mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-02 07:32:52 +00:00
a25f933396
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115061 91177308-0d34-0410-b5e6-96231b3b80d8
1278 lines
43 KiB
C++
1278 lines
43 KiB
C++
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetAsmParser.h"
|
|
#include "X86.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/Target/TargetRegistry.h"
|
|
#include "llvm/Target/TargetAsmParser.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCParser/MCAsmLexer.h"
|
|
#include "llvm/MC/MCParser/MCAsmParser.h"
|
|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct X86Operand;
|
|
|
|
class X86ATTAsmParser : public TargetAsmParser {
|
|
MCAsmParser &Parser;
|
|
TargetMachine &TM;
|
|
|
|
protected:
|
|
unsigned Is64Bit : 1;
|
|
|
|
private:
|
|
MCAsmParser &getParser() const { return Parser; }
|
|
|
|
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
|
|
|
|
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
|
|
|
|
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
|
|
|
|
X86Operand *ParseOperand();
|
|
X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
|
|
|
|
bool ParseDirectiveWord(unsigned Size, SMLoc L);
|
|
|
|
bool MatchAndEmitInstruction(SMLoc IDLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
|
|
MCStreamer &Out);
|
|
|
|
/// @name Auto-generated Matcher Functions
|
|
/// {
|
|
|
|
#define GET_ASSEMBLER_HEADER
|
|
#include "X86GenAsmMatcher.inc"
|
|
|
|
/// }
|
|
|
|
public:
|
|
X86ATTAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &TM)
|
|
: TargetAsmParser(T), Parser(_Parser), TM(TM) {
|
|
|
|
// Initialize the set of available features.
|
|
setAvailableFeatures(ComputeAvailableFeatures(
|
|
&TM.getSubtarget<X86Subtarget>()));
|
|
}
|
|
|
|
virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
|
|
|
|
virtual bool ParseDirective(AsmToken DirectiveID);
|
|
};
|
|
|
|
class X86_32ATTAsmParser : public X86ATTAsmParser {
|
|
public:
|
|
X86_32ATTAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &TM)
|
|
: X86ATTAsmParser(T, _Parser, TM) {
|
|
Is64Bit = false;
|
|
}
|
|
};
|
|
|
|
class X86_64ATTAsmParser : public X86ATTAsmParser {
|
|
public:
|
|
X86_64ATTAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &TM)
|
|
: X86ATTAsmParser(T, _Parser, TM) {
|
|
Is64Bit = true;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// @name Auto-generated Match Functions
|
|
/// {
|
|
|
|
static unsigned MatchRegisterName(StringRef Name);
|
|
|
|
/// }
|
|
|
|
namespace {
|
|
|
|
/// X86Operand - Instances of this class represent a parsed X86 machine
|
|
/// instruction.
|
|
struct X86Operand : public MCParsedAsmOperand {
|
|
enum KindTy {
|
|
Token,
|
|
Register,
|
|
Immediate,
|
|
Memory
|
|
} Kind;
|
|
|
|
SMLoc StartLoc, EndLoc;
|
|
|
|
union {
|
|
struct {
|
|
const char *Data;
|
|
unsigned Length;
|
|
} Tok;
|
|
|
|
struct {
|
|
unsigned RegNo;
|
|
} Reg;
|
|
|
|
struct {
|
|
const MCExpr *Val;
|
|
} Imm;
|
|
|
|
struct {
|
|
unsigned SegReg;
|
|
const MCExpr *Disp;
|
|
unsigned BaseReg;
|
|
unsigned IndexReg;
|
|
unsigned Scale;
|
|
} Mem;
|
|
};
|
|
|
|
X86Operand(KindTy K, SMLoc Start, SMLoc End)
|
|
: Kind(K), StartLoc(Start), EndLoc(End) {}
|
|
|
|
/// getStartLoc - Get the location of the first token of this operand.
|
|
SMLoc getStartLoc() const { return StartLoc; }
|
|
/// getEndLoc - Get the location of the last token of this operand.
|
|
SMLoc getEndLoc() const { return EndLoc; }
|
|
|
|
virtual void dump(raw_ostream &OS) const {}
|
|
|
|
StringRef getToken() const {
|
|
assert(Kind == Token && "Invalid access!");
|
|
return StringRef(Tok.Data, Tok.Length);
|
|
}
|
|
void setTokenValue(StringRef Value) {
|
|
assert(Kind == Token && "Invalid access!");
|
|
Tok.Data = Value.data();
|
|
Tok.Length = Value.size();
|
|
}
|
|
|
|
unsigned getReg() const {
|
|
assert(Kind == Register && "Invalid access!");
|
|
return Reg.RegNo;
|
|
}
|
|
|
|
const MCExpr *getImm() const {
|
|
assert(Kind == Immediate && "Invalid access!");
|
|
return Imm.Val;
|
|
}
|
|
|
|
const MCExpr *getMemDisp() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.Disp;
|
|
}
|
|
unsigned getMemSegReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.SegReg;
|
|
}
|
|
unsigned getMemBaseReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.BaseReg;
|
|
}
|
|
unsigned getMemIndexReg() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.IndexReg;
|
|
}
|
|
unsigned getMemScale() const {
|
|
assert(Kind == Memory && "Invalid access!");
|
|
return Mem.Scale;
|
|
}
|
|
|
|
bool isToken() const {return Kind == Token; }
|
|
|
|
bool isImm() const { return Kind == Immediate; }
|
|
|
|
bool isImmSExti16i8() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
uint64_t Value = CE->getValue();
|
|
return (( Value <= 0x000000000000007FULL)||
|
|
(0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
|
|
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
bool isImmSExti32i8() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
uint64_t Value = CE->getValue();
|
|
return (( Value <= 0x000000000000007FULL)||
|
|
(0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
|
|
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
bool isImmSExti64i8() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
uint64_t Value = CE->getValue();
|
|
return (( Value <= 0x000000000000007FULL)||
|
|
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
bool isImmSExti64i32() const {
|
|
if (!isImm())
|
|
return false;
|
|
|
|
// If this isn't a constant expr, just assume it fits and let relaxation
|
|
// handle it.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE)
|
|
return true;
|
|
|
|
// Otherwise, check the value is in a range that makes sense for this
|
|
// extension.
