mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 04:30:23 +00:00
bdfe60c796
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224612 91177308-0d34-0410-b5e6-96231b3b80d8
1686 lines
60 KiB
C++
1686 lines
60 KiB
C++
//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the Hexagon target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Hexagon.h"
|
|
#include "HexagonISelLowering.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagon-isel"
|
|
|
|
static
|
|
cl::opt<unsigned>
|
|
MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
|
|
cl::Hidden, cl::init(2),
|
|
cl::desc("Maximum number of uses of a global address such that we still us a"
|
|
"constant extended instruction"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Selector Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
void initializeHexagonDAGToDAGISelPass(PassRegistry&);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
class HexagonDAGToDAGISel : public SelectionDAGISel {
|
|
/// Subtarget - Keep a pointer to the Hexagon Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const HexagonSubtarget &Subtarget;
|
|
|
|
// Keep a reference to HexagonTargetMachine.
|
|
const HexagonTargetMachine& TM;
|
|
DenseMap<const GlobalValue *, unsigned> GlobalAddressUseCountMap;
|
|
public:
|
|
explicit HexagonDAGToDAGISel(HexagonTargetMachine &targetmachine,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(targetmachine, OptLevel),
|
|
Subtarget(targetmachine.getSubtarget<HexagonSubtarget>()),
|
|
TM(targetmachine) {
|
|
initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
bool hasNumUsesBelowThresGA(SDNode *N) const;
|
|
|
|
SDNode *Select(SDNode *N) override;
|
|
|
|
// Complex Pattern Selectors.
|
|
inline bool foldGlobalAddress(SDValue &N, SDValue &R);
|
|
inline bool foldGlobalAddressGP(SDValue &N, SDValue &R);
|
|
bool foldGlobalAddressImpl(SDValue &N, SDValue &R, bool ShouldLookForGP);
|
|
bool SelectADDRri(SDValue& N, SDValue &R1, SDValue &R2);
|
|
bool SelectADDRriS11_0(SDValue& N, SDValue &R1, SDValue &R2);
|
|
bool SelectADDRriS11_1(SDValue& N, SDValue &R1, SDValue &R2);
|
|
bool SelectADDRriS11_2(SDValue& N, SDValue &R1, SDValue &R2);
|
|
bool SelectMEMriS11_2(SDValue& Addr, SDValue &Base, SDValue &Offset);
|
|
bool SelectADDRriS11_3(SDValue& N, SDValue &R1, SDValue &R2);
|
|
bool SelectADDRrr(SDValue &Addr, SDValue &Base, SDValue &Offset);
|
|
bool SelectADDRriU6_0(SDValue& N, SDValue &R1, SDValue &R2);
|
|
bool SelectADDRriU6_1(SDValue& N, SDValue &R1, SDValue &R2);
|
|
bool SelectADDRriU6_2(SDValue& N, SDValue &R1, SDValue &R2);
|
|
|
|
const char *getPassName() const override {
|
|
return "Hexagon DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) override;
|
|
bool SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Offset);
|
|
|
|
SDNode *SelectLoad(SDNode *N);
|
|
SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
|
|
SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
|
|
SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
|
|
SDLoc dl);
|
|
SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
|
|
SDLoc dl);
|
|
SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
|
|
SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
|
|
SDNode *SelectStore(SDNode *N);
|
|
SDNode *SelectSHL(SDNode *N);
|
|
SDNode *SelectSelect(SDNode *N);
|
|
SDNode *SelectTruncate(SDNode *N);
|
|
SDNode *SelectMul(SDNode *N);
|
|
SDNode *SelectZeroExtend(SDNode *N);
|
|
SDNode *SelectIntrinsicWOChain(SDNode *N);
|
|
SDNode *SelectIntrinsicWChain(SDNode *N);
|
|
SDNode *SelectConstant(SDNode *N);
|
|
SDNode *SelectConstantFP(SDNode *N);
|
|
SDNode *SelectAdd(SDNode *N);
|
|
bool isConstExtProfitable(SDNode *N) const;
|
|
|
|
// XformMskToBitPosU5Imm - Returns the bit position which
|
|
// the single bit 32 bit mask represents.
|
|
// Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU5Imm(uint32_t Imm) {
|
|
int32_t bitPos;
|
|
bitPos = Log2_32(Imm);
|
|
assert(bitPos >= 0 && bitPos < 32 &&
|
|
"Constant out of range for 32 BitPos Memops");
|
|
return CurDAG->getTargetConstant(bitPos, MVT::i32);
|
|
}
|
|
|
|
// XformMskToBitPosU4Imm - Returns the bit position which the single bit 16 bit
|
|
// mask represents. Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU4Imm(uint16_t Imm) {
|
|
return XformMskToBitPosU5Imm(Imm);
|
|
}
|
|
|
|
// XformMskToBitPosU3Imm - Returns the bit position which the single bit 8 bit
|
|
// mask represents. Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU3Imm(uint8_t Imm) {
|
|
return XformMskToBitPosU5Imm(Imm);
|
|
}
|
|
|
|
// Return true if there is exactly one bit set in V, i.e., if V is one of the
|
|
// following integers: 2^0, 2^1, ..., 2^31.
|
|
bool ImmIsSingleBit(uint32_t v) const {
|
|
uint32_t c = CountPopulation_64(v);
|
|
// Only return true if we counted 1 bit.
|
|
return c == 1;
|
|
}
|
|
|
|
// XformM5ToU5Imm - Return a target constant with the specified value, of type
|
|
// i32 where the negative literal is transformed into a positive literal for
|
|
// use in -= memops.
|
|
inline SDValue XformM5ToU5Imm(signed Imm) {
|
|
assert( (Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
|
|
return CurDAG->getTargetConstant( - Imm, MVT::i32);
|
|
}
|
|
|
|
|
|
// XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
|
|
// [1..128], used in cmpb.gtu instructions.
|
|
inline SDValue XformU7ToU7M1Imm(signed Imm) {
|
|
assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
|
|
return CurDAG->getTargetConstant(Imm - 1, MVT::i8);
|
|
}
|
|
|
|
// XformS8ToS8M1Imm - Return a target constant decremented by 1.
