() == X86::IST_Fp64m80 ||
|
|
MI->getOpcode() == X86::ISTT_Fp16m80 ||
|
|
MI->getOpcode() == X86::ISTT_Fp32m80 ||
|
|
MI->getOpcode() == X86::ISTT_Fp64m80 ||
|
|
MI->getOpcode() == X86::ST_FpP80m)) {
|
|
duplicateToTop(Reg, getScratchReg(), I);
|
|
} else {
|
|
moveToTop(Reg, I); // Move to the top of the stack...
|
|
}
|
|
|
|
// Convert from the pseudo instruction to the concrete instruction.
|
|
MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
|
|
MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
|
|
|
|
if (MI->getOpcode() == X86::IST_FP64m ||
|
|
MI->getOpcode() == X86::ISTT_FP16m ||
|
|
MI->getOpcode() == X86::ISTT_FP32m ||
|
|
MI->getOpcode() == X86::ISTT_FP64m ||
|
|
MI->getOpcode() == X86::ST_FP80m) {
|
|
if (StackTop == 0)
|
|
report_fatal_error("Stack empty??");
|
|
--StackTop;
|
|
} else if (KillsSrc) { // Last use of operand?
|
|
popStackAfter(I);
|
|
}
|
|
}
|
|
|
|
|
|
/// handleOneArgFPRW: Handle instructions that read from the top of stack and
|
|
/// replace the value with a newly computed value. These instructions may have
|
|
/// non-fp operands after their FP operands.
|
|
///
|
|
/// Examples:
|
|
/// R1 = fchs R2
|
|
/// R1 = fadd R2, [mem]
|
|
///
|
|
void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
|
|
MachineInstr *MI = I;
|
|
#ifndef NDEBUG
|
|
unsigned NumOps = MI->getDesc().getNumOperands();
|
|
assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
|
|
#endif
|
|
|
|
// Is this the last use of the source register?
|
|
unsigned Reg = getFPReg(MI->getOperand(1));
|
|
bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
|
|
|
|
if (KillsSrc) {
|
|
duplicatePendingSTBeforeKill(Reg, I);
|
|
// If this is the last use of the source register, just make sure it's on
|
|
// the top of the stack.
|
|
moveToTop(Reg, I);
|
|
if (StackTop == 0)
|
|
report_fatal_error("Stack cannot be empty!");
|
|
--StackTop;
|
|
pushReg(getFPReg(MI->getOperand(0)));
|
|
} else {
|
|
// If this is not the last use of the source register, _copy_ it to the top
|
|
// of the stack.
|
|
duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
|
|
}
|
|
|
|
// Change from the pseudo instruction to the concrete instruction.
|
|
MI->RemoveOperand(1); // Drop the source operand.
|
|
MI->RemoveOperand(0); // Drop the destination operand.