|
|
uint64_t Value = CE->getValue();
|
|
return (( Value <= 0x000000007FFFFFFFULL)||
|
|
(0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
|
|
}
|
|
|
|
bool isMem() const { return Kind == Memory; }
|
|
|
|
bool isAbsMem() const {
|
|
return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
|
|
!getMemIndexReg() && getMemScale() == 1;
|
|
}
|
|
|
|
bool isReg() const { return Kind == Register; }
|
|
|
|
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
|
|
// Add as immediates when possible.
|
|
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
|
|
else
|
|
Inst.addOperand(MCOperand::CreateExpr(Expr));
|
|
}
|
|
|
|
void addRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getReg()));
|
|
}
|
|
|
|
void addImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addMemOperands(MCInst &Inst, unsigned N) const {
|
|
assert((N == 5) && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
|
|
Inst.addOperand(MCOperand::CreateImm(getMemScale()));
|
|
Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
|
|
addExpr(Inst, getMemDisp());
|
|
Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
|
|
}
|
|
|
|
void addAbsMemOperands(MCInst &Inst, unsigned N) const {
|
|
assert((N == 1) && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
|
|
}
|
|
|
|
static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
|
|
X86Operand *Res = new X86Operand(Token, Loc, Loc);
|
|
Res->Tok.Data = Str.data();
|
|
Res->Tok.Length = Str.size();
|
|
return Res;
|
|
}
|
|
|
|
static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
|
|
X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
|
|
Res->Reg.RegNo = RegNo;
|
|
return Res;
|
|
}
|
|
|
|
static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
|
|
X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
|
|
Res->Imm.Val = Val;
|
|
return Res;
|
|
}
|
|
|
|
/// Create an absolute memory operand.
|
|
static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
|
|
SMLoc EndLoc) {
|
|
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
|
|
Res->Mem.SegReg = 0;
|
|
Res->Mem.Disp = Disp;
|
|
Res->Mem.BaseReg = 0;
|
|
Res->Mem.IndexReg = 0;
|
|
Res->Mem.Scale = 1;
|
|
return Res;
|
|
}
|
|
|
|
/// Create a generalized memory operand.
|
|
static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
|
|
unsigned BaseReg, unsigned IndexReg,
|
|
unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) {
|
|
// We should never just have a displacement, that should be parsed as an
|
|
// absolute memory operand.
|
|
assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
|
|
|
|
// The scale should always be one of {1,2,4,8}.
|
|
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
|
|
"Invalid scale!");
|
|
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
|
|
Res->Mem.SegReg = SegReg;
|
|
Res->Mem.Disp = Disp;
|
|
Res->Mem.BaseReg = BaseReg;
|
|
Res->Mem.IndexReg = IndexReg;
|
|
Res->Mem.Scale = Scale;
|
|
return Res;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
bool X86ATTAsmParser::ParseRegister(unsigned &RegNo,
|
|
SMLoc &StartLoc, SMLoc &EndLoc) {
|
|
RegNo = 0;
|
|
const AsmToken &TokPercent = Parser.getTok();
|
|
assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
|
|
StartLoc = TokPercent.getLoc();
|
|
Parser.Lex(); // Eat percent token.
|
|
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Identifier))
|
|
return Error(Tok.getLoc(), "invalid register name");
|
|
|
|
// FIXME: Validate register for the current architecture; we have to do
|
|
// validation later, so maybe there is no need for this here.
|
|
RegNo = MatchRegisterName(Tok.getString());
|
|
|
|
// If the match failed, try the register name as lowercase.
|
|
if (RegNo == 0)
|
|
RegNo = MatchRegisterName(LowercaseString(Tok.getString()));
|
|
|
|
// FIXME: This should be done using Requires<In32BitMode> and
|
|
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions
|
|
// can be also checked.
|
|
if (RegNo == X86::RIZ && !Is64Bit)
|
|
return Error(Tok.getLoc(), "riz register in 64-bit mode only");
|
|
|
|
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
|
|
if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
|
|
RegNo = X86::ST0;
|
|
EndLoc = Tok.getLoc();
|
|
Parser.Lex(); // Eat 'st'
|
|
|
|
// Check to see if we have '(4)' after %st.
|
|
if (getLexer().isNot(AsmToken::LParen))
|
|
return false;
|
|
// Lex the paren.
|
|
getParser().Lex();
|
|
|
|
const AsmToken &IntTok = Parser.getTok();
|
|
if (IntTok.isNot(AsmToken::Integer))
|
|
return Error(IntTok.getLoc(), "expected stack index");
|
|
switch (IntTok.getIntVal()) {
|
|
case 0: RegNo = X86::ST0; break;
|
|
case 1: RegNo = X86::ST1; break;
|
|
case 2: RegNo = X86::ST2; break;
|
|
case 3: RegNo = X86::ST3; break;
|
|
case 4: RegNo = X86::ST4; break;
|
|
case 5: RegNo = X86::ST5; break;
|
|
case 6: RegNo = X86::ST6; break;
|
|
case 7: RegNo = X86::ST7; break;
|
|
default: return Error(IntTok.getLoc(), "invalid stack index");
|
|
}
|
|
|
|
if (getParser().Lex().isNot(AsmToken::RParen))
|
|
return Error(Parser.getTok().getLoc(), "expected ')'");
|
|
|
|
EndLoc = Tok.getLoc();
|
|
Parser.Lex(); // Eat ')'
|
|
return false;
|
|
}
|
|
|
|
// If this is "db[0-7]", match it as an alias
|
|
// for dr[0-7].