|
|
inline SDValue XformSToSM1Imm(signed Imm) {
|
|
return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
|
|
}
|
|
|
|
// XformU8ToU8M1Imm - Return a target constant decremented by 1.
|
|
inline SDValue XformUToUM1Imm(unsigned Imm) {
|
|
assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
|
|
return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "HexagonGenDAGISel.inc"
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
/// createHexagonISelDag - This pass converts a legalized DAG into a
|
|
/// Hexagon-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createHexagonISelDag(HexagonTargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new HexagonDAGToDAGISel(TM, OptLevel);
|
|
}
|
|
|
|
static void initializePassOnce(PassRegistry &Registry) {
|
|
const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
|
|
PassInfo *PI = new PassInfo(Name, "hexagon-isel",
|
|
&SelectionDAGISel::ID, nullptr, false, false);
|
|
Registry.registerPass(*PI, true);
|
|
}
|
|
|
|
void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
|
|
CALL_ONCE_INITIALIZATION(initializePassOnce)
|
|
}
|
|
|
|
|
|
static bool IsS11_0_Offset(SDNode * S) {
|
|
ConstantSDNode *N = cast<ConstantSDNode>(S);
|
|
|
|
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
|
|
// field.
|
|
int64_t v = (int64_t)N->getSExtValue();
|
|
return isInt<11>(v);
|
|
}
|
|
|
|
|
|
static bool IsS11_1_Offset(SDNode * S) {
|
|
ConstantSDNode *N = cast<ConstantSDNode>(S);
|
|
|
|
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
|
|
// field.
|
|
int64_t v = (int64_t)N->getSExtValue();
|
|
return isShiftedInt<11,1>(v);
|
|
}
|
|
|
|
|
|
static bool IsS11_2_Offset(SDNode * S) {
|
|
ConstantSDNode *N = cast<ConstantSDNode>(S);
|
|
|
|
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
|
|
// field.
|
|
int64_t v = (int64_t)N->getSExtValue();
|
|
return isShiftedInt<11,2>(v);
|
|
}
|
|
|
|
|
|
static bool IsS11_3_Offset(SDNode * S) {
|
|
ConstantSDNode *N = cast<ConstantSDNode>(S);
|
|
|
|
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
|
|
// field.
|
|
int64_t v = (int64_t)N->getSExtValue();
|
|
return isShiftedInt<11,3>(v);
|
|
}
|
|
|
|
|
|
static bool IsU6_0_Offset(SDNode * S) {
|
|
ConstantSDNode *N = cast<ConstantSDNode>(S);
|
|
|
|
// u6 predicate - True if the immediate fits in a 6-bit unsigned extended
|
|
// field.
|
|
int64_t v = (int64_t)N->getSExtValue();
|
|
return isUInt<6>(v);
|
|
}
|
|
|
|
|
|
static bool IsU6_1_Offset(SDNode * S) {
|
|
ConstantSDNode *N = cast<ConstantSDNode>(S);
|
|
|
|
// u6 predicate - True if the immediate fits in a 6-bit unsigned extended
|
|
// field.
|
|
int64_t v = (int64_t)N->getSExtValue();
|
|
return isShiftedUInt<6,1>(v);
|
|
}
|
|
|
|
|
|
static bool IsU6_2_Offset(SDNode * S) {
|
|
ConstantSDNode *N = cast<ConstantSDNode>(S);
|
|
|
|
// u6 predicate - True if the immediate fits in a 6-bit unsigned extended
|
|
// field.
|
|
int64_t v = (int64_t)N->getSExtValue();
|
|
return isShiftedUInt<6,2>(v);
|
|
}
|
|
|
|
|
|
// Intrinsics that return a a predicate.
|
|
static unsigned doesIntrinsicReturnPredicate(unsigned ID)
|
|
{
|
|
switch (ID) {
|
|
default:
|
|
return 0;
|
|
case Intrinsic::hexagon_C2_cmpeq:
|
|
case Intrinsic::hexagon_C2_cmpgt:
|
|
case Intrinsic::hexagon_C2_cmpgtu:
|
|
case Intrinsic::hexagon_C2_cmpgtup:
|
|
case Intrinsic::hexagon_C2_cmpgtp:
|
|
case Intrinsic::hexagon_C2_cmpeqp:
|
|
case Intrinsic::hexagon_C2_bitsset:
|
|
case Intrinsic::hexagon_C2_bitsclr:
|
|
case Intrinsic::hexagon_C2_cmpeqi:
|
|
case Intrinsic::hexagon_C2_cmpgti:
|
|
case Intrinsic::hexagon_C2_cmpgtui:
|
|
case Intrinsic::hexagon_C2_cmpgei:
|
|
case Intrinsic::hexagon_C2_cmpgeui:
|
|
case Intrinsic::hexagon_C2_cmplt:
|
|
case Intrinsic::hexagon_C2_cmpltu:
|
|
case Intrinsic::hexagon_C2_bitsclri:
|
|
case Intrinsic::hexagon_C2_and:
|
|
case Intrinsic::hexagon_C2_or:
|
|
case Intrinsic::hexagon_C2_xor:
|
|
case Intrinsic::hexagon_C2_andn:
|
|
case Intrinsic::hexagon_C2_not:
|
|
case Intrinsic::hexagon_C2_orn:
|
|
case Intrinsic::hexagon_C2_pxfer_map:
|
|
case Intrinsic::hexagon_C2_any8:
|
|
case Intrinsic::hexagon_C2_all8:
|
|
case Intrinsic::hexagon_A2_vcmpbeq:
|
|
case Intrinsic::hexagon_A2_vcmpbgtu:
|
|
case Intrinsic::hexagon_A2_vcmpheq:
|
|
case Intrinsic::hexagon_A2_vcmphgt:
|
|
case Intrinsic::hexagon_A2_vcmphgtu:
|
|
case Intrinsic::hexagon_A2_vcmpweq:
|
|
case Intrinsic::hexagon_A2_vcmpwgt:
|
|
case Intrinsic::hexagon_A2_vcmpwgtu:
|
|
case Intrinsic::hexagon_C2_tfrrp:
|
|
case Intrinsic::hexagon_S2_tstbit_i:
|
|
case Intrinsic::hexagon_S2_tstbit_r:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
// Intrinsics that have predicate operands.