|
|
MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Define tables of various ways to map pseudo instructions
|
|
//
|
|
|
|
// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
|
|
static const TableEntry ForwardST0Table[] = {
|
|
{ X86::ADD_Fp32 , X86::ADD_FST0r },
|
|
{ X86::ADD_Fp64 , X86::ADD_FST0r },
|
|
{ X86::ADD_Fp80 , X86::ADD_FST0r },
|
|
{ X86::DIV_Fp32 , X86::DIV_FST0r },
|
|
{ X86::DIV_Fp64 , X86::DIV_FST0r },
|
|
{ X86::DIV_Fp80 , X86::DIV_FST0r },
|
|
{ X86::MUL_Fp32 , X86::MUL_FST0r },
|
|
{ X86::MUL_Fp64 , X86::MUL_FST0r },
|
|
{ X86::MUL_Fp80 , X86::MUL_FST0r },
|
|
{ X86::SUB_Fp32 , X86::SUB_FST0r },
|
|
{ X86::SUB_Fp64 , X86::SUB_FST0r },
|
|
{ X86::SUB_Fp80 , X86::SUB_FST0r },
|
|
};
|
|
|
|
// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
|
|
static const TableEntry ReverseST0Table[] = {
|
|
{ X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
|
|
{ X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
|
|
{ X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
|
|
{ X86::DIV_Fp32 , X86::DIVR_FST0r },
|
|
{ X86::DIV_Fp64 , X86::DIVR_FST0r },
|
|
{ X86::DIV_Fp80 , X86::DIVR_FST0r },
|
|
{ X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
|
|
{ X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
|
|
{ X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
|
|
{ X86::SUB_Fp32 , X86::SUBR_FST0r },
|
|
{ X86::SUB_Fp64 , X86::SUBR_FST0r },
|
|
{ X86::SUB_Fp80 , X86::SUBR_FST0r },
|
|
};
|
|
|
|
// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
|
|
static const TableEntry ForwardSTiTable[] = {
|
|
{ X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
|
|
{ X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
|
|
{ X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
|
|
{ X86::DIV_Fp32 , X86::DIVR_FrST0 },
|
|
{ X86::DIV_Fp64 , X86::DIVR_FrST0 },
|
|
{ X86::DIV_Fp80 , X86::DIVR_FrST0 },
|
|
{ X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
|
|
{ X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
|
|
{ X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
|
|
{ X86::SUB_Fp32 , X86::SUBR_FrST0 },
|
|
{ X86::SUB_Fp64 , X86::SUBR_FrST0 },
|
|
{ X86::SUB_Fp80 , X86::SUBR_FrST0 },
|
|
};
|
|
|
|
// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
|
|
static const TableEntry ReverseSTiTable[] = {
|
|
{ X86::ADD_Fp32 , X86::ADD_FrST0 },
|
|
{ X86::ADD_Fp64 , X86::ADD_FrST0 },
|
|
{ X86::ADD_Fp80 , X86::ADD_FrST0 },
|
|
{ X86::DIV_Fp32 , X86::DIV_FrST0 },
|
|
{ X86::DIV_Fp64 , X86::DIV_FrST0 },
|
|
{ X86::DIV_Fp80 , X86::DIV_FrST0 },
|
|
{ X86::MUL_Fp32 , X86::MUL_FrST0 },
|
|
{ X86::MUL_Fp64 , X86::MUL_FrST0 },
|
|
{ X86::MUL_Fp80 , X86::MUL_FrST0 },
|
|
{ X86::SUB_Fp32 , X86::SUB_FrST0 },
|
|
{ X86::SUB_Fp64 , X86::SUB_FrST0 },
|
|
{ X86::SUB_Fp80 , X86::SUB_FrST0 },
|
|
};
|
|
|
|
|
|
/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
|
|
/// instructions which need to be simplified and possibly transformed.
|
|
///
|
|
/// Result: ST(0) = fsub ST(0), ST(i)
|
|
/// ST(i) = fsub ST(0), ST(i)
|
|
/// ST(0) = fsubr ST(0), ST(i)
|
|
/// ST(i) = fsubr ST(0), ST(i)
|
|
///
|
|
void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
|
|
ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
|
|
ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
|
|
MachineInstr *MI = I;
|
|
|
|
unsigned NumOperands = MI->getDesc().getNumOperands();
|
|
assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
|
|
unsigned Dest = getFPReg(MI->getOperand(0));
|
|
unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
|
|
unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
|
|
bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
|
|
bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
unsigned TOS = getStackEntry(0);
|
|
|
|
// One of our operands must be on the top of the stack. If neither is yet, we
|
|
// need to move one.
|
|
if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
|
|
// We can choose to move either operand to the top of the stack. If one of
|
|
// the operands is killed by this instruction, we want that one so that we
|
|
// can update right on top of the old version.
|
|
if (KillsOp0) {
|
|
moveToTop(Op0, I); // Move dead operand to TOS.