|
|
if (RegNo == 0 && Tok.getString().size() == 3 &&
|
|
Tok.getString().startswith("db")) {
|
|
switch (Tok.getString()[2]) {
|
|
case '0': RegNo = X86::DR0; break;
|
|
case '1': RegNo = X86::DR1; break;
|
|
case '2': RegNo = X86::DR2; break;
|
|
case '3': RegNo = X86::DR3; break;
|
|
case '4': RegNo = X86::DR4; break;
|
|
case '5': RegNo = X86::DR5; break;
|
|
case '6': RegNo = X86::DR6; break;
|
|
case '7': RegNo = X86::DR7; break;
|
|
}
|
|
|
|
if (RegNo != 0) {
|
|
EndLoc = Tok.getLoc();
|
|
Parser.Lex(); // Eat it.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (RegNo == 0)
|
|
return Error(Tok.getLoc(), "invalid register name");
|
|
|
|
EndLoc = Tok.getLoc();
|
|
Parser.Lex(); // Eat identifier token.
|
|
return false;
|
|
}
|
|
|
|
X86Operand *X86ATTAsmParser::ParseOperand() {
|
|
switch (getLexer().getKind()) {
|
|
default:
|
|
// Parse a memory operand with no segment register.
|
|
return ParseMemOperand(0, Parser.getTok().getLoc());
|
|
case AsmToken::Percent: {
|
|
// Read the register.
|
|
unsigned RegNo;
|
|
SMLoc Start, End;
|
|
if (ParseRegister(RegNo, Start, End)) return 0;
|
|
if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
|
|
Error(Start, "eiz and riz can only be used as index registers");
|
|
return 0;
|
|
}
|
|
|
|
// If this is a segment register followed by a ':', then this is the start
|
|
// of a memory reference, otherwise this is a normal register reference.
|
|
if (getLexer().isNot(AsmToken::Colon))
|
|
return X86Operand::CreateReg(RegNo, Start, End);
|
|
|
|
|
|
getParser().Lex(); // Eat the colon.
|
|
return ParseMemOperand(RegNo, Start);
|
|
}
|
|
case AsmToken::Dollar: {
|
|
// $42 -> immediate.
|
|
SMLoc Start = Parser.getTok().getLoc(), End;
|
|
Parser.Lex();
|
|
const MCExpr *Val;
|
|
if (getParser().ParseExpression(Val, End))
|
|
return 0;
|
|
return X86Operand::CreateImm(Val, Start, End);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
|
|
/// has already been parsed if present.
|
|
X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
|
|
|
|
// We have to disambiguate a parenthesized expression "(4+5)" from the start
|
|
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
|
|
// only way to do this without lookahead is to eat the '(' and see what is
|
|
// after it.
|
|
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
SMLoc ExprEnd;
|
|
if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
|
|
|
|
// After parsing the base expression we could either have a parenthesized
|
|
// memory address or not. If not, return now. If so, eat the (.
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
// Unless we have a segment register, treat this as an immediate.
|
|
if (SegReg == 0)
|
|
return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
|
|
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
|
|
}
|
|
|
|
// Eat the '('.
|
|
Parser.Lex();
|
|
} else {
|
|
// Okay, we have a '('. We don't know if this is an expression or not, but
|
|
// so we have to eat the ( to see beyond it.
|
|
SMLoc LParenLoc = Parser.getTok().getLoc();
|
|
Parser.Lex(); // Eat the '('.
|
|
|
|
if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
|
|
// Nothing to do here, fall into the code below with the '(' part of the
|
|
// memory operand consumed.
|
|
} else {
|
|
SMLoc ExprEnd;
|
|
|
|
// It must be an parenthesized expression, parse it now.
|
|
if (getParser().ParseParenExpression(Disp, ExprEnd))
|
|
return 0;
|
|
|
|
// After parsing the base expression we could either have a parenthesized
|
|
// memory address or not. If not, return now. If so, eat the (.
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
// Unless we have a segment register, treat this as an immediate.
|
|
if (SegReg == 0)
|
|
return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
|
|
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
|
|
}
|
|
|
|
// Eat the '('.
|
|
Parser.Lex();
|
|
}
|
|
}
|
|
|
|
// If we reached here, then we just ate the ( of the memory operand. Process
|
|
// the rest of the memory operand.
|
|
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
|
|
|
|
if (getLexer().is(AsmToken::Percent)) {
|
|
SMLoc L;
|
|
if (ParseRegister(BaseReg, L, L)) return 0;
|
|
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
|
|
Error(L, "eiz and riz can only be used as index registers");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (getLexer().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the comma.
|
|
|
|
// Following the comma we should have either an index register, or a scale
|
|
// value. We don't support the later form, but we want to parse it
|
|
// correctly.
|
|
//
|
|
// Not that even though it would be completely consistent to support syntax
|
|
// like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
|
|
if (getLexer().is(AsmToken::Percent)) {
|
|
SMLoc L;
|
|
if (ParseRegister(IndexReg, L, L)) return 0;
|
|
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
// Parse the scale amount:
|
|
// ::= ',' [scale-expression]
|
|
if (getLexer().isNot(AsmToken::Comma)) {
|
|
Error(Parser.getTok().getLoc(),
|
|
"expected comma in scale expression");
|
|
return 0;
|
|
}
|
|
Parser.Lex(); // Eat the comma.
|
|
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
|
|
int64_t ScaleVal;
|
|
if (getParser().ParseAbsoluteExpression(ScaleVal))
|
|
return 0;
|
|
|
|
// Validate the scale amount.
|
|
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
|
|
Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
|
|
return 0;
|
|
}
|
|
Scale = (unsigned)ScaleVal;
|
|
}
|
|
}
|
|
} else if (getLexer().isNot(AsmToken::RParen)) {
|
|
// A scale amount without an index is ignored.
|
|
// index.