|
|
static unsigned doesIntrinsicContainPredicate(unsigned ID)
|
|
{
|
|
switch (ID) {
|
|
default:
|
|
return 0;
|
|
case Intrinsic::hexagon_C2_tfrpr:
|
|
return Hexagon::C2_tfrpr;
|
|
case Intrinsic::hexagon_C2_and:
|
|
return Hexagon::C2_and;
|
|
case Intrinsic::hexagon_C2_xor:
|
|
return Hexagon::C2_xor;
|
|
case Intrinsic::hexagon_C2_or:
|
|
return Hexagon::C2_or;
|
|
case Intrinsic::hexagon_C2_not:
|
|
return Hexagon::C2_not;
|
|
case Intrinsic::hexagon_C2_any8:
|
|
return Hexagon::C2_any8;
|
|
case Intrinsic::hexagon_C2_all8:
|
|
return Hexagon::C2_all8;
|
|
case Intrinsic::hexagon_C2_vitpack:
|
|
return Hexagon::C2_vitpack;
|
|
case Intrinsic::hexagon_C2_mask:
|
|
return Hexagon::C2_mask;
|
|
case Intrinsic::hexagon_C2_mux:
|
|
return Hexagon::C2_mux;
|
|
|
|
// Mapping hexagon_C2_muxir to MUX_pri. This is pretty weird - but
|
|
// that's how it's mapped in q6protos.h.
|
|
case Intrinsic::hexagon_C2_muxir:
|
|
return Hexagon::C2_muxri;
|
|
|
|
// Mapping hexagon_C2_muxri to MUX_pir. This is pretty weird - but
|
|
// that's how it's mapped in q6protos.h.
|
|
case Intrinsic::hexagon_C2_muxri:
|
|
return Hexagon::C2_muxir;
|
|
|
|
case Intrinsic::hexagon_C2_muxii:
|
|
return Hexagon::C2_muxii;
|
|
case Intrinsic::hexagon_C2_vmux:
|
|
return Hexagon::VMUX_prr64;
|
|
case Intrinsic::hexagon_S2_valignrb:
|
|
return Hexagon::VALIGN_rrp;
|
|
case Intrinsic::hexagon_S2_vsplicerb:
|
|
return Hexagon::VSPLICE_rrp;
|
|
}
|
|
}
|
|
|
|
|
|
static bool OffsetFitsS11(EVT MemType, int64_t Offset) {
|
|
if (MemType == MVT::i64 && isShiftedInt<11,3>(Offset)) {
|
|
return true;
|
|
}
|
|
if (MemType == MVT::i32 && isShiftedInt<11,2>(Offset)) {
|
|
return true;
|
|
}
|
|
if (MemType == MVT::i16 && isShiftedInt<11,1>(Offset)) {
|
|
return true;
|
|
}
|
|
if (MemType == MVT::i8 && isInt<11>(Offset)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//
|
|
// Try to lower loads of GlobalAdresses into base+offset loads. Custom
|
|
// lowering for GlobalAddress nodes has already turned it into a
|
|
// CONST32.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl) {
|
|
SDValue Chain = LD->getChain();
|
|
SDNode* Const32 = LD->getBasePtr().getNode();
|
|
unsigned Opcode = 0;
|
|
|
|
if (Const32->getOpcode() == HexagonISD::CONST32 &&
|
|
ISD::isNormalLoad(LD)) {
|
|
SDValue Base = Const32->getOperand(0);
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset();
|
|
if (Offset != 0 && OffsetFitsS11(LoadedVT, Offset)) {
|
|
MVT PointerTy = getTargetLowering()->getPointerTy();
|
|
const GlobalValue* GV =
|
|
cast<GlobalAddressSDNode>(Base)->getGlobal();
|
|
SDValue TargAddr =
|
|
CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0);
|
|
SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set,
|
|
dl, PointerTy,
|
|
TargAddr);
|
|
// Figure out base + offset opcode
|
|
if (LoadedVT == MVT::i64) Opcode = Hexagon::LDrid_indexed;
|
|
else if (LoadedVT == MVT::i32) Opcode = Hexagon::LDriw_indexed;
|
|
else if (LoadedVT == MVT::i16) Opcode = Hexagon::LDrih_indexed;
|
|
else if (LoadedVT == MVT::i8) Opcode = Hexagon::LDrib_indexed;
|
|
else llvm_unreachable("unknown memory type");
|
|
|
|
// Build indexed load.