|
|
TOS = Op0;
|
|
} else if (KillsOp1) {
|
|
moveToTop(Op1, I);
|
|
TOS = Op1;
|
|
} else {
|
|
// All of the operands are live after this instruction executes, so we
|
|
// cannot update on top of any operand. Because of this, we must
|
|
// duplicate one of the stack elements to the top. It doesn't matter
|
|
// which one we pick.
|
|
//
|
|
duplicateToTop(Op0, Dest, I);
|
|
Op0 = TOS = Dest;
|
|
KillsOp0 = true;
|
|
}
|
|
} else if (!KillsOp0 && !KillsOp1) {
|
|
// If we DO have one of our operands at the top of the stack, but we don't
|
|
// have a dead operand, we must duplicate one of the operands to a new slot
|
|
// on the stack.
|
|
duplicateToTop(Op0, Dest, I);
|
|
Op0 = TOS = Dest;
|
|
KillsOp0 = true;
|
|
}
|
|
|
|
// Now we know that one of our operands is on the top of the stack, and at
|
|
// least one of our operands is killed by this instruction.
|
|
assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
|
|
"Stack conditions not set up right!");
|
|
|
|
// We decide which form to use based on what is on the top of the stack, and
|
|
// which operand is killed by this instruction.
|
|
const TableEntry *InstTable;
|
|
bool isForward = TOS == Op0;
|
|
bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
|
|
if (updateST0) {
|
|
if (isForward)
|
|
InstTable = ForwardST0Table;
|
|
else
|
|
InstTable = ReverseST0Table;
|
|
} else {
|
|
if (isForward)
|
|
InstTable = ForwardSTiTable;
|
|
else
|
|
InstTable = ReverseSTiTable;
|
|
}
|
|
|
|
int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
|
|
MI->getOpcode());
|
|
assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
|
|
|
|
// NotTOS - The register which is not on the top of stack...
|
|
unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
|
|
|
|
// Replace the old instruction with a new instruction
|
|
MBB->remove(I++);
|
|
I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
|
|
|
|
// If both operands are killed, pop one off of the stack in addition to
|
|
// overwriting the other one.
|
|
if (KillsOp0 && KillsOp1 && Op0 != Op1) {
|
|
assert(!updateST0 && "Should have updated other operand!");
|
|
popStackAfter(I); // Pop the top of stack
|
|
}
|
|
|
|
// Update stack information so that we know the destination register is now on
|
|
// the stack.
|
|
unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
|
|
assert(UpdatedSlot < StackTop && Dest < 7);
|
|
Stack[UpdatedSlot] = Dest;
|
|
RegMap[Dest] = UpdatedSlot;
|
|
MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
|
|
}
|
|
|
|
/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
|
|
/// register arguments and no explicit destinations.
|
|
///
|
|
void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
|
|
ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
|
|
ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
|
|
MachineInstr *MI = I;
|
|
|
|
unsigned NumOperands = MI->getDesc().getNumOperands();
|
|
assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
|
|
unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
|
|
unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
|
|
bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
|
|
bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
|
|
|
|
// Make sure the first operand is on the top of stack, the other one can be
|
|
// anywhere.
|
|
moveToTop(Op0, I);
|
|
|
|
// Change from the pseudo instruction to the concrete instruction.
|
|
MI->getOperand(0).setReg(getSTReg(Op1));
|
|
MI->RemoveOperand(1);
|
|
MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
|
|
|
|
// If any of the operands are killed by this instruction, free them.
|
|
if (KillsOp0) freeStackSlotAfter(I, Op0);
|
|
if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
|
|
}
|
|
|
|
/// handleCondMovFP - Handle two address conditional move instructions. These
|
|
/// instructions move a st(i) register to st(0) iff a condition is true. These
|
|
/// instructions require that the first operand is at the top of the stack, but
|
|
/// otherwise don't modify the stack at all.
|
|
void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
|
|
MachineInstr *MI = I;
|
|
|
|
unsigned Op0 = getFPReg(MI->getOperand(0));
|
|
unsigned Op1 = getFPReg(MI->getOperand(2));
|
|
bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
|
|
|
|
// The first operand *must* be on the top of the stack.