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
|
|
int64_t Value;
|
|
if (getParser().ParseAbsoluteExpression(Value))
|
|
return 0;
|
|
|
|
if (Value != 1)
|
|
Warning(Loc, "scale factor without index register is ignored");
|
|
Scale = 1;
|
|
}
|
|
}
|
|
|
|
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
|
|
return 0;
|
|
}
|
|
SMLoc MemEnd = Parser.getTok().getLoc();
|
|
Parser.Lex(); // Eat the ')'.
|
|
|
|
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
|
|
MemStart, MemEnd);
|
|
}
|
|
|
|
bool X86ATTAsmParser::
|
|
ParseInstruction(StringRef Name, SMLoc NameLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// FIXME: Hack to recognize "sal..." and "rep..." for now. We need a way to
|
|
// represent alternative syntaxes in the .td file, without requiring
|
|
// instruction duplication.
|
|
StringRef PatchedName = StringSwitch<StringRef>(Name)
|
|
.Case("sal", "shl")
|
|
.Case("salb", "shlb")
|
|
.Case("sall", "shll")
|
|
.Case("salq", "shlq")
|
|
.Case("salw", "shlw")
|
|
.Case("repe", "rep")
|
|
.Case("repz", "rep")
|
|
.Case("repnz", "repne")
|
|
.Case("iret", "iretl")
|
|
.Case("sysret", "sysretl")
|
|
.Case("cbw", "cbtw")
|
|
.Case("cwd", "cwtd")
|
|
.Case("cdq", "cltd")
|
|
.Case("cwde", "cwtl")
|
|
.Case("cdqe", "cltq")
|
|
.Case("smovb", "movsb")
|
|
.Case("smovw", "movsw")
|
|
.Case("smovl", "movsl")
|
|
.Case("smovq", "movsq")
|
|
.Case("push", Is64Bit ? "pushq" : "pushl")
|
|
.Case("pop", Is64Bit ? "popq" : "popl")
|
|
.Case("pushf", Is64Bit ? "pushfq" : "pushfl")
|
|
.Case("popf", Is64Bit ? "popfq" : "popfl")
|
|
.Case("pushfd", "pushfl")
|
|
.Case("popfd", "popfl")
|
|
.Case("retl", Is64Bit ? "retl" : "ret")
|
|
.Case("retq", Is64Bit ? "ret" : "retq")
|
|
.Case("setz", "sete") .Case("setnz", "setne")
|
|
.Case("setc", "setb") .Case("setna", "setbe")
|
|
.Case("setnae", "setb").Case("setnb", "setae")
|
|
.Case("setnbe", "seta").Case("setnc", "setae")
|
|
.Case("setng", "setle").Case("setnge", "setl")
|
|
.Case("setnl", "setge").Case("setnle", "setg")
|
|
.Case("setpe", "setp") .Case("setpo", "setnp")
|
|
.Case("jz", "je") .Case("jnz", "jne")
|
|
.Case("jc", "jb") .Case("jna", "jbe")
|
|
.Case("jnae", "jb").Case("jnb", "jae")
|
|
.Case("jnbe", "ja").Case("jnc", "jae")
|
|
.Case("jng", "jle").Case("jnge", "jl")
|
|
.Case("jnl", "jge").Case("jnle", "jg")
|
|
.Case("jpe", "jp") .Case("jpo", "jnp")
|
|
// Condition code aliases for 16-bit, 32-bit, 64-bit and unspec operands.
|
|
.Case("cmovcw", "cmovbw") .Case("cmovcl", "cmovbl")
|
|
.Case("cmovcq", "cmovbq") .Case("cmovc", "cmovb")
|
|
.Case("cmovnaew","cmovbw") .Case("cmovnael","cmovbl")
|
|
.Case("cmovnaeq","cmovbq") .Case("cmovnae", "cmovb")
|
|
.Case("cmovnaw", "cmovbew").Case("cmovnal", "cmovbel")
|
|
.Case("cmovnaq", "cmovbeq").Case("cmovna", "cmovbe")
|
|
.Case("cmovnbw", "cmovaew").Case("cmovnbl", "cmovael")
|
|
.Case("cmovnbq", "cmovaeq").Case("cmovnb", "cmovae")
|
|
.Case("cmovnbew","cmovaw") .Case("cmovnbel","cmoval")
|
|
.Case("cmovnbeq","cmovaq") .Case("cmovnbe", "cmova")
|
|
.Case("cmovncw", "cmovaew").Case("cmovncl", "cmovael")
|
|
.Case("cmovncq", "cmovaeq").Case("cmovnc", "cmovae")
|
|
.Case("cmovngw", "cmovlew").Case("cmovngl", "cmovlel")
|
|
.Case("cmovngq", "cmovleq").Case("cmovng", "cmovle")
|
|
.Case("cmovnw", "cmovgew").Case("cmovnl", "cmovgel")
|
|
.Case("cmovnq", "cmovgeq").Case("cmovn", "cmovge")
|
|
.Case("cmovngw", "cmovlew").Case("cmovngl", "cmovlel")
|
|
.Case("cmovngq", "cmovleq").Case("cmovng", "cmovle")
|
|
.Case("cmovngew","cmovlw") .Case("cmovngel","cmovll")
|
|
.Case("cmovngeq","cmovlq") .Case("cmovnge", "cmovl")
|
|
.Case("cmovnlw", "cmovgew").Case("cmovnll", "cmovgel")
|
|
.Case("cmovnlq", "cmovgeq").Case("cmovnl", "cmovge")
|
|
.Case("cmovnlew","cmovgw") .Case("cmovnlel","cmovgl")
|
|
.Case("cmovnleq","cmovgq") .Case("cmovnle", "cmovg")
|
|
.Case("cmovnzw", "cmovnew").Case("cmovnzl", "cmovnel")
|
|
.Case("cmovnzq", "cmovneq").Case("cmovnz", "cmovne")
|
|
.Case("cmovzw", "cmovew") .Case("cmovzl", "cmovel")
|
|
.Case("cmovzq", "cmoveq") .Case("cmovz", "cmove")
|
|
// Floating point stack cmov aliases.
|
|
.Case("fcmovz", "fcmove")
|
|
.Case("fcmova", "fcmovnbe")
|
|
.Case("fcmovnae", "fcmovb")
|
|
.Case("fcmovna", "fcmovbe")
|
|
.Case("fcmovae", "fcmovnb")
|
|
.Case("fwait", "wait")
|
|
.Case("movzx", "movzb") // FIXME: Not correct.