|
|
SDValue TargetConstOff = CurDAG->getTargetConstant(Offset, PointerTy);
|
|
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
|
|
LD->getValueType(0),
|
|
MVT::Other,
|
|
SDValue(NewBase,0),
|
|
TargetConstOff,
|
|
Chain);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
|
|
ReplaceUses(LD, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return SelectCode(LD);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
|
|
unsigned Opcode,
|
|
SDLoc dl)
|
|
{
|
|
SDValue Chain = LD->getChain();
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Offset = LD->getOffset();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
SDValue N1 = LD->getOperand(1);
|
|
SDValue CPTmpN1_0;
|
|
SDValue CPTmpN1_1;
|
|
|
|
if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
|
|
N1.getNode()->getValueType(0) == MVT::i32) {
|
|
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
|
|
TM.getSubtargetImpl()->getInstrInfo());
|
|
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
|
|
SDValue TargetConst = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
|
|
MVT::Other, Base, TargetConst,
|
|
Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
|
|
SDValue(Result_1, 0));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result_2, 0),
|
|
SDValue(Result_1, 1),
|
|
SDValue(Result_1, 2)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_2;
|
|
}
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
|
|
MVT::Other, Base, TargetConst0,
|
|
Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl,
|
|
MVT::i64, SDValue(Result_1, 0));
|
|
SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl,
|
|
MVT::i32, Base, TargetConstVal,
|
|
SDValue(Result_1, 1));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result_2, 0),
|
|
SDValue(Result_3, 0),
|
|
SDValue(Result_1, 1)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_2;
|
|
}
|
|
return SelectCode(LD);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
|
|
unsigned Opcode,
|
|
SDLoc dl)
|
|
{
|
|
SDValue Chain = LD->getChain();
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Offset = LD->getOffset();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
SDValue N1 = LD->getOperand(1);
|
|
SDValue CPTmpN1_0;
|
|
SDValue CPTmpN1_1;
|
|
|
|
if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
|
|
N1.getNode()->getValueType(0) == MVT::i32) {
|
|
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
|
|
TM.getSubtargetImpl()->getInstrInfo());
|
|
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
|
|
MVT::i32, MVT::Other, Base,
|
|
TargetConstVal, Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
|
|
TargetConst0);
|
|
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
|
|
MVT::i64, MVT::Other,
|
|
SDValue(Result_2,0),
|
|
SDValue(Result_1,0));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result_3, 0),
|
|
SDValue(Result_1, 1),
|
|
SDValue(Result_1, 2)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_3;
|
|
}
|
|
|
|
// Generate an indirect load.
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
|
|
MVT::Other,
|
|
Base, TargetConst0, Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
|
|
TargetConst0);
|
|
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
|
|
MVT::i64, MVT::Other,
|
|
SDValue(Result_2,0),
|
|
SDValue(Result_1,0));
|
|
// Add offset to base.
|
|
SDNode* Result_4 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
|
|
Base, TargetConstVal,
|
|
SDValue(Result_1, 1));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result_3, 0), // Load value.
|
|
SDValue(Result_4, 0), // New address.
|
|
SDValue(Result_1, 1)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_3;
|
|
}
|
|
|
|
return SelectCode(LD);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Offset = LD->getOffset();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
// Get the constant value.
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
unsigned Opcode = 0;
|
|
|
|
// Check for zero ext loads.
|
|
bool zextval = (LD->getExtensionType() == ISD::ZEXTLOAD);
|
|
|
|
// Figure out the opcode.
|
|
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
|
|
TM.getSubtargetImpl()->getInstrInfo());
|
|
if (LoadedVT == MVT::i64) {
|
|
if (TII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = Hexagon::POST_LDrid;
|
|
else
|
|
Opcode = Hexagon::LDrid;
|
|
} else if (LoadedVT == MVT::i32) {
|
|
if (TII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = Hexagon::POST_LDriw;
|
|
else
|
|
Opcode = Hexagon::LDriw;
|
|
} else if (LoadedVT == MVT::i16) {
|
|
if (TII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = zextval ? Hexagon::POST_LDriuh : Hexagon::POST_LDrih;
|
|
else
|
|
Opcode = zextval ? Hexagon::LDriuh : Hexagon::LDrih;
|
|
} else if (LoadedVT == MVT::i8) {
|
|
if (TII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = zextval ? Hexagon::POST_LDriub : Hexagon::POST_LDrib;
|
|
else
|
|
Opcode = zextval ? Hexagon::LDriub : Hexagon::LDrib;
|
|
} else
|
|
llvm_unreachable("unknown memory type");
|
|
|
|
// For zero ext i64 loads, we need to add combine instructions.
|
|
if (LD->getValueType(0) == MVT::i64 &&
|
|
LD->getExtensionType() == ISD::ZEXTLOAD) {
|
|
return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
|
|
}
|
|
if (LD->getValueType(0) == MVT::i64 &&
|
|
LD->getExtensionType() == ISD::SEXTLOAD) {
|
|
// Handle sign ext i64 loads.
|
|
return SelectIndexedLoadSignExtend64(LD, Opcode, dl);
|
|
}
|
|
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
|
|
LD->getValueType(0),
|
|
MVT::i32, MVT::Other, Base,
|
|
TargetConstVal, Chain);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result, 0),
|
|
SDValue(Result, 1),
|
|
SDValue(Result, 2)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result;
|
|
} else {
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
|
|
LD->getValueType(0),
|
|
MVT::Other, Base, TargetConst0,
|
|
Chain);
|
|
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
|
|
Base, TargetConstVal,
|
|
SDValue(Result_1, 1));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result_1, 0),
|
|
SDValue(Result_2, 0),
|
|
SDValue(Result_1, 1)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_1;
|
|
}
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
|
|
SDNode *result;
|
|
SDLoc dl(N);
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
|
|
// Handle indexed loads.
|
|
if (AM != ISD::UNINDEXED) {
|
|
result = SelectIndexedLoad(LD, dl);
|
|
} else {
|
|
result = SelectBaseOffsetLoad(LD, dl);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Base = ST->getBasePtr();
|
|
SDValue Offset = ST->getOffset();
|
|
SDValue Value = ST->getValue();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
// Get the constant value.
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
EVT StoredVT = ST->getMemoryVT();
|
|
|
|
// Offset value must be within representable range
|
|
// and must have correct alignment properties.
|
|
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
|
|
TM.getSubtargetImpl()->getInstrInfo());
|
|
if (TII->isValidAutoIncImm(StoredVT, Val)) {
|
|
SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, MVT::i32), Value,
|
|
Chain};
|
|
unsigned Opcode = 0;
|
|
|
|
// Figure out the post inc version of opcode.
|
|
if (StoredVT == MVT::i64) Opcode = Hexagon::POST_STdri;
|
|
else if (StoredVT == MVT::i32) Opcode = Hexagon::POST_STwri;
|
|
else if (StoredVT == MVT::i16) Opcode = Hexagon::POST_SThri;
|
|
else if (StoredVT == MVT::i8) Opcode = Hexagon::POST_STbri;
|
|
else llvm_unreachable("unknown memory type");
|
|
|
|
// Build post increment store.
|
|
SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
|
|
MVT::Other, Ops);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = ST->getMemOperand();
|
|
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceUses(ST, Result);
|
|
ReplaceUses(SDValue(ST,1), SDValue(Result,1));
|
|
return Result;
|
|
}
|
|
|
|
// Note: Order of operands matches the def of instruction:
|
|
// def STrid : STInst<(outs), (ins MEMri:$addr, DoubleRegs:$src1), ...
|
|
// and it differs for POST_ST* for instance.
|
|
SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, MVT::i32), Value,
|
|
Chain};
|
|
unsigned Opcode = 0;
|
|
|
|
// Figure out the opcode.
|
|
if (StoredVT == MVT::i64) Opcode = Hexagon::STrid;
|
|
else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed;
|
|
else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih;
|
|
else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib;
|
|
else llvm_unreachable("unknown memory type");
|
|
|
|
// Build regular store.