|
|
moveToTop(Op0, I);
|
|
|
|
// Change the second operand to the stack register that the operand is in.
|
|
// Change from the pseudo instruction to the concrete instruction.
|
|
MI->RemoveOperand(0);
|
|
MI->RemoveOperand(1);
|
|
MI->getOperand(0).setReg(getSTReg(Op1));
|
|
MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
|
|
|
|
// If we kill the second operand, make sure to pop it from the stack.
|
|
if (Op0 != Op1 && KillsOp1) {
|
|
// Get this value off of the register stack.
|
|
freeStackSlotAfter(I, Op1);
|
|
}
|
|
}
|
|
|
|
|
|
/// handleSpecialFP - Handle special instructions which behave unlike other
|
|
/// floating point instructions. This is primarily intended for use by pseudo
|
|
/// instructions.
|
|
///
|
|
void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
|
|
MachineInstr *MI = I;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unknown SpecialFP instruction!");
|
|
case TargetOpcode::COPY: {
|
|
// We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
|
|
const MachineOperand &MO1 = MI->getOperand(1);
|
|
const MachineOperand &MO0 = MI->getOperand(0);
|
|
unsigned DstST = MO0.getReg() - X86::ST0;
|
|
unsigned SrcST = MO1.getReg() - X86::ST0;
|
|
bool KillsSrc = MI->killsRegister(MO1.getReg());
|
|
|
|
// ST = COPY FP. Set up a pending ST register.
|
|
if (DstST < 8) {
|
|
unsigned SrcFP = getFPReg(MO1);
|
|
assert(isLive(SrcFP) && "Cannot copy dead register");
|
|
assert(!MO0.isDead() && "Cannot copy to dead ST register");
|
|
|
|
// Unallocated STs are marked as the nonexistent FP255.
|
|
while (NumPendingSTs <= DstST)
|
|
PendingST[NumPendingSTs++] = NumFPRegs;
|
|
|
|
// STi could still be live from a previous inline asm.
|
|
if (isScratchReg(PendingST[DstST])) {
|
|
DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
|
|
<< '\n');
|
|
freeStackSlotBefore(MI, PendingST[DstST]);
|
|
}
|
|
|
|
// When the source is killed, allocate a scratch FP register.
|
|
if (KillsSrc) {
|
|
duplicatePendingSTBeforeKill(SrcFP, I);
|
|
unsigned Slot = getSlot(SrcFP);
|
|
unsigned SR = getScratchReg();
|
|
PendingST[DstST] = SR;
|
|
Stack[Slot] = SR;
|
|
RegMap[SR] = Slot;
|
|
} else
|
|
PendingST[DstST] = SrcFP;
|
|
break;
|
|
}
|
|
|
|
// FP = COPY ST. Extract fixed stack value.
|
|
// Any instruction defining ST registers must have assigned them to a
|
|
// scratch register.
|
|
if (SrcST < 8) {
|
|
unsigned DstFP = getFPReg(MO0);
|
|
assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
|
|
assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
|
|
unsigned SrcFP = PendingST[SrcST];
|
|
assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
|
|
assert(isLive(SrcFP) && "Scratch holding ST is dead");
|
|
|
|
// DstFP steals the stack slot from SrcFP.
|
|
unsigned Slot = getSlot(SrcFP);
|
|
Stack[Slot] = DstFP;
|
|
RegMap[DstFP] = Slot;
|
|
|
|
// Always treat the ST as killed.
|
|
PendingST[SrcST] = NumFPRegs;
|
|
while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
|
|
--NumPendingSTs;
|
|
break;
|
|
}
|
|
|
|
// FP <- FP copy.