|
|
.Case("fildq", "fildll")
|
|
.Default(Name);
|
|
|
|
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
|
|
const MCExpr *ExtraImmOp = 0;
|
|
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
|
|
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
|
|
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
|
|
bool IsVCMP = PatchedName.startswith("vcmp");
|
|
unsigned SSECCIdx = IsVCMP ? 4 : 3;
|
|
unsigned SSEComparisonCode = StringSwitch<unsigned>(
|
|
PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
|
|
.Case("eq", 0)
|
|
.Case("lt", 1)
|
|
.Case("le", 2)
|
|
.Case("unord", 3)
|
|
.Case("neq", 4)
|
|
.Case("nlt", 5)
|
|
.Case("nle", 6)
|
|
.Case("ord", 7)
|
|
.Case("eq_uq", 8)
|
|
.Case("nge", 9)
|
|
.Case("ngt", 0x0A)
|
|
.Case("false", 0x0B)
|
|
.Case("neq_oq", 0x0C)
|
|
.Case("ge", 0x0D)
|
|
.Case("gt", 0x0E)
|
|
.Case("true", 0x0F)
|
|
.Case("eq_os", 0x10)
|
|
.Case("lt_oq", 0x11)
|
|
.Case("le_oq", 0x12)
|
|
.Case("unord_s", 0x13)
|
|
.Case("neq_us", 0x14)
|
|
.Case("nlt_uq", 0x15)
|
|
.Case("nle_uq", 0x16)
|
|
.Case("ord_s", 0x17)
|
|
.Case("eq_us", 0x18)
|
|
.Case("nge_uq", 0x19)
|
|
.Case("ngt_uq", 0x1A)
|
|
.Case("false_os", 0x1B)
|
|
.Case("neq_os", 0x1C)
|
|
.Case("ge_oq", 0x1D)
|
|
.Case("gt_oq", 0x1E)
|
|
.Case("true_us", 0x1F)
|
|
.Default(~0U);
|
|
if (SSEComparisonCode != ~0U) {
|
|
ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
|
|
getParser().getContext());
|
|
if (PatchedName.endswith("ss")) {
|
|
PatchedName = IsVCMP ? "vcmpss" : "cmpss";
|
|
} else if (PatchedName.endswith("sd")) {
|
|
PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
|
|
} else if (PatchedName.endswith("ps")) {
|
|
PatchedName = IsVCMP ? "vcmpps" : "cmpps";
|
|
} else {
|
|
assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
|
|
PatchedName = IsVCMP ? "vcmppd" : "cmppd";
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Hack to recognize vpclmul<src1_quadword, src2_quadword>dq
|
|
if (PatchedName.startswith("vpclmul")) {
|
|
unsigned CLMULQuadWordSelect = StringSwitch<unsigned>(
|
|
PatchedName.slice(7, PatchedName.size() - 2))
|
|
.Case("lqlq", 0x00) // src1[63:0], src2[63:0]
|
|
.Case("hqlq", 0x01) // src1[127:64], src2[63:0]
|
|
.Case("lqhq", 0x10) // src1[63:0], src2[127:64]
|
|
.Case("hqhq", 0x11) // src1[127:64], src2[127:64]
|
|
.Default(~0U);
|
|
if (CLMULQuadWordSelect != ~0U) {
|
|
ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect,
|
|
getParser().getContext());
|
|
assert(PatchedName.endswith("dq") && "Unexpected mnemonic!");
|
|
PatchedName = "vpclmulqdq";
|
|
}
|
|
}
|
|
|
|
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
|
|
|
|
if (ExtraImmOp)
|
|
Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
|
|
|
|
|
|
// Determine whether this is an instruction prefix.
|
|
bool isPrefix =
|
|
PatchedName == "lock" || PatchedName == "rep" ||
|
|
PatchedName == "repne";
|
|
|
|
|
|
// This does the actual operand parsing. Don't parse any more if we have a
|
|
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
|
|
// just want to parse the "lock" as the first instruction and the "incl" as
|
|
// the next one.
|
|
if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
|
|
|
|
// Parse '*' modifier.
|
|
if (getLexer().is(AsmToken::Star)) {
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
Operands.push_back(X86Operand::CreateToken("*", Loc));
|
|
Parser.Lex(); // Eat the star.
|
|
}
|
|
|
|
// Read the first operand.
|
|
if (X86Operand *Op = ParseOperand())
|
|
Operands.push_back(Op);
|
|
else {
|
|
Parser.EatToEndOfStatement();
|
|
return true;
|
|
}
|
|
|
|
while (getLexer().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the comma.
|
|
|
|
// Parse and remember the operand.
|
|
if (X86Operand *Op = ParseOperand())
|
|
Operands.push_back(Op);
|
|
else {
|
|
Parser.EatToEndOfStatement();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
Parser.EatToEndOfStatement();
|
|
return TokError("unexpected token in argument list");
|
|
}
|
|
}
|
|
|
|
if (getLexer().is(AsmToken::EndOfStatement))
|
|
Parser.Lex(); // Consume the EndOfStatement
|
|
|
|
// FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
|
|
// "shift <op>".
|
|
if ((Name.startswith("shr") || Name.startswith("sar") ||
|
|
Name.startswith("shl")) &&
|
|
Operands.size() == 3) {
|
|
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
|
|
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
|
|
cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
|
|
delete Operands[1];
|
|
Operands.erase(Operands.begin() + 1);
|
|
}
|
|
}
|
|
|
|
// FIXME: Hack to handle recognize "rc[lr] <op>" -> "rcl $1, <op>".
|
|
if ((Name.startswith("rcl") || Name.startswith("rcr")) &&
|
|
Operands.size() == 2) {
|
|
const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext());
|
|
Operands.push_back(X86Operand::CreateImm(One, NameLoc, NameLoc));
|
|
std::swap(Operands[1], Operands[2]);
|
|
}
|
|
|
|
// FIXME: Hack to handle recognize "sh[lr]d op,op" -> "shld $1, op,op".
|
|
if ((Name.startswith("shld") || Name.startswith("shrd")) &&
|
|
Operands.size() == 3) {
|
|
const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext());
|
|
Operands.insert(Operands.begin()+1,
|
|
X86Operand::CreateImm(One, NameLoc, NameLoc));
|
|
}
|
|
|
|
|
|
// FIXME: Hack to handle recognize "in[bwl] <op>". Canonicalize it to
|
|
// "inb <op>, %al".