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
|
|
// Build splitted incriment instruction.
|
|
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
|
|
Base,
|
|
TargetConstVal,
|
|
SDValue(Result_1, 0));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = ST->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
|
|
ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
|
|
return Result_2;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectBaseOffsetStore(StoreSDNode *ST,
|
|
SDLoc dl) {
|
|
SDValue Chain = ST->getChain();
|
|
SDNode* Const32 = ST->getBasePtr().getNode();
|
|
SDValue Value = ST->getValue();
|
|
unsigned Opcode = 0;
|
|
|
|
// Try to lower stores of GlobalAdresses into indexed stores. Custom
|
|
// lowering for GlobalAddress nodes has already turned it into a
|
|
// CONST32. Avoid truncating stores for the moment. Post-inc stores
|
|
// do the same. Don't think there's a reason for it, so will file a
|
|
// bug to fix.
|
|
if ((Const32->getOpcode() == HexagonISD::CONST32) &&
|
|
!(Value.getValueType() == MVT::i64 && ST->isTruncatingStore())) {
|
|
SDValue Base = Const32->getOperand(0);
|
|
if (Base.getOpcode() == ISD::TargetGlobalAddress) {
|
|
EVT StoredVT = ST->getMemoryVT();
|
|
int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset();
|
|
if (Offset != 0 && OffsetFitsS11(StoredVT, Offset)) {
|
|
MVT PointerTy = getTargetLowering()->getPointerTy();
|
|
const GlobalValue* GV =
|
|
cast<GlobalAddressSDNode>(Base)->getGlobal();
|
|
SDValue TargAddr =
|
|
CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0);
|
|
SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set,
|
|
dl, PointerTy,
|
|
TargAddr);
|
|
|
|
// Figure out base + offset opcode
|
|
if (StoredVT == MVT::i64) Opcode = Hexagon::STrid_indexed;
|
|
else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed;
|
|
else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih_indexed;
|
|
else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib_indexed;
|
|
else llvm_unreachable("unknown memory type");
|
|
|
|
SDValue Ops[] = {SDValue(NewBase,0),
|
|
CurDAG->getTargetConstant(Offset,PointerTy),
|
|
Value, Chain};
|
|
// build indexed store
|
|
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
|
|
MVT::Other, Ops);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = ST->getMemOperand();
|
|
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
|
|
ReplaceUses(ST, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
|
|
return SelectCode(ST);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
|
|
SDLoc dl(N);
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
ISD::MemIndexedMode AM = ST->getAddressingMode();
|
|
|
|
// Handle indexed stores.
|
|
if (AM != ISD::UNINDEXED) {
|
|
return SelectIndexedStore(ST, dl);
|
|
}
|
|
|
|
return SelectBaseOffsetStore(ST, dl);
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
|
|
SDLoc dl(N);
|
|
|
|
//
|
|
// %conv.i = sext i32 %tmp1 to i64
|
|
// %conv2.i = sext i32 %add to i64
|
|
// %mul.i = mul nsw i64 %conv2.i, %conv.i
|
|
//
|
|
// --- match with the following ---
|
|
//
|
|
// %mul.i = mpy (%tmp1, %add)
|
|
//
|
|
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
// Shifting a i64 signed multiply.
|
|
SDValue MulOp0 = N->getOperand(0);
|
|
SDValue MulOp1 = N->getOperand(1);
|
|
|
|
SDValue OP0;
|
|
SDValue OP1;
|
|
|
|
// Handle sign_extend and sextload.
|
|
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext0 = MulOp0.getOperand(0);
|
|
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
OP0 = Sext0;
|
|
} else if (MulOp0.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(), TargetConst0,
|
|
Chain), 0);
|
|
} else {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Same goes for the second operand.
|
|
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext1 = MulOp1.getOperand(0);
|
|
if (Sext1.getNode()->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
OP1 = Sext1;
|
|
} else if (MulOp1.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(), TargetConst0,
|
|
Chain), 0);
|
|
} else {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Generate a mpy instruction.
|
|
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
|
|
OP0, OP1);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectSelect(SDNode *N) {
|
|
SDLoc dl(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == ISD::SIGN_EXTEND_INREG) {
|
|
SDValue N000 = N00.getOperand(0);
|
|
SDValue N001 = N00.getOperand(1);
|
|
if (cast<VTSDNode>(N001)->getVT() == MVT::i16) {
|
|
SDValue N01 = N0.getOperand(1);
|
|
SDValue N02 = N0.getOperand(2);
|
|
|
|
// Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2,
|
|
// i16:Other),IntRegs:i32:$src1, SETLT:Other),IntRegs:i32:$src1,
|
|
// IntRegs:i32:$src2)
|
|
// Emits: (MAXh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2)
|
|
// Pattern complexity = 9 cost = 1 size = 0.