|
|
unsigned DstFP = getFPReg(MO0);
|
|
unsigned SrcFP = getFPReg(MO1);
|
|
assert(isLive(SrcFP) && "Cannot copy dead register");
|
|
if (KillsSrc) {
|
|
// If the input operand is killed, we can just change the owner of the
|
|
// incoming stack slot into the result.
|
|
unsigned Slot = getSlot(SrcFP);
|
|
Stack[Slot] = DstFP;
|
|
RegMap[DstFP] = Slot;
|
|
} else {
|
|
// For COPY we just duplicate the specified value to a new stack slot.
|
|
// This could be made better, but would require substantial changes.
|
|
duplicateToTop(SrcFP, DstFP, I);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TargetOpcode::IMPLICIT_DEF: {
|
|
// All FP registers must be explicitly defined, so load a 0 instead.
|
|
unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
|
|
DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
|
|
BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
|
|
pushReg(Reg);
|
|
break;
|
|
}
|
|
|
|
case X86::FpPOP_RETVAL: {
|
|
// The FpPOP_RETVAL instruction is used after calls that return a value on
|
|
// the floating point stack. We cannot model this with ST defs since CALL
|
|
// instructions have fixed clobber lists. This instruction is interpreted
|
|
// to mean that there is one more live register on the stack than we
|
|
// thought.
|
|
//
|
|
// This means that StackTop does not match the hardware stack between a
|
|
// call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
|
|
// between CALL and FpPOP_RETVAL as long as they don't overflow the
|
|
// hardware stack.
|
|
unsigned DstFP = getFPReg(MI->getOperand(0));
|
|
|
|
// Move existing stack elements up to reflect reality.
|
|
assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
|
|
if (StackTop) {
|
|
std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
|
|
for (unsigned i = 0; i != NumFPRegs; ++i)
|
|
++RegMap[i];
|
|
}
|
|
++StackTop;
|
|
|
|
// DstFP is the new bottom of the stack.
|
|
Stack[0] = DstFP;
|
|
RegMap[DstFP] = 0;
|
|
|
|
// DstFP will be killed by processBasicBlock if this was a dead def.
|
|
break;
|
|
}
|
|
|
|
case TargetOpcode::INLINEASM: {
|
|
// The inline asm MachineInstr currently only *uses* FP registers for the
|
|
// 'f' constraint. These should be turned into the current ST(x) register
|
|
// in the machine instr.
|
|
//
|
|
// There are special rules for x87 inline assembly. The compiler must know
|
|
// exactly how many registers are popped and pushed implicitly by the asm.
|
|
// Otherwise it is not possible to restore the stack state after the inline
|
|
// asm.
|
|
//
|
|
// There are 3 kinds of input operands:
|
|
//
|
|
// 1. Popped inputs. These must appear at the stack top in ST0-STn. A
|
|
// popped input operand must be in a fixed stack slot, and it is either
|
|
// tied to an output operand, or in the clobber list. The MI has ST use
|
|
// and def operands for these inputs.
|
|
//
|
|
// 2. Fixed inputs. These inputs appear in fixed stack slots, but are
|
|
// preserved by the inline asm. The fixed stack slots must be STn-STm
|
|
// following the popped inputs. A fixed input operand cannot be tied to
|
|
// an output or appear in the clobber list. The MI has ST use operands
|
|
// and no defs for these inputs.
|
|
//
|
|
// 3. Preserved inputs. These inputs use the "f" constraint which is
|
|
// represented as an FP register. The inline asm won't change these
|
|
// stack slots.
|
|
//
|
|
// Outputs must be in ST registers, FP outputs are not allowed. Clobbered
|
|
// registers do not count as output operands. The inline asm changes the
|
|
// stack as if it popped all the popped inputs and then pushed all the
|
|
// output operands.
|
|
|
|
// Scan the assembly for ST registers used, defined and clobbered. We can
|
|
// only tell clobbers from defs by looking at the asm descriptor.