|
|
if ((Name == "inb" || Name == "inw" || Name == "inl") &&
|
|
Operands.size() == 2) {
|
|
unsigned Reg;
|
|
if (Name[2] == 'b')
|
|
Reg = MatchRegisterName("al");
|
|
else if (Name[2] == 'w')
|
|
Reg = MatchRegisterName("ax");
|
|
else
|
|
Reg = MatchRegisterName("eax");
|
|
SMLoc Loc = Operands.back()->getEndLoc();
|
|
Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc));
|
|
}
|
|
|
|
// FIXME: Hack to handle recognize "out[bwl] <op>". Canonicalize it to
|
|
// "outb %al, <op>".
|
|
if ((Name == "outb" || Name == "outw" || Name == "outl") &&
|
|
Operands.size() == 2) {
|
|
unsigned Reg;
|
|
if (Name[3] == 'b')
|
|
Reg = MatchRegisterName("al");
|
|
else if (Name[3] == 'w')
|
|
Reg = MatchRegisterName("ax");
|
|
else
|
|
Reg = MatchRegisterName("eax");
|
|
SMLoc Loc = Operands.back()->getEndLoc();
|
|
Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc));
|
|
std::swap(Operands[1], Operands[2]);
|
|
}
|
|
|
|
// FIXME: Hack to handle "out[bwl]? %al, (%dx)" -> "outb %al, %dx".
|
|
if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
|
|
Operands.size() == 3) {
|
|
X86Operand &Op = *(X86Operand*)Operands.back();
|
|
if (Op.isMem() && Op.Mem.SegReg == 0 &&
|
|
isa<MCConstantExpr>(Op.Mem.Disp) &&
|
|
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
|
|
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
|
|
SMLoc Loc = Op.getEndLoc();
|
|
Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
|
|
delete &Op;
|
|
}
|
|
}
|
|
|
|
// FIXME: Hack to handle "f{mul*,add*,sub*,div*} $op, st(0)" the same as
|
|
// "f{mul*,add*,sub*,div*} $op"
|
|
if ((Name.startswith("fmul") || Name.startswith("fadd") ||
|
|
Name.startswith("fsub") || Name.startswith("fdiv")) &&
|
|
Operands.size() == 3 &&
|
|
static_cast<X86Operand*>(Operands[2])->isReg() &&
|
|
static_cast<X86Operand*>(Operands[2])->getReg() == X86::ST0) {
|
|
delete Operands[2];
|
|
Operands.erase(Operands.begin() + 2);
|
|
}
|
|
|
|
// FIXME: Hack to handle "f{mulp,addp} st(0), $op" the same as
|
|
// "f{mulp,addp} $op", since they commute. We also allow fdivrp/fsubrp even
|
|
// though they don't commute, solely because gas does support this.
|
|
if ((Name=="fmulp" || Name=="faddp" || Name=="fsubrp" || Name=="fdivrp") &&
|
|
Operands.size() == 3 &&
|
|
static_cast<X86Operand*>(Operands[1])->isReg() &&
|
|
static_cast<X86Operand*>(Operands[1])->getReg() == X86::ST0) {
|
|
delete Operands[1];
|
|
Operands.erase(Operands.begin() + 1);
|
|
}
|
|
|
|
// FIXME: Hack to handle "imul <imm>, B" which is an alias for "imul <imm>, B,
|
|
// B".
|
|
if (Name.startswith("imul") && Operands.size() == 3 &&
|
|
static_cast<X86Operand*>(Operands[1])->isImm() &&
|
|
static_cast<X86Operand*>(Operands.back())->isReg()) {
|
|
X86Operand *Op = static_cast<X86Operand*>(Operands.back());
|
|
Operands.push_back(X86Operand::CreateReg(Op->getReg(), Op->getStartLoc(),
|
|
Op->getEndLoc()));
|
|
}
|
|
|
|
// 'sldt <mem>' can be encoded with either sldtw or sldtq with the same
|
|
// effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity
|
|
// errors, since its encoding is the most compact.
|
|
if (Name == "sldt" && Operands.size() == 2 &&
|
|
static_cast<X86Operand*>(Operands[1])->isMem()) {
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken("sldtw", NameLoc);
|
|
}
|
|
|
|
// The assembler accepts "xchgX <reg>, <mem>" and "xchgX <mem>, <reg>" as
|
|
// synonyms. Our tables only have the "<reg>, <mem>" form, so if we see the
|
|
// other operand order, swap them.
|
|
if (Name == "xchgb" || Name == "xchgw" || Name == "xchgl" || Name == "xchgq"||
|
|
Name == "xchg")
|
|
if (Operands.size() == 3 &&
|
|
static_cast<X86Operand*>(Operands[1])->isMem() &&
|
|
static_cast<X86Operand*>(Operands[2])->isReg()) {
|
|
std::swap(Operands[1], Operands[2]);
|
|
}
|
|
|
|
// The assembler accepts "testX <reg>, <mem>" and "testX <mem>, <reg>" as
|
|
// synonyms. Our tables only have the "<mem>, <reg>" form, so if we see the
|
|
// other operand order, swap them.
|
|
if (Name == "testb" || Name == "testw" || Name == "testl" || Name == "testq"||
|
|
Name == "test")
|
|
if (Operands.size() == 3 &&
|
|
static_cast<X86Operand*>(Operands[1])->isReg() &&
|
|
static_cast<X86Operand*>(Operands[2])->isMem()) {
|
|
std::swap(Operands[1], Operands[2]);
|
|
}
|
|
|
|
// The assembler accepts these instructions with no operand as a synonym for
|
|
// an instruction acting on st(1). e.g. "fxch" -> "fxch %st(1)".