|
|
if (cast<CondCodeSDNode>(N02)->get() == ISD::SETLT) {
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N01 == N1) {
|
|
SDValue N2 = N->getOperand(2);
|
|
if (N000 == N2 &&
|
|
N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
|
|
N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
|
|
SDNode *SextNode = CurDAG->getMachineNode(Hexagon::A2_sxth, dl,
|
|
MVT::i32, N000);
|
|
SDNode *Result = CurDAG->getMachineNode(Hexagon::A2_max, dl,
|
|
MVT::i32,
|
|
SDValue(SextNode, 0),
|
|
N1);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2,
|
|
// i16:Other), IntRegs:i32:$src1, SETGT:Other), IntRegs:i32:$src1,
|
|
// IntRegs:i32:$src2)
|
|
// Emits: (MINh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2)
|
|
// Pattern complexity = 9 cost = 1 size = 0.
|
|
if (cast<CondCodeSDNode>(N02)->get() == ISD::SETGT) {
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N01 == N1) {
|
|
SDValue N2 = N->getOperand(2);
|
|
if (N000 == N2 &&
|
|
N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
|
|
N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
|
|
SDNode *SextNode = CurDAG->getMachineNode(Hexagon::A2_sxth, dl,
|
|
MVT::i32, N000);
|
|
SDNode *Result = CurDAG->getMachineNode(Hexagon::A2_min, dl,
|
|
MVT::i32,
|
|
SDValue(SextNode, 0),
|
|
N1);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) {
|
|
SDLoc dl(N);
|
|
SDValue Shift = N->getOperand(0);
|
|
|
|
//
|
|
// %conv.i = sext i32 %tmp1 to i64
|
|
// %conv2.i = sext i32 %add to i64
|
|
// %mul.i = mul nsw i64 %conv2.i, %conv.i
|
|
// %shr5.i = lshr i64 %mul.i, 32
|
|
// %conv3.i = trunc i64 %shr5.i to i32
|
|
//
|
|
// --- match with the following ---
|
|
//
|
|
// %conv3.i = mpy (%tmp1, %add)
|
|
//
|
|
// Trunc to i32.
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
// Trunc from i64.
|
|
if (Shift.getNode()->getValueType(0) == MVT::i64) {
|
|
// Trunc child is logical shift right.
|
|
if (Shift.getOpcode() != ISD::SRL) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue ShiftOp0 = Shift.getOperand(0);
|
|
SDValue ShiftOp1 = Shift.getOperand(1);
|
|
|
|
// Shift by const 32
|
|
if (ShiftOp1.getOpcode() != ISD::Constant) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
int32_t ShiftConst =
|
|
cast<ConstantSDNode>(ShiftOp1.getNode())->getSExtValue();
|
|
if (ShiftConst != 32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Shifting a i64 signed multiply
|
|
SDValue Mul = ShiftOp0;
|
|
if (Mul.getOpcode() != ISD::MUL) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue MulOp0 = Mul.getOperand(0);
|
|
SDValue MulOp1 = Mul.getOperand(1);
|
|
|
|
SDValue OP0;
|
|
SDValue OP1;
|
|
|
|
// Handle sign_extend and sextload
|
|
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext0 = MulOp0.getOperand(0);
|
|
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
OP0 = Sext0;
|
|
} else if (MulOp0.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(),
|
|
TargetConst0, Chain), 0);
|
|
} else {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Same goes for the second operand.
|
|
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext1 = MulOp1.getOperand(0);
|
|
if (Sext1.getNode()->getValueType(0) != MVT::i32)
|
|
return SelectCode(N);
|
|
|
|
OP1 = Sext1;
|
|
} else if (MulOp1.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(),
|
|
TargetConst0, Chain), 0);
|
|
} else {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Generate a mpy instruction.
|
|
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpy_up, dl, MVT::i32,
|
|
OP0, OP1);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
SDValue Shl_0 = N->getOperand(0);
|
|
SDValue Shl_1 = N->getOperand(1);
|
|
// RHS is const.
|
|
if (Shl_1.getOpcode() == ISD::Constant) {
|
|
if (Shl_0.getOpcode() == ISD::MUL) {
|
|
SDValue Mul_0 = Shl_0.getOperand(0); // Val
|
|
SDValue Mul_1 = Shl_0.getOperand(1); // Const
|
|
// RHS of mul is const.
|
|
if (Mul_1.getOpcode() == ISD::Constant) {
|
|
int32_t ShlConst =
|
|
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
|
|
int32_t MulConst =
|
|
cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
|
|
int32_t ValConst = MulConst << ShlConst;
|
|
SDValue Val = CurDAG->getTargetConstant(ValConst,
|
|
MVT::i32);
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
|
|
if (isInt<9>(CN->getSExtValue())) {
|
|
SDNode* Result =
|
|
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
|
|
MVT::i32, Mul_0, Val);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
|
|
}
|
|
} else if (Shl_0.getOpcode() == ISD::SUB) {
|
|
SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
|
|
SDValue Sub_1 = Shl_0.getOperand(1); // Val
|
|
if (Sub_0.getOpcode() == ISD::Constant) {
|
|
int32_t SubConst =
|
|
cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
|
|
if (SubConst == 0) {
|
|
if (Sub_1.getOpcode() == ISD::SHL) {
|
|
SDValue Shl2_0 = Sub_1.getOperand(0); // Val
|
|
SDValue Shl2_1 = Sub_1.getOperand(1); // Const
|
|
if (Shl2_1.getOpcode() == ISD::Constant) {
|
|
int32_t ShlConst =
|
|
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
|
|
int32_t Shl2Const =
|
|
cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
|
|
int32_t ValConst = 1 << (ShlConst+Shl2Const);
|
|
SDValue Val = CurDAG->getTargetConstant(-ValConst, MVT::i32);
|
|
if (ConstantSDNode *CN =
|
|
dyn_cast<ConstantSDNode>(Val.getNode()))
|
|
if (isInt<9>(CN->getSExtValue())) {
|
|
SDNode* Result =
|
|
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
|
|
Shl2_0, Val);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// If there is an zero_extend followed an intrinsic in DAG (this means - the
|
|
// result of the intrinsic is predicate); convert the zero_extend to
|
|
// transfer instruction.
|
|
//
|
|
// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
|
|
// converted into a MUX as predicate registers defined as 1 bit in the
|
|
// compiler. Architecture defines them as 8-bit registers.
|
|
// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
|
|
SDLoc dl(N);
|
|
SDNode *IsIntrinsic = N->getOperand(0).getNode();
|
|
if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
|
|
unsigned ID =
|
|
cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
|
|
if (doesIntrinsicReturnPredicate(ID)) {
|
|
// Now we need to differentiate target data types.