|
|
unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
|
|
unsigned NumOps = 0;
|
|
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
|
|
i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
|
|
unsigned Flags = MI->getOperand(i).getImm();
|
|
NumOps = InlineAsm::getNumOperandRegisters(Flags);
|
|
if (NumOps != 1)
|
|
continue;
|
|
const MachineOperand &MO = MI->getOperand(i + 1);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned STReg = MO.getReg() - X86::ST0;
|
|
if (STReg >= 8)
|
|
continue;
|
|
|
|
switch (InlineAsm::getKind(Flags)) {
|
|
case InlineAsm::Kind_RegUse:
|
|
STUses |= (1u << STReg);
|
|
break;
|
|
case InlineAsm::Kind_RegDef:
|
|
case InlineAsm::Kind_RegDefEarlyClobber:
|
|
STDefs |= (1u << STReg);
|
|
if (MO.isDead())
|
|
STDeadDefs |= (1u << STReg);
|
|
break;
|
|
case InlineAsm::Kind_Clobber:
|
|
STClobbers |= (1u << STReg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (STUses && !isMask_32(STUses))
|
|
MI->emitError("fixed input regs must be last on the x87 stack");
|
|
unsigned NumSTUses = CountTrailingOnes_32(STUses);
|
|
|
|
// Defs must be contiguous from the stack top. ST0-STn.
|
|
if (STDefs && !isMask_32(STDefs)) {
|
|
MI->emitError("output regs must be last on the x87 stack");
|
|
STDefs = NextPowerOf2(STDefs) - 1;
|
|
}
|
|
unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
|
|
|
|
// So must the clobbered stack slots. ST0-STm, m >= n.
|
|
if (STClobbers && !isMask_32(STDefs | STClobbers))
|
|
MI->emitError("clobbers must be last on the x87 stack");
|
|
|
|
// Popped inputs are the ones that are also clobbered or defined.
|
|
unsigned STPopped = STUses & (STDefs | STClobbers);
|
|
if (STPopped && !isMask_32(STPopped))
|
|
MI->emitError("implicitly popped regs must be last on the x87 stack");
|
|
unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
|
|
|
|
DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
|
|
<< NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
|
|
|
|
// Scan the instruction for FP uses corresponding to "f" constraints.
|
|
// Collect FP registers to kill afer the instruction.
|
|
// Always kill all the scratch regs.
|
|
unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
|
|
unsigned FPUsed = 0;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &Op = MI->getOperand(i);
|
|
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
|
|
continue;
|
|
if (!Op.isUse())
|
|
MI->emitError("illegal \"f\" output constraint");
|
|
unsigned FPReg = getFPReg(Op);
|
|
FPUsed |= 1U << FPReg;
|
|
|
|
// If we kill this operand, make sure to pop it from the stack after the
|
|
// asm. We just remember it for now, and pop them all off at the end in
|
|
// a batch.
|
|
if (Op.isKill())
|
|
FPKills |= 1U << FPReg;
|
|
}
|
|
|
|
// The popped inputs will be killed by the instruction, so duplicate them
|
|
// if the FP register needs to be live after the instruction, or if it is
|
|
// used in the instruction itself. We effectively treat the popped inputs
|
|
// as early clobbers.
|
|
for (unsigned i = 0; i < NumSTPopped; ++i) {
|
|
if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
|
|
continue;
|
|
unsigned SR = getScratchReg();
|
|
duplicateToTop(PendingST[i], SR, I);
|
|
DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
|
|
<< unsigned(PendingST[i]) << " to avoid clobbering it.\n");
|
|
PendingST[i] = SR;
|
|
}
|
|
|
|
// Make sure we have a unique live register for every fixed use. Some of
|
|
// them could be undef uses, and we need to emit LD_F0 instructions.
|
|
for (unsigned i = 0; i < NumSTUses; ++i) {
|
|
if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
|
|
// Check for shared assignments.
|
|
for (unsigned j = 0; j < i; ++j) {
|
|
if (PendingST[j] != PendingST[i])
|
|
continue;
|
|
// STi and STj are inn the same register, create a copy.