|
|
if ((Name == "fxch" || Name == "fucom" || Name == "fucomp" ||
|
|
Name == "faddp" || Name == "fsubp" || Name == "fsubrp" ||
|
|
Name == "fmulp" || Name == "fdivp" || Name == "fdivrp") &&
|
|
Operands.size() == 1) {
|
|
Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"),
|
|
NameLoc, NameLoc));
|
|
}
|
|
|
|
// The assembler accepts these instructions with two few operands as a synonym
|
|
// for taking %st(1),%st(0) or X, %st(0).
|
|
if ((Name == "fcomi" || Name == "fucomi") && Operands.size() < 3) {
|
|
if (Operands.size() == 1)
|
|
Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"),
|
|
NameLoc, NameLoc));
|
|
Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(0)"),
|
|
NameLoc, NameLoc));
|
|
}
|
|
|
|
// The assembler accepts various amounts of brokenness for fnstsw.
|
|
if (Name == "fnstsw") {
|
|
if (Operands.size() == 2 &&
|
|
static_cast<X86Operand*>(Operands[1])->isReg()) {
|
|
// "fnstsw al" and "fnstsw eax" -> "fnstw"
|
|
unsigned Reg = static_cast<X86Operand*>(Operands[1])->Reg.RegNo;
|
|
if (Reg == MatchRegisterName("eax") ||
|
|
Reg == MatchRegisterName("al")) {
|
|
delete Operands[1];
|
|
Operands.pop_back();
|
|
}
|
|
}
|
|
|
|
// "fnstw" -> "fnstw %ax"
|
|
if (Operands.size() == 1)
|
|
Operands.push_back(X86Operand::CreateReg(MatchRegisterName("ax"),
|
|
NameLoc, NameLoc));
|
|
}
|
|
|
|
// jmp $42,$5 -> ljmp, similarly for call.
|
|
if ((Name.startswith("call") || Name.startswith("jmp")) &&
|
|
Operands.size() == 3 &&
|
|
static_cast<X86Operand*>(Operands[1])->isImm() &&
|
|
static_cast<X86Operand*>(Operands[2])->isImm()) {
|
|
const char *NewOpName = StringSwitch<const char *>(Name)
|
|
.Case("jmp", "ljmp")
|
|
.Case("jmpw", "ljmpw")
|
|
.Case("jmpl", "ljmpl")
|
|
.Case("jmpq", "ljmpq")
|
|
.Case("call", "lcall")
|
|
.Case("callw", "lcallw")
|
|
.Case("calll", "lcalll")
|
|
.Case("callq", "lcallq")
|
|
.Default(0);
|
|
if (NewOpName) {
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken(NewOpName, NameLoc);
|
|
Name = NewOpName;
|
|
}
|
|
}
|
|
|
|
// lcall and ljmp -> lcalll and ljmpl
|
|
if ((Name == "lcall" || Name == "ljmp") && Operands.size() == 3) {
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken(Name == "lcall" ? "lcalll" : "ljmpl",
|
|
NameLoc);
|
|
}
|
|
|
|
// call foo is not ambiguous with callw.
|
|
if (Name == "call" && Operands.size() == 2) {
|
|
const char *NewName = Is64Bit ? "callq" : "calll";
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken(NewName, NameLoc);
|
|
Name = NewName;
|
|
}
|
|
|
|
// movsd -> movsl (when no operands are specified).
|
|
if (Name == "movsd" && Operands.size() == 1) {
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken("movsl", NameLoc);
|
|
}
|
|
|
|
// fstp <mem> -> fstps <mem>. Without this, we'll default to fstpl due to
|
|
// suffix searching.
|
|
if (Name == "fstp" && Operands.size() == 2 &&
|
|
static_cast<X86Operand*>(Operands[1])->isMem()) {
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken("fstps", NameLoc);
|
|
}
|
|
|
|
|
|
// "clr <reg>" -> "xor <reg>, <reg>".
|
|
if ((Name == "clrb" || Name == "clrw" || Name == "clrl" || Name == "clrq" ||
|
|
Name == "clr") && Operands.size() == 2 &&
|
|
static_cast<X86Operand*>(Operands[1])->isReg()) {
|
|
unsigned RegNo = static_cast<X86Operand*>(Operands[1])->getReg();
|
|
Operands.push_back(X86Operand::CreateReg(RegNo, NameLoc, NameLoc));
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken("xor", NameLoc);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
|
|
StringRef IDVal = DirectiveID.getIdentifier();
|
|
if (IDVal == ".word")
|
|
return ParseDirectiveWord(2, DirectiveID.getLoc());
|
|
return true;
|
|
}
|
|
|
|
/// ParseDirectiveWord
|
|
/// ::= .word [ expression (, expression)* ]
|
|
bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
for (;;) {
|
|
const MCExpr *Value;
|
|
if (getParser().ParseExpression(Value))
|
|
return true;
|
|
|
|
getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
|
|
|
|
if (getLexer().is(AsmToken::EndOfStatement))
|
|
break;
|
|
|
|
// FIXME: Improve diagnostic.
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return Error(L, "unexpected token in directive");
|
|
Parser.Lex();
|
|
}
|
|
}
|
|
|
|
Parser.Lex();
|
|
return false;
|
|
}
|
|
|
|
|
|
bool X86ATTAsmParser::
|
|
MatchAndEmitInstruction(SMLoc IDLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
|
|
MCStreamer &Out) {
|
|
assert(!Operands.empty() && "Unexpect empty operand list!");
|
|
X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
|
|
assert(Op->isToken() && "Leading operand should always be a mnemonic!");
|
|
|
|
// First, handle aliases that expand to multiple instructions.
|
|
// FIXME: This should be replaced with a real .td file alias mechanism.
|
|
if (Op->getToken() == "fstsw") {
|
|
MCInst Inst;
|
|
Inst.setOpcode(X86::WAIT);
|
|
Out.EmitInstruction(Inst);
|
|
|
|
delete Operands[0];
|
|
Operands[0] = X86Operand::CreateToken("fnstsw", IDLoc);
|
|
}
|
|
|
|
|
|
bool WasOriginallyInvalidOperand = false;
|
|
unsigned OrigErrorInfo;
|
|
MCInst Inst;
|
|
|
|
// First, try a direct match.