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
// Convert the zero_extend to Rs = Pd followed by COMBINE_rr(0,Rs).
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
|
|
MVT::i32,
|
|
SDValue(IsIntrinsic, 0));
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
|
|
MVT::i32,
|
|
TargetConst0);
|
|
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
|
|
MVT::i64, MVT::Other,
|
|
SDValue(Result_2, 0),
|
|
SDValue(Result_1, 0));
|
|
ReplaceUses(N, Result_3);
|
|
return Result_3;
|
|
}
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
// Convert the zero_extend to Rs = Pd
|
|
SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
|
|
MVT::i32,
|
|
SDValue(IsIntrinsic, 0));
|
|
ReplaceUses(N, RsPd);
|
|
return RsPd;
|
|
}
|
|
llvm_unreachable("Unexpected value type");
|
|
}
|
|
}
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Checking for intrinsics which have predicate registers as operand(s)
|
|
// and lowering to the actual intrinsic.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
|
|
SDLoc dl(N);
|
|
unsigned ID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
unsigned IntrinsicWithPred = doesIntrinsicContainPredicate(ID);
|
|
|
|
// We are concerned with only those intrinsics that have predicate registers
|
|
// as at least one of the operands.
|
|
if (IntrinsicWithPred) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
|
|
TM.getSubtargetImpl()->getInstrInfo());
|
|
const MCInstrDesc &MCID = TII->get(IntrinsicWithPred);
|
|
const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
|
|
|
|
// Iterate over all the operands of the intrinsics.
|
|
// For PredRegs, do the transfer.
|
|
// For Double/Int Regs, just preserve the value
|
|
// For immediates, lower it.
|
|
for (unsigned i = 1; i < N->getNumOperands(); ++i) {
|
|
SDNode *Arg = N->getOperand(i).getNode();
|
|
const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI, *MF);
|
|
|
|
if (RC == &Hexagon::IntRegsRegClass ||
|
|
RC == &Hexagon::DoubleRegsRegClass) {
|
|
Ops.push_back(SDValue(Arg, 0));
|
|
} else if (RC == &Hexagon::PredRegsRegClass) {
|
|
// Do the transfer.
|
|
SDNode *PdRs = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::i1,
|
|
SDValue(Arg, 0));
|
|
Ops.push_back(SDValue(PdRs,0));
|
|
} else if (!RC && (dyn_cast<ConstantSDNode>(Arg) != nullptr)) {
|
|
// This is immediate operand. Lower it here making sure that we DO have
|
|
// const SDNode for immediate value.
|
|
int32_t Val = cast<ConstantSDNode>(Arg)->getSExtValue();
|
|
SDValue SDVal = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
Ops.push_back(SDVal);
|
|
} else {
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
}
|
|
EVT ReturnValueVT = N->getValueType(0);
|
|
SDNode *Result = CurDAG->getMachineNode(IntrinsicWithPred, dl,
|
|
ReturnValueVT, Ops);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
return SelectCode(N);
|
|
}
|
|
|
|
//
|
|
// Map floating point constant values.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
|
|
SDLoc dl(N);
|
|
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
|
|
APFloat APF = CN->getValueAPF();
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
|
|
CurDAG->getTargetConstantFP(APF.convertToFloat(), MVT::f32));
|
|
}
|
|
else if (N->getValueType(0) == MVT::f64) {
|
|
return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
|
|
CurDAG->getTargetConstantFP(APF.convertToDouble(), MVT::f64));
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Map predicate true (encoded as -1 in LLVM) to a XOR.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) == MVT::i1) {
|
|
SDNode* Result;
|
|
int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (Val == -1) {
|
|
// Create the IntReg = 1 node.
|
|
SDNode* IntRegTFR =
|
|
CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
|
|
CurDAG->getTargetConstant(0, MVT::i32));
|
|
|
|
// Pd = IntReg
|
|
SDNode* Pd = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::i1,
|
|
SDValue(IntRegTFR, 0));
|
|
|
|
// not(Pd)
|
|
SDNode* NotPd = CurDAG->getMachineNode(Hexagon::C2_not, dl, MVT::i1,
|
|
SDValue(Pd, 0));
|
|
|
|
// xor(not(Pd))
|
|
Result = CurDAG->getMachineNode(Hexagon::C2_xor, dl, MVT::i1,
|
|
SDValue(Pd, 0), SDValue(NotPd, 0));
|
|
|
|
// We have just built:
|
|
// Rs = Pd
|
|
// Pd = xor(not(Pd), Pd)
|
|
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Map add followed by a asr -> asr +=.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
// Identify nodes of the form: add(asr(...)).
|
|
SDNode* Src1 = N->getOperand(0).getNode();
|
|
if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
|
|
|| Src1->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
|
|
// Rd and Rd' are assigned to the same register
|
|
SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
|
|
N->getOperand(1),
|
|
Src1->getOperand(0),
|
|
Src1->getOperand(1));
|
|
ReplaceUses(N, Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
|
|
if (N->isMachineOpcode()) {
|
|
N->setNodeId(-1);
|
|
return nullptr; // Already selected.
