1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2024-12-22 07:32:48 +00:00
llvm-6502/include/llvm/CodeGen/MachineDominators.h
2010-04-05 19:16:38 +00:00

203 lines
6.7 KiB
C++

//=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
// but for target-specific code rather than target-independent IR.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
#define LLVM_CODEGEN_MACHINEDOMINATORS_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/DominatorInternals.h"
namespace llvm {
template<>
inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
this->Roots.push_back(MBB);
}
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<MachineBasicBlock>);
typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
class MachineDominatorTree : public MachineFunctionPass {
public:
static char ID; // Pass ID, replacement for typeid
DominatorTreeBase<MachineBasicBlock>* DT;
MachineDominatorTree();
~MachineDominatorTree();
DominatorTreeBase<MachineBasicBlock>& getBase() { return *DT; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<MachineBasicBlock*> &getRoots() const {
return DT->getRoots();
}
inline MachineBasicBlock *getRoot() const {
return DT->getRoot();
}
inline MachineDomTreeNode *getRootNode() const {
return DT->getRootNode();
}
virtual bool runOnMachineFunction(MachineFunction &F);
inline bool dominates(MachineDomTreeNode* A, MachineDomTreeNode* B) const {
return DT->dominates(A, B);
}
inline bool dominates(MachineBasicBlock* A, MachineBasicBlock* B) const {
return DT->dominates(A, B);
}
// dominates - Return true if A dominates B. This performs the
// special checks necessary if A and B are in the same basic block.
bool dominates(MachineInstr *A, MachineInstr *B) const {
MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
if (BBA != BBB) return DT->dominates(BBA, BBB);
// Loop through the basic block until we find A or B.
MachineBasicBlock::iterator I = BBA->begin();
for (; &*I != A && &*I != B; ++I) /*empty*/;
//if(!DT.IsPostDominators) {
// A dominates B if it is found first in the basic block.
return &*I == A;
//} else {
// // A post-dominates B if B is found first in the basic block.
// return &*I == B;
//}
}
inline bool properlyDominates(const MachineDomTreeNode* A,
MachineDomTreeNode* B) const {
return DT->properlyDominates(A, B);
}
inline bool properlyDominates(MachineBasicBlock* A,
MachineBasicBlock* B) const {
return DT->properlyDominates(A, B);
}
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
MachineBasicBlock *B) {
return DT->findNearestCommonDominator(A, B);
}
inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
return DT->getNode(BB);
}
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
return DT->getNode(BB);
}
/// addNewBlock - Add a new node to the dominator tree information. This
/// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
MachineBasicBlock *DomBB) {
return DT->addNewBlock(BB, DomBB);
}
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
inline void changeImmediateDominator(MachineBasicBlock *N,
MachineBasicBlock* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
inline void changeImmediateDominator(MachineDomTreeNode *N,
MachineDomTreeNode* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
/// eraseNode - Removes a node from the dominator tree. Block must not
/// domiante any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
inline void eraseNode(MachineBasicBlock *BB) {
DT->eraseNode(BB);
}
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
inline void splitBlock(MachineBasicBlock* NewBB) {
DT->splitBlock(NewBB);
}
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
bool isReachableFromEntry(MachineBasicBlock *A) {
return DT->isReachableFromEntry(A);
}
virtual void releaseMemory();
virtual void print(raw_ostream &OS, const Module*) const;
};
//===-------------------------------------
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
///
template<class T> struct GraphTraits;
template <> struct GraphTraits<MachineDomTreeNode *> {
typedef MachineDomTreeNode NodeType;
typedef NodeType::iterator ChildIteratorType;
static NodeType *getEntryNode(NodeType *N) {
return N;
}
static inline ChildIteratorType child_begin(NodeType* N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType* N) {
return N->end();
}
};
template <> struct GraphTraits<MachineDominatorTree*>
: public GraphTraits<MachineDomTreeNode *> {
static NodeType *getEntryNode(MachineDominatorTree *DT) {
return DT->getRootNode();
}
};
}
#endif