|
|
unsigned SR = getScratchReg();
|
|
duplicateToTop(PendingST[i], SR, I);
|
|
DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
|
|
<< unsigned(PendingST[i])
|
|
<< " to avoid collision with ST" << j << '\n');
|
|
PendingST[i] = SR;
|
|
}
|
|
continue;
|
|
}
|
|
unsigned SR = getScratchReg();
|
|
DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
|
|
BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
|
|
pushReg(SR);
|
|
PendingST[i] = SR;
|
|
if (NumPendingSTs == i)
|
|
++NumPendingSTs;
|
|
}
|
|
assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
|
|
|
|
// Now we can rearrange the live registers to match what was requested.
|
|
shuffleStackTop(PendingST, NumPendingSTs, I);
|
|
DEBUG({dbgs() << "Before asm: "; dumpStack();});
|
|
|
|
// With the stack layout fixed, rewrite the FP registers.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &Op = MI->getOperand(i);
|
|
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
|
|
continue;
|
|
unsigned FPReg = getFPReg(Op);
|
|
Op.setReg(getSTReg(FPReg));
|
|
}
|
|
|
|
// Simulate the inline asm popping its inputs and pushing its outputs.
|
|
StackTop -= NumSTPopped;
|
|
|
|
// Hold the fixed output registers in scratch FP registers. They will be
|
|
// transferred to real FP registers by copies.
|
|
NumPendingSTs = 0;
|
|
for (unsigned i = 0; i < NumSTDefs; ++i) {
|
|
unsigned SR = getScratchReg();
|
|
pushReg(SR);
|
|
FPKills &= ~(1u << SR);
|
|
}
|
|
for (unsigned i = 0; i < NumSTDefs; ++i)
|
|
PendingST[NumPendingSTs++] = getStackEntry(i);
|
|
DEBUG({dbgs() << "After asm: "; dumpStack();});
|
|
|
|
// If any of the ST defs were dead, pop them immediately. Our caller only
|
|
// handles dead FP defs.
|
|
MachineBasicBlock::iterator InsertPt = MI;
|
|
for (unsigned i = 0; STDefs & (1u << i); ++i) {
|
|
if (!(STDeadDefs & (1u << i)))
|
|
continue;
|
|
freeStackSlotAfter(InsertPt, PendingST[i]);
|
|
PendingST[i] = NumFPRegs;
|
|
}
|
|
while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
|
|
--NumPendingSTs;
|
|
|
|
// If this asm kills any FP registers (is the last use of them) we must
|
|
// explicitly emit pop instructions for them. Do this now after the asm has
|
|
// executed so that the ST(x) numbers are not off (which would happen if we
|
|
// did this inline with operand rewriting).
|
|
//
|
|
// Note: this might be a non-optimal pop sequence. We might be able to do
|
|
// better by trying to pop in stack order or something.
|
|
while (FPKills) {
|
|
unsigned FPReg = countTrailingZeros(FPKills);
|
|
if (isLive(FPReg))
|
|
freeStackSlotAfter(InsertPt, FPReg);
|
|
FPKills &= ~(1U << FPReg);
|
|
}
|
|
// Don't delete the inline asm!
|
|
return;
|
|
}
|
|
|
|
case X86::WIN_FTOL_32:
|
|
case X86::WIN_FTOL_64: {
|
|
// Push the operand into ST0.
|
|
MachineOperand &Op = MI->getOperand(0);
|
|
assert(Op.isUse() && Op.isReg() &&
|
|
Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
|
|
unsigned FPReg = getFPReg(Op);
|
|
if (Op.isKill())
|
|
moveToTop(FPReg, I);
|
|
else
|
|
duplicateToTop(FPReg, FPReg, I);
|
|
|
|
// Emit the call. This will pop the operand.