|
|
switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) {
|
|
case Match_Success:
|
|
Out.EmitInstruction(Inst);
|
|
return false;
|
|
case Match_MissingFeature:
|
|
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
|
|
return true;
|
|
case Match_InvalidOperand:
|
|
WasOriginallyInvalidOperand = true;
|
|
break;
|
|
case Match_MnemonicFail:
|
|
break;
|
|
}
|
|
|
|
// FIXME: Ideally, we would only attempt suffix matches for things which are
|
|
// valid prefixes, and we could just infer the right unambiguous
|
|
// type. However, that requires substantially more matcher support than the
|
|
// following hack.
|
|
|
|
// Change the operand to point to a temporary token.
|
|
StringRef Base = Op->getToken();
|
|
SmallString<16> Tmp;
|
|
Tmp += Base;
|
|
Tmp += ' ';
|
|
Op->setTokenValue(Tmp.str());
|
|
|
|
// Check for the various suffix matches.
|
|
Tmp[Base.size()] = 'b';
|
|
unsigned BErrorInfo, WErrorInfo, LErrorInfo, QErrorInfo;
|
|
MatchResultTy MatchB = MatchInstructionImpl(Operands, Inst, BErrorInfo);
|
|
Tmp[Base.size()] = 'w';
|
|
MatchResultTy MatchW = MatchInstructionImpl(Operands, Inst, WErrorInfo);
|
|
Tmp[Base.size()] = 'l';
|
|
MatchResultTy MatchL = MatchInstructionImpl(Operands, Inst, LErrorInfo);
|
|
Tmp[Base.size()] = 'q';
|
|
MatchResultTy MatchQ = MatchInstructionImpl(Operands, Inst, QErrorInfo);
|
|
|
|
// Restore the old token.
|
|
Op->setTokenValue(Base);
|
|
|
|
// If exactly one matched, then we treat that as a successful match (and the
|
|
// instruction will already have been filled in correctly, since the failing
|
|
// matches won't have modified it).
|
|
unsigned NumSuccessfulMatches =
|
|
(MatchB == Match_Success) + (MatchW == Match_Success) +
|
|
(MatchL == Match_Success) + (MatchQ == Match_Success);
|
|
if (NumSuccessfulMatches == 1) {
|
|
Out.EmitInstruction(Inst);
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, the match failed, try to produce a decent error message.
|
|
|
|
// If we had multiple suffix matches, then identify this as an ambiguous
|
|
// match.
|
|
if (NumSuccessfulMatches > 1) {
|
|
char MatchChars[4];
|
|
unsigned NumMatches = 0;
|
|
if (MatchB == Match_Success)
|
|
MatchChars[NumMatches++] = 'b';
|
|
if (MatchW == Match_Success)
|
|
MatchChars[NumMatches++] = 'w';
|
|
if (MatchL == Match_Success)
|
|
MatchChars[NumMatches++] = 'l';
|
|
if (MatchQ == Match_Success)
|
|
MatchChars[NumMatches++] = 'q';
|
|
|
|
SmallString<126> Msg;
|
|
raw_svector_ostream OS(Msg);
|
|
OS << "ambiguous instructions require an explicit suffix (could be ";
|
|
for (unsigned i = 0; i != NumMatches; ++i) {
|
|
if (i != 0)
|
|
OS << ", ";
|
|
if (i + 1 == NumMatches)
|
|
OS << "or ";
|
|
OS << "'" << Base << MatchChars[i] << "'";
|
|
}
|
|
OS << ")";
|
|
Error(IDLoc, OS.str());
|
|
return true;
|
|
}
|
|
|
|
// Okay, we know that none of the variants matched successfully.
|
|
|
|
// If all of the instructions reported an invalid mnemonic, then the original
|
|
// mnemonic was invalid.
|
|
if ((MatchB == Match_MnemonicFail) && (MatchW == Match_MnemonicFail) &&
|
|
(MatchL == Match_MnemonicFail) && (MatchQ == Match_MnemonicFail)) {
|
|
if (!WasOriginallyInvalidOperand) {
|
|
Error(IDLoc, "invalid instruction mnemonic '" + Base + "'");
|
|
return true;
|
|
}
|
|
|
|
// Recover location info for the operand if we know which was the problem.
|
|
SMLoc ErrorLoc = IDLoc;
|
|
if (OrigErrorInfo != ~0U) {
|
|
if (OrigErrorInfo >= Operands.size())
|
|
return Error(IDLoc, "too few operands for instruction");
|
|
|
|
ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc();
|
|
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
|
|
}
|
|
|
|
return Error(ErrorLoc, "invalid operand for instruction");
|
|
}
|
|
|
|
// If one instruction matched with a missing feature, report this as a
|
|
// missing feature.
|
|
if ((MatchB == Match_MissingFeature) + (MatchW == Match_MissingFeature) +
|
|
(MatchL == Match_MissingFeature) + (MatchQ == Match_MissingFeature) == 1){
|
|
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
|
|
return true;
|
|
}
|
|
|
|
// If one instruction matched with an invalid operand, report this as an
|
|
// operand failure.
|
|
if ((MatchB == Match_InvalidOperand) + (MatchW == Match_InvalidOperand) +
|
|
(MatchL == Match_InvalidOperand) + (MatchQ == Match_InvalidOperand) == 1){
|
|
Error(IDLoc, "invalid operand for instruction");
|
|
return true;
|
|
}
|
|
|
|
// If all of these were an outright failure, report it in a useless way.
|
|
// FIXME: We should give nicer diagnostics about the exact failure.
|
|
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
|
|
return true;
|
|
}
|
|
|
|
|
|
extern "C" void LLVMInitializeX86AsmLexer();
|
|
|
|
// Force static initialization.
|
|
extern "C" void LLVMInitializeX86AsmParser() {
|
|
RegisterAsmParser<X86_32ATTAsmParser> X(TheX86_32Target);
|
|
RegisterAsmParser<X86_64ATTAsmParser> Y(TheX86_64Target);
|
|
LLVMInitializeX86AsmLexer();
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#define GET_MATCHER_IMPLEMENTATION
|
|
#include "X86GenAsmMatcher.inc"
|