|
|
}
|
|
|
|
|
|
switch (N->getOpcode()) {
|
|
case ISD::Constant:
|
|
return SelectConstant(N);
|
|
|
|
case ISD::ConstantFP:
|
|
return SelectConstantFP(N);
|
|
|
|
case ISD::ADD:
|
|
return SelectAdd(N);
|
|
|
|
case ISD::SHL:
|
|
return SelectSHL(N);
|
|
|
|
case ISD::LOAD:
|
|
return SelectLoad(N);
|
|
|
|
case ISD::STORE:
|
|
return SelectStore(N);
|
|
|
|
case ISD::SELECT:
|
|
return SelectSelect(N);
|
|
|
|
case ISD::TRUNCATE:
|
|
return SelectTruncate(N);
|
|
|
|
case ISD::MUL:
|
|
return SelectMul(N);
|
|
|
|
case ISD::ZERO_EXTEND:
|
|
return SelectZeroExtend(N);
|
|
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return SelectIntrinsicWOChain(N);
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Hexagon_TODO: Five functions for ADDRri?! Surely there must be a better way
|
|
// to define these instructions.
|
|
//
|
|
bool HexagonDAGToDAGISel::SelectADDRri(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRriS11_0(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_0_Offset(Offset.getNode()));
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_0_Offset(Offset.getNode()));
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRriS11_1(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_1_Offset(Offset.getNode()));
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_1_Offset(Offset.getNode()));
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRriS11_2(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_2_Offset(Offset.getNode()));
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_2_Offset(Offset.getNode()));
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRriU6_0(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsU6_0_Offset(Offset.getNode()));
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsU6_0_Offset(Offset.getNode()));
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRriU6_1(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsU6_1_Offset(Offset.getNode()));
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsU6_1_Offset(Offset.getNode()));
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRriU6_2(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsU6_2_Offset(Offset.getNode()));
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsU6_2_Offset(Offset.getNode()));
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectMEMriS11_2(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
|
|
if (Addr.getOpcode() != ISD::ADD) {
|
|
return(SelectADDRriS11_2(Addr, Base, Offset));
|
|
}
|
|
|
|
return SelectADDRriS11_2(Addr, Base, Offset);
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRriS11_3(SDValue& Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_3_Offset(Offset.getNode()));
|
|
}
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return (IsS11_3_Offset(Offset.getNode()));
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::SelectADDRrr(SDValue &Addr, SDValue &R1,
|
|
SDValue &R2) {
|
|
if (Addr.getOpcode() == ISD::FrameIndex) return false;
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (Addr.getOpcode() == ISD::ADD) {
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
|
|
if (isInt<13>(CN->getSExtValue()))
|
|
return false; // Let the reg+imm pattern catch this!
|
|
R1 = Addr.getOperand(0);
|
|
R2 = Addr.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
R1 = Addr;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Handle generic address case. It is accessed from inlined asm =m constraints,
|
|
// which could have any kind of pointer.
|
|
bool HexagonDAGToDAGISel::SelectAddr(SDNode *Op, SDValue Addr,
|
|
SDValue &Base, SDValue &Offset) {
|
|
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Addr.getOpcode() == ISD::TargetGlobalAddress)
|
|
return false; // Direct calls.
|
|
|
|
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (Addr.getOpcode() == ISD::ADD) {
|
|
Base = Addr.getOperand(0);
|
|
Offset = Addr.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonDAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
SDValue Op0, Op1;
|
|
|
|
switch (ConstraintCode) {
|
|
case 'o': // Offsetable.
|
|
case 'v': // Not offsetable.
|
|
default: return true;
|
|
case 'm': // Memory.
|
|
if (!SelectAddr(Op.getNode(), Op, Op0, Op1))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
OutOps.push_back(Op0);
|
|
OutOps.push_back(Op1);
|
|
return false;
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::isConstExtProfitable(SDNode *N) const {
|
|
unsigned UseCount = 0;
|
|
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
|
|
UseCount++;
|
|
}
|
|
|
|
return (UseCount <= 1);
|
|
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Return 'true' if use count of the global address is below threshold.
|
|
//===--------------------------------------------------------------------===//
|
|
bool HexagonDAGToDAGISel::hasNumUsesBelowThresGA(SDNode *N) const {
|
|
assert(N->getOpcode() == ISD::TargetGlobalAddress &&
|
|
"Expecting a target global address");
|
|
|
|
// Always try to fold the address.
|
|
if (TM.getOptLevel() == CodeGenOpt::Aggressive)
|
|
return true;
|
|
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
|
|
DenseMap<const GlobalValue *, unsigned>::const_iterator GI =
|
|
GlobalAddressUseCountMap.find(GA->getGlobal());
|
|
|
|
if (GI == GlobalAddressUseCountMap.end())
|
|
return false;
|
|
|
|
return GI->second <= MaxNumOfUsesForConstExtenders;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Return true if the non-GP-relative global address can be folded.
|
|
//===--------------------------------------------------------------------===//
|
|
inline bool HexagonDAGToDAGISel::foldGlobalAddress(SDValue &N, SDValue &R) {
|
|
return foldGlobalAddressImpl(N, R, false);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Return true if the GP-relative global address can be folded.
|
|
//===--------------------------------------------------------------------===//
|
|
inline bool HexagonDAGToDAGISel::foldGlobalAddressGP(SDValue &N, SDValue &R) {
|
|
return foldGlobalAddressImpl(N, R, true);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Fold offset of the global address if number of uses are below threshold.
|
|
//===--------------------------------------------------------------------===//
|
|
bool HexagonDAGToDAGISel::foldGlobalAddressImpl(SDValue &N, SDValue &R,
|
|
bool ShouldLookForGP) {
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
SDValue N0 = N.getOperand(0);
|
|
SDValue N1 = N.getOperand(1);
|
|
if ((ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32_GP)) ||
|
|
(!ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32))) {
|
|
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1);
|
|
GlobalAddressSDNode *GA =
|
|
dyn_cast<GlobalAddressSDNode>(N0.getOperand(0));
|
|
|
|
if (Const && GA &&
|
|
(GA->getOpcode() == ISD::TargetGlobalAddress)) {
|
|
if ((N0.getOpcode() == HexagonISD::CONST32) &&
|
|
!hasNumUsesBelowThresGA(GA))
|
|
return false;
|
|
R = CurDAG->getTargetGlobalAddress(GA->getGlobal(),
|
|
SDLoc(Const),
|
|
N.getValueType(),
|
|
GA->getOffset() +
|
|
(uint64_t)Const->getSExtValue());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|