|
|
BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
|
|
.addExternalSymbol("_ftol2")
|
|
.addReg(X86::ST0, RegState::ImplicitKill)
|
|
.addReg(X86::ECX, RegState::ImplicitDefine)
|
|
.addReg(X86::EAX, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EDX, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
--StackTop;
|
|
|
|
break;
|
|
}
|
|
|
|
case X86::RET:
|
|
case X86::RETI:
|
|
// If RET has an FP register use operand, pass the first one in ST(0) and
|
|
// the second one in ST(1).
|
|
|
|
// Find the register operands.
|
|
unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
|
|
unsigned LiveMask = 0;
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &Op = MI->getOperand(i);
|
|
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
|
|
continue;
|
|
// FP Register uses must be kills unless there are two uses of the same
|
|
// register, in which case only one will be a kill.
|
|
assert(Op.isUse() &&
|
|
(Op.isKill() || // Marked kill.
|
|
getFPReg(Op) == FirstFPRegOp || // Second instance.
|
|
MI->killsRegister(Op.getReg())) && // Later use is marked kill.
|
|
"Ret only defs operands, and values aren't live beyond it");
|
|
|
|
if (FirstFPRegOp == ~0U)
|
|
FirstFPRegOp = getFPReg(Op);
|
|
else {
|
|
assert(SecondFPRegOp == ~0U && "More than two fp operands!");
|
|
SecondFPRegOp = getFPReg(Op);
|
|
}
|
|
LiveMask |= (1 << getFPReg(Op));
|
|
|
|
// Remove the operand so that later passes don't see it.
|
|
MI->RemoveOperand(i);
|
|
--i, --e;
|
|
}
|
|
|
|
// We may have been carrying spurious live-ins, so make sure only the returned
|
|
// registers are left live.
|
|
adjustLiveRegs(LiveMask, MI);
|
|
if (!LiveMask) return; // Quick check to see if any are possible.
|
|
|
|
// There are only four possibilities here:
|
|
// 1) we are returning a single FP value. In this case, it has to be in
|
|
// ST(0) already, so just declare success by removing the value from the
|
|
// FP Stack.
|
|
if (SecondFPRegOp == ~0U) {
|
|
// Assert that the top of stack contains the right FP register.
|
|
assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
|
|
"Top of stack not the right register for RET!");
|
|
|
|
// Ok, everything is good, mark the value as not being on the stack
|
|
// anymore so that our assertion about the stack being empty at end of
|
|
// block doesn't fire.
|
|
StackTop = 0;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are returning two values:
|
|
// 2) If returning the same value for both, we only have one thing in the FP
|
|
// stack. Consider: RET FP1, FP1
|
|
if (StackTop == 1) {
|
|
assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
|
|
"Stack misconfiguration for RET!");
|
|
|
|
// Duplicate the TOS so that we return it twice. Just pick some other FPx
|
|
// register to hold it.
|
|
unsigned NewReg = getScratchReg();
|
|
duplicateToTop(FirstFPRegOp, NewReg, MI);
|
|
FirstFPRegOp = NewReg;
|
|
}
|
|
|
|
/// Okay we know we have two different FPx operands now:
|
|
assert(StackTop == 2 && "Must have two values live!");
|
|
|
|
/// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
|
|
/// in ST(1). In this case, emit an fxch.
|
|
if (getStackEntry(0) == SecondFPRegOp) {
|
|
assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
|
|
moveToTop(FirstFPRegOp, MI);
|
|
}
|
|
|
|
/// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
|
|
/// ST(1). Just remove both from our understanding of the stack and return.
|
|
assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
|
|
assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
|
|
StackTop = 0;
|
|
return;
|
|
}
|
|
|
|
I = MBB->erase(I); // Remove the pseudo instruction
|
|
|
|
// We want to leave I pointing to the previous instruction, but what if we
|
|
// just erased the first instruction?
|
|
if (I == MBB->begin()) {
|
|
DEBUG(dbgs() << "Inserting dummy KILL\n");
|
|
I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
|
|
} else
|
|
--I;
|
|
